Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2016

Open Access 01-07-2016 | Research

In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.)

Authors: Sundar Poovitha, Madasamy Parani

Published in: BMC Complementary Medicine and Therapies | Special Issue 1/2016

Login to get access

Abstract

Background

α-amylase and α-glucosidase digest the carbohydrates and increase the postprandial glucose level in diabetic patients. Inhibiting the activity of these two enzymes can control postprandial hyperglycemia, and reduce the risk of developing diabetes. Bitter gourd or balsam pear is one of the important medicinal plants used for controlling postprandial hyperglycemia in diabetes patients. However, there is limited information available on the presence of α-amylase and α-glucosidase inhibiting compounds. In the current study, the protein extracts from the fruits of M. charantia var. charantia (MCC) and M. charantia var. muricata (MCM) were tested for α-amylase and α-glucosidase inhibiting activities in vitro, and glucose lowering activity after oral administration in vivo.

Results

The protein extract from both MCC and MCM inhibited the activity of α-amylase and α-glucosidase through competitive inhibition, which was on par with Acarbose as indicated by in vitro percentage of inhibition (66 to 69 %) and IC50 (0.26 to 0.29 mg/ml). Both the protein extracts significantly reduced peak blood glucose and area under the curve in Streptozotocin-induced diabetic rats, which were orally challenged with starch and sucrose.

