Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

In search of druggable targets for GBM amino acid metabolism

Authors: Eduard H. Panosyan, Henry J. Lin, Jan Koster, Joseph L. Lasky III

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

Amino acid (AA) pathways may contain druggable targets for glioblastoma (GBM). Literature reviews and GBM database (http://​r2.​amc.​nl) analyses were carried out to screen for such targets among 95 AA related enzymes.

Methods

First, we identified the genes that were differentially expressed in GBMs (3 datasets) compared to non-GBM brain tissues (5 datasets), or were associated with survival differences. Further, protein expression for these enzymes was also analyzed in high grade gliomas (HGGs) (proteinatlas.org). Finally, AA enzyme and gene expression were compared among the 4 TCGA (The Cancer Genome Atlas) subtypes of GBMs.

Results

We detected differences in enzymes involved in glutamate and urea cycle metabolism in GBM. For example, expression levels of BCAT1 (branched chain amino acid transferase 1) and ASL (argininosuccinate lyase) were high, but ASS1 (argininosuccinate synthase 1) was low in GBM. Proneural and neural TCGA subtypes had low expression of all three. High expression of all three correlated with worse outcome. ASL and ASS1 protein levels were mostly undetected in high grade gliomas, whereas BCAT1 was high. GSS (glutathione synthetase) was not differentially expressed, but higher levels were linked to poor progression free survival. ASPA (aspartoacylase) and GOT1 (glutamic-oxaloacetic transaminase 1) had lower expression in GBM (associated with poor outcomes). All three GABA related genes -- glutamate decarboxylase 1 (GAD1) and 2 (GAD2) and 4-aminobutyrate aminotransferase (ABAT) -- were lower in mesenchymal tumors, which in contrast showed higher IDO1 (indoleamine 2, 3-dioxygenase 1) and TDO2 (tryptophan 2, 3-diaxygenase). Expression of PRODH (proline dehydrogenase), a putative tumor suppressor, was lower in GBM. Higher levels predicted poor survival.