Conclusions

Protein extracts from the fruits of the two varieties of bitter gourd inhibited α-amylase and α-glucosidase in vitro and lowered the blood glucose level in vivo on par with Acarbose when orally administrated to Streptozotocin-induced diabetic rats. Further studies on mechanism of action and methods of safe and biologically active delivery will help to develop an anti-diabetic oral protein drug from these plants.
Literature
2.
go back to reference Gin H, Rigalleau V. Post-prandial hyperglycemia. Post-prandial hyperglycemia and diabetes. Diabetes Metab. 2000;4:265–72. Gin H, Rigalleau V. Post-prandial hyperglycemia. Post-prandial hyperglycemia and diabetes. Diabetes Metab. 2000;4:265–72.
3.
go back to reference Lordan S, Smyth TJ, Soler-Vila A, Stanton C, Ross RP. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem. 2013;141:2170–6.CrossRefPubMed Lordan S, Smyth TJ, Soler-Vila A, Stanton C, Ross RP. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem. 2013;141:2170–6.CrossRefPubMed
5.
go back to reference Van de Laar FA. α-glucosidase inhibitors in the early treatment of type 2 diabetes. Vasc. Health Risk Manag. 2008;4:1189–95. Van de Laar FA. α-glucosidase inhibitors in the early treatment of type 2 diabetes. Vasc. Health Risk Manag. 2008;4:1189–95.
6.
go back to reference Etxeberria U, de la Garza AL, Capion J, Martnez JA, Milagro FI. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic α amylase. Expert Opin Ther Targets. 2012;16:269–97.CrossRefPubMed Etxeberria U, de la Garza AL, Capion J, Martnez JA, Milagro FI. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic α amylase. Expert Opin Ther Targets. 2012;16:269–97.CrossRefPubMed
8.
go back to reference Fatmawati S, Shimizu K, Kondo R, Ganoderol B. A potent α-glucosidase inhibitor isolated from the fruiting body of Ganoderma lucidum. Phytomedicine. 2011;18:1053–5.CrossRefPubMed Fatmawati S, Shimizu K, Kondo R, Ganoderol B. A potent α-glucosidase inhibitor isolated from the fruiting body of Ganoderma lucidum. Phytomedicine. 2011;18:1053–5.CrossRefPubMed
9.
go back to reference Konishi K, Watanabe N, Saito M, Nakajima N, Sakaki T, Katayama T, Enomoto T. Isolation of a new phlorotannin, a potent inhibitor of carbohydrate-hydrolyzing enzymes, from the brown alga Sargassum patens. J Agr Food Chem. 2012;60:5565–70.CrossRef Konishi K, Watanabe N, Saito M, Nakajima N, Sakaki T, Katayama T, Enomoto T. Isolation of a new phlorotannin, a potent inhibitor of carbohydrate-hydrolyzing enzymes, from the brown alga Sargassum patens. J Agr Food Chem. 2012;60:5565–70.CrossRef
10.
go back to reference Orhan N, Aslan M, Süküroğlu M, Orhan D. In vivo and in vitro antidiabetic effect of Cistus laurifolius L. and detection of major phenolic compounds by UPLC-TOF-MS analysis. J Ethnopharmacol. 2013;146:859–65.CrossRefPubMed Orhan N, Aslan M, Süküroğlu M, Orhan D. In vivo and in vitro antidiabetic effect of Cistus laurifolius L. and detection of major phenolic compounds by UPLC-TOF-MS analysis. J Ethnopharmacol. 2013;146:859–65.CrossRefPubMed
11.
go back to reference Panwar H, Calderwood D, Grant IR, Grover S, Green BD. Lactobacillus strains isolated from infant faeces possess potent inhibitory activity against intestinal α- and beta-glucosidases suggesting anti-diabetic potential. Eur J Nutr. 2014;53:1465–74.CrossRefPubMed Panwar H, Calderwood D, Grant IR, Grover S, Green BD. Lactobacillus strains isolated from infant faeces possess potent inhibitory activity against intestinal α- and beta-glucosidases suggesting anti-diabetic potential. Eur J Nutr. 2014;53:1465–74.CrossRefPubMed
12.
go back to reference Ali RB, Atangwho IJ, Kuar N, Ahmad M, Mahmud R, Asmawi MZ. In vitro and in vivo effects of standardized extract and fractions of Phaleria macrocarpa fruits pericarp on lead carbohydrate digesting enzymes. BMC Complement Altern Med. 2013;20:13–39. Ali RB, Atangwho IJ, Kuar N, Ahmad M, Mahmud R, Asmawi MZ. In vitro and in vivo effects of standardized extract and fractions of Phaleria macrocarpa fruits pericarp on lead carbohydrate digesting enzymes. BMC Complement Altern Med. 2013;20:13–39.
13.