Conclusions

Several AA-metabolizing enzymes that are higher in GBM, are also linked to poor outcome (such as BCAT1), which makes them potential targets for therapeutic inhibition. Moreover, existing drugs that deplete asparagine and arginine may be effective against brain tumors, and should be studied in conjunction with chemotherapy. Last, AA metabolism is heterogeneous in TCGA subtypes of GBM (as well as medulloblastomas and other pediatric tumors), which may translate to variable responses to AA targeted therapies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Squatrito M, Holland EC. DNA damage response and growth factor signaling pathways in gliomagenesis and therapeutic resistance. Cancer Res. 2011;71(18):5945–9.CrossRefPubMed Squatrito M, Holland EC. DNA damage response and growth factor signaling pathways in gliomagenesis and therapeutic resistance. Cancer Res. 2011;71(18):5945–9.CrossRefPubMed
2.
go back to reference Scott BJ, Quant EC, McNamara MB, Ryg PA, Batchelor TT, Wen PY. Bevacizumab salvage therapy following progression in high-grade glioma patients treated with VEGF receptor tyrosine kinase inhibitors. Neuro-Oncology. 2010;12(6):603–7.CrossRefPubMedPubMedCentral Scott BJ, Quant EC, McNamara MB, Ryg PA, Batchelor TT, Wen PY. Bevacizumab salvage therapy following progression in high-grade glioma patients treated with VEGF receptor tyrosine kinase inhibitors. Neuro-Oncology. 2010;12(6):603–7.CrossRefPubMedPubMedCentral
3.
go back to reference Mellinghoff IK, Lassman AB, Wen PY. Signal transduction inhibitors and antiangiogenic therapies for malignant glioma. Glia. 2011;59(8):1205–12.CrossRefPubMed Mellinghoff IK, Lassman AB, Wen PY. Signal transduction inhibitors and antiangiogenic therapies for malignant glioma. Glia. 2011;59(8):1205–12.CrossRefPubMed
4.
go back to reference Reardon DA, Freeman G, Wu C, Chiocca EA, Wucherpfennig KW, Wen PY, Fritsch EF, Curry WT, Sampson JH, Dranoff G. Immunotherapy advances for glioblastoma. Neuro-Oncology. 2014;16(11):1441–58.CrossRefPubMedPubMedCentral Reardon DA, Freeman G, Wu C, Chiocca EA, Wucherpfennig KW, Wen PY, Fritsch EF, Curry WT, Sampson JH, Dranoff G. Immunotherapy advances for glioblastoma. Neuro-Oncology. 2014;16(11):1441–58.CrossRefPubMedPubMedCentral
5.
6.
go back to reference Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov. 2011;10(9):671–84.CrossRefPubMed Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov. 2011;10(9):671–84.CrossRefPubMed
7.
go back to reference Sciacovelli M, Gaude E, Hilvo M, Frezza C. Chapter One - The Metabolic Alterations of Cancer Cells. In: Lorenzo G, Guido K, editors. Methods in Enzymology. Volume 542, edn. USA: Academic Press; 2014. p. 1–23. Sciacovelli M, Gaude E, Hilvo M, Frezza C. Chapter One - The Metabolic Alterations of Cancer Cells. In: Lorenzo G, Guido K, editors. Methods in Enzymology. Volume 542, edn. USA: Academic Press; 2014. p. 1–23.
8.
go back to reference Avramis VI, Panosyan EH. Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations: the past, the present and recommendations for the future. Clin Pharmacokinet. 2005;44(4):367–93.CrossRefPubMed Avramis VI, Panosyan EH. Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations: the past, the present and recommendations for the future. Clin Pharmacokinet. 2005;44(4):367–93.CrossRefPubMed
9.
go back to reference Bertino JR. Cancer research: from folate antagonism to molecular targets. Best Pract Res Clin Haematol. 2009;22(4):577–82.CrossRefPubMed Bertino JR. Cancer research: from folate antagonism to molecular targets. Best Pract Res Clin Haematol. 2009;22(4):577–82.CrossRefPubMed
10.
11.
go back to reference Ezoe S. Secondary leukemia associated with the anti-cancer agent, etoposide, a topoisomerase II inhibitor. Int J Environ Res Public Health. 2012;9(7):2444–53.CrossRefPubMedPubMedCentral Ezoe S. Secondary leukemia associated with the anti-cancer agent, etoposide, a topoisomerase II inhibitor. Int J Environ Res Public Health. 2012;9(7):2444–53.CrossRefPubMedPubMedCentral