go back to reference Kim KT, Rioux LE, Turgeon SL. α-amylase and α-glucosidase inhibition is differentially modulated by Fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochem. 2014;98:27–33.CrossRef Kim KT, Rioux LE, Turgeon SL. α-amylase and α-glucosidase inhibition is differentially modulated by Fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochem. 2014;98:27–33.CrossRef
14.
go back to reference Mohamed EAH, Siddiqui MJA, Ang LF, Sadikun A, Chan SH, Tan SC, et al. Potent α-glucosidase and α-amylase inhibitory activities of standardized 50 % ethanolic extracts and sinensetin from Orthosiphon stamineus Benth as anti-diabetic mechanism. BMC Complement Altern Med. 2012;12:176–82.CrossRefPubMedPubMedCentral Mohamed EAH, Siddiqui MJA, Ang LF, Sadikun A, Chan SH, Tan SC, et al. Potent α-glucosidase and α-amylase inhibitory activities of standardized 50 % ethanolic extracts and sinensetin from Orthosiphon stamineus Benth as anti-diabetic mechanism. BMC Complement Altern Med. 2012;12:176–82.CrossRefPubMedPubMedCentral
15.
go back to reference Perez-Gutierrez RM, Damian-Guzman M. Meliacinolin: a potent α-glucosidase and α-amylase inhibitor isolated from Azadirachta indica leaves and in vivo antidiabetic property in streptozotocin-nicotinamide-induced type 2 diabetes in mice. Biol Pharm Bull. 2012;35:1516–24.CrossRefPubMed Perez-Gutierrez RM, Damian-Guzman M. Meliacinolin: a potent α-glucosidase and α-amylase inhibitor isolated from Azadirachta indica leaves and in vivo antidiabetic property in streptozotocin-nicotinamide-induced type 2 diabetes in mice. Biol Pharm Bull. 2012;35:1516–24.CrossRefPubMed
16.
go back to reference Chatterjee KP. On the Presence of an Antidiabetic principle in Momordica Charantia. Indian J Physiol Pharmacol. 1963;7:240–4.PubMed Chatterjee KP. On the Presence of an Antidiabetic principle in Momordica Charantia. Indian J Physiol Pharmacol. 1963;7:240–4.PubMed
17.
go back to reference Kar A, Choudhary BK, Bandyopadhyay NG. Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. J Ethnopharmacol. 2003;84:105–8.CrossRefPubMed Kar A, Choudhary BK, Bandyopadhyay NG. Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats. J Ethnopharmacol. 2003;84:105–8.CrossRefPubMed
18.
go back to reference Matsuura H, Asakawa C, Kurimoto M, Mizutani J. α-glucosidase inhibitor from the seeds of balsam pear (Momordica charantia) and the fruit bodies of Grifola frondosa. Biosci Biotech Biochem. 2002;66:1576–8.CrossRef Matsuura H, Asakawa C, Kurimoto M, Mizutani J. α-glucosidase inhibitor from the seeds of balsam pear (Momordica charantia) and the fruit bodies of Grifola frondosa. Biosci Biotech Biochem. 2002;66:1576–8.CrossRef
19.
go back to reference Uebanso T, Arai H, Taketani Y, Fukaya M, Yamamoto H, Mizuno A, et al. Extracts of momordica charantia suppress postprandial hyperglycemia in rats. J Nutr Sci Vitaminology. 2007;53:482–8.CrossRef Uebanso T, Arai H, Taketani Y, Fukaya M, Yamamoto H, Mizuno A, et al. Extracts of momordica charantia suppress postprandial hyperglycemia in rats. J Nutr Sci Vitaminology. 2007;53:482–8.CrossRef
20.
go back to reference Nhiem NX, Kiem PV, Minh CV, Ban NK, Cuong NX, Tung NH, et al. α-glucosidase inhibition properties of cucurbitane-type triterpene glycosides from the fruits of momordica charantia. Chem Pharm Bull. 2010;58:720–4.CrossRefPubMed Nhiem NX, Kiem PV, Minh CV, Ban NK, Cuong NX, Tung NH, et al. α-glucosidase inhibition properties of cucurbitane-type triterpene glycosides from the fruits of momordica charantia. Chem Pharm Bull. 2010;58:720–4.CrossRefPubMed
21.
go back to reference Ahmad N, Hassan MR, Halder H, Bennoor KS. Effect of Momordica charantia (Karolla) extracts on fastin7g and postprandial serum glucose levels in NIDDM patients. Bangladesh Med Res Counc Bull. 1999;25:11–3.PubMed Ahmad N, Hassan MR, Halder H, Bennoor KS. Effect of Momordica charantia (Karolla) extracts on fastin7g and postprandial serum glucose levels in NIDDM patients. Bangladesh Med Res Counc Bull. 1999;25:11–3.PubMed
22.
go back to reference Baldwa VS, Bhandari CM, Pangaria A, Goyal RK. Clinical trial in patients with diabetes mellitus of an insulin-like compound obtained from plant source. Upsala J Med Sci. 1977;82:39–41.CrossRefPubMed Baldwa VS, Bhandari CM, Pangaria A, Goyal RK. Clinical trial in patients with diabetes mellitus of an insulin-like compound obtained from plant source. Upsala J Med Sci. 1977;82:39–41.CrossRefPubMed
23.
go back to reference Khanna P, Jain SC, Panagariya A, Dixit VP. Hypoglycemic activity of polypeptide-p from a plant source. J Nat Prod. 1981;44:648–55.CrossRefPubMed Khanna P, Jain SC, Panagariya A, Dixit VP. Hypoglycemic activity of polypeptide-p from a plant source. J Nat Prod. 1981;44:648–55.CrossRefPubMed
24.
go back to reference Yibchok-anun S, Adisakwattana S, Yao CY, Sangvanich P, Roengsumran S, Hsu WH. Slow acting protein extract from fruit pulp of Momordica charantia with insulin secretagogue and insulinomimetic activities. Biol Pharm Bull. 2006;29:1126–31.CrossRefPubMed Yibchok-anun S, Adisakwattana S, Yao CY, Sangvanich P, Roengsumran S, Hsu WH. Slow acting protein extract from fruit pulp of Momordica charantia with insulin secretagogue and insulinomimetic activities. Biol Pharm Bull. 2006;29:1126–31.CrossRefPubMed
25.
go back to reference Kwon Y, Apostolidis E, Shetty K. Inhibitory potential of wine and tea against α-amylase and α-glucosidase for management of hyperglycemia linked to type 2 diabetes. J Food Biochem. 2006;32:15–31.CrossRef Kwon Y, Apostolidis E, Shetty K. Inhibitory potential of wine and tea against α-amylase and α-glucosidase for management of hyperglycemia linked to type 2 diabetes. J Food Biochem. 2006;32:15–31.CrossRef
26.
go back to reference Kim YM, Wang MH, Rhee HI. A novel α-glucosidase inhibitor from pine bark. Carbohydr Res. 2004;339:715–7.CrossRefPubMed Kim YM, Wang MH, Rhee HI. A novel α-glucosidase inhibitor from pine bark. Carbohydr Res. 2004;339:715–7.CrossRefPubMed
27.
go back to reference Ali H, Houghton PJ, Soumyanath A. α-amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J Ethnopharmacol. 2006;107:449–55.CrossRefPubMed Ali H, Houghton PJ, Soumyanath A. α-amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J Ethnopharmacol. 2006;107:449–55.CrossRefPubMed
28.
go back to reference Subramanian R, Asmawi MZ, Sadikun A. In vitro α-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochim Pol. 2008;55:391–8.PubMed Subramanian R, Asmawi MZ, Sadikun A. In vitro α-glucosidase and α-amylase enzyme inhibitory effects of Andrographis paniculata extract and andrographolide. Acta Biochim Pol. 2008;55:391–8.PubMed
29.
go back to reference Olubomehin OO, Abo KA, Ajaiyeoba EO. α-amylase inhibitory activity of two Anthocleista species and in vivo rat model anti-diabetic activities of Anthocleista djalonensis extracts and fractions. J Ethnopharmacol. 2013;146:811–4.CrossRefPubMed Olubomehin OO, Abo KA, Ajaiyeoba EO. α-amylase inhibitory activity of two Anthocleista species and in vivo rat model anti-diabetic activities of Anthocleista djalonensis extracts and fractions. J Ethnopharmacol. 2013;146:811–4.CrossRefPubMed
30.
go back to reference Joshi BN, Munot H, Hardikar M, Kulkarni A. Orally active hypoglycemic protein from Costus igneus N. E Br Biochem Biophys Res Commun. 2013;436:278–82.CrossRef Joshi BN, Munot H, Hardikar M, Kulkarni A. Orally active hypoglycemic protein from Costus igneus N. E Br Biochem Biophys Res Commun. 2013;436:278–82.CrossRef
31.
go back to reference Zhang H, Wang J, Liu Y, Sun B. Peptides derived from oats improve insulin sensitivity and lower blood glucose in streptozotocin-induced diabetic mice. J Biomed Sci. 2015;4:1–7. Zhang H, Wang J, Liu Y, Sun B. Peptides derived from oats improve insulin sensitivity and lower blood glucose in streptozotocin-induced diabetic mice. J Biomed Sci. 2015;4:1–7.
32.
go back to reference Hamissou M, Smith AC, Carter Jr RE, Triplett II JK. Antioxidative properties of bitter gourd (Momordica charantia) and zucchini (Cucurbita pepo). Emir J Food Agric. 2013;25:641–7.CrossRef Hamissou M, Smith AC, Carter Jr RE, Triplett II JK. Antioxidative properties of bitter gourd (Momordica charantia) and zucchini (Cucurbita pepo). Emir J Food Agric. 2013;25:641–7.CrossRef
Metadata
Title
In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.)
Authors
Sundar Poovitha
Madasamy Parani
Publication date
01-07-2016
Publisher
BioMed Central
DOI
https://doi.org/10.1186/s12906-016-1085-1