12.
go back to reference Turkalp Z, Karamchandani J, Das S. Idh mutation in glioma: New insights and promises for the future. JAMA Neurol. 2014;71(10):1319–25.CrossRefPubMed Turkalp Z, Karamchandani J, Das S. Idh mutation in glioma: New insights and promises for the future. JAMA Neurol. 2014;71(10):1319–25.CrossRefPubMed
13.
go back to reference Seyfried TN, Flores R, Poff AM, D’Agostino DP, Mukherjee P. Metabolic therapy: A new paradigm for managing malignant brain cancer. Cancer Lett. 2015;356(2, Part A):289–300.CrossRefPubMed Seyfried TN, Flores R, Poff AM, D’Agostino DP, Mukherjee P. Metabolic therapy: A new paradigm for managing malignant brain cancer. Cancer Lett. 2015;356(2, Part A):289–300.CrossRefPubMed
15.
go back to reference Sato A, Sunayama J, Okada M, Watanabe E, Seino S, Shibuya K, Suzuki K, Narita Y, Shibui S, Kayama T, et al. Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK. Stem Cells Transl Med. 2012;1(11):811–24.CrossRefPubMedPubMedCentral Sato A, Sunayama J, Okada M, Watanabe E, Seino S, Shibuya K, Suzuki K, Narita Y, Shibui S, Kayama T, et al. Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK. Stem Cells Transl Med. 2012;1(11):811–24.CrossRefPubMedPubMedCentral
16.
go back to reference Lapa C, Linsenmann T, Monoranu CM, Samnick S, Buck AK, Bluemel C, Czernin J, Kessler AF, Homola GA, Ernestus R-I, et al. Comparison of the amino acid tracers 18 F-FET and 18 F-DOPA in high-grade glioma patients. J Nucl Med. 2014;55(10):1611–6.CrossRefPubMed Lapa C, Linsenmann T, Monoranu CM, Samnick S, Buck AK, Bluemel C, Czernin J, Kessler AF, Homola GA, Ernestus R-I, et al. Comparison of the amino acid tracers 18 F-FET and 18 F-DOPA in high-grade glioma patients. J Nucl Med. 2014;55(10):1611–6.CrossRefPubMed
17.
go back to reference Langen K-J, Tatsch K, Grosu A-L, Jacobs AH, Weckesser M, Sabri O. Diagnostics of cerebral gliomas with radiolabeled amino acids. Dtsch Arztebl Int. 2008;105(4):55–61.PubMedPubMedCentral Langen K-J, Tatsch K, Grosu A-L, Jacobs AH, Weckesser M, Sabri O. Diagnostics of cerebral gliomas with radiolabeled amino acids. Dtsch Arztebl Int. 2008;105(4):55–61.PubMedPubMedCentral
18.
go back to reference Bender DA. Amino Acids Synthesized from Glutamate: Glutamine, Proline, Ornithine, Citrulline and Arginine. In: Amino Acid Metabolism. Chichester: Wiley; 2012. p. 157–223. Bender DA. Amino Acids Synthesized from Glutamate: Glutamine, Proline, Ornithine, Citrulline and Arginine. In: Amino Acid Metabolism. Chichester: Wiley; 2012. p. 157–223.
21.
go back to reference Lu J, Cowperthwaite MC, Burnett MG, Shpak M. Molecular predictors of long-term survival in glioblastoma multiforme patients. PLoS ONE. 2016;11(4):e0154313.CrossRefPubMedPubMedCentral Lu J, Cowperthwaite MC, Burnett MG, Shpak M. Molecular predictors of long-term survival in glioblastoma multiforme patients. PLoS ONE. 2016;11(4):e0154313.CrossRefPubMedPubMedCentral
22.
go back to reference Bush NAO, Chang SM, Berger MS. Current and future strategies for treatment of glioma. Neurosurg Rev. 2016;1–14. Bush NAO, Chang SM, Berger MS. Current and future strategies for treatment of glioma. Neurosurg Rev. 2016;1–14.
23.
go back to reference Tonjes M, Barbus S, Park YJ, Wang W, Schlotter M, Lindroth AM, Pleier SV, Bai AHC, Karra D, Piro RM, et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med. 2013;19(7):901–8.CrossRefPubMedPubMedCentral Tonjes M, Barbus S, Park YJ, Wang W, Schlotter M, Lindroth AM, Pleier SV, Bai AHC, Karra D, Piro RM, et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med. 2013;19(7):901–8.CrossRefPubMedPubMedCentral
24.
go back to reference Khoury O, Ghazale N, Stone E, El-Sibai M, Frankel A, Abi-Habib R. Human recombinant arginase I (Co)-PEG5000 [HuArgI (Co)-PEG5000]-induced arginine depletion is selectively cytotoxic to human glioblastoma cells. J Neurooncol. 2015;122(1):75–85.CrossRefPubMed Khoury O, Ghazale N, Stone E, El-Sibai M, Frankel A, Abi-Habib R. Human recombinant arginase I (Co)-PEG5000 [HuArgI (Co)-PEG5000]-induced arginine depletion is selectively cytotoxic to human glioblastoma cells. J Neurooncol. 2015;122(1):75–85.CrossRefPubMed
25.
go back to reference Fiedler T, Strauss M, Hering S, Redanz U, William D, Rosche Y, Classen CF, Kreikemeyer B, Linnebacher M, Maletzki C. Arginine deprivation by arginine deiminase of Streptococcus pyogenes controls primary glioblastoma growth in vitro and in vivo. Cancer Biol Ther. 2015;16(7):1047–55.CrossRefPubMedPubMedCentral Fiedler T, Strauss M, Hering S, Redanz U, William D, Rosche Y, Classen CF, Kreikemeyer B, Linnebacher M, Maletzki C. Arginine deprivation by arginine deiminase of Streptococcus pyogenes controls primary glioblastoma growth in vitro and in vivo. Cancer Biol Ther. 2015;16(7):1047–55.CrossRefPubMedPubMedCentral
26.
go back to reference Glazer ES, Piccirillo M, Albino V, Di Giacomo R, Palaia R, Mastro AA, Beneduce G, Castello G, De Rosa V, Petrillo A, et al. Phase II study of Pegylated arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. J Clin Oncol. 2010;28(13):2220–6.CrossRefPubMed Glazer ES, Piccirillo M, Albino V, Di Giacomo R, Palaia R, Mastro AA, Beneduce G, Castello G, De Rosa V, Petrillo A, et al. Phase II study of Pegylated arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. J Clin Oncol. 2010;28(13):2220–6.CrossRefPubMed
27.
go back to reference Hawkins DS, Park JR, Thomson BG, Felgenhauer JL, Holcenberg JS, Panosyan EH, Avramis VI. Asparaginase pharmacokinetics after intensive polyethylene glycol-conjugated L-asparaginase therapy for children with relapsed acute lymphoblastic leukemia. Clin Cancer Res. 2004;10(16):5335–41.CrossRefPubMed Hawkins DS, Park JR, Thomson BG, Felgenhauer JL, Holcenberg JS, Panosyan EH, Avramis VI. Asparaginase pharmacokinetics after intensive polyethylene glycol-conjugated L-asparaginase therapy for children with relapsed acute lymphoblastic leukemia. Clin Cancer Res. 2004;10(16):5335–41.CrossRefPubMed
28.
go back to reference Nduom EK, Yang C, Merrill MJ, Zhuang Z, Lonser RR. Characterization of the blood–brain barrier of metastatic and primary malignant neoplasms. J Neurosurg. 2013;119(2):427–33.CrossRefPubMedPubMedCentral Nduom EK, Yang C, Merrill MJ, Zhuang Z, Lonser RR. Characterization of the blood–brain barrier of metastatic and primary malignant neoplasms. J Neurosurg. 2013;119(2):427–33.CrossRefPubMedPubMedCentral
29.
go back to reference D’Souza MM, Sharma R, Jaimini A, Panwar P, Saw S, Kaur P, Mondal A, Mishra A, Tripathi RP. 11C-MET PET/CT and Advanced MRI in the Evaluation of Tumor Recurrence in High-Grade Gliomas. Clin Nucl Med. 2014;39(9):791–8.CrossRefPubMed D’Souza MM, Sharma R, Jaimini A, Panwar P, Saw S, Kaur P, Mondal A, Mishra A, Tripathi RP. 11C-MET PET/CT and Advanced MRI in the Evaluation of Tumor Recurrence in High-Grade Gliomas. Clin Nucl Med. 2014;39(9):791–8.CrossRefPubMed
30.
go back to reference Palanichamy K, Thirumoorthy K, Kanji S, Gordon N, Singh R, Jacob JR, Sebastian N, Litzenberg KT, Patel D, Bassett E, et al. Methionine and kynurenine activate oncogenic kinases in glioblastoma, and methionine deprivation compromises proliferation. Clin Cancer Res. 2016;22(14):3513–23.CrossRefPubMed Palanichamy K, Thirumoorthy K, Kanji S, Gordon N, Singh R, Jacob JR, Sebastian N, Litzenberg KT, Patel D, Bassett E, et al. Methionine and kynurenine activate oncogenic kinases in glioblastoma, and methionine deprivation compromises proliferation. Clin Cancer Res. 2016;22(14):3513–23.CrossRefPubMed
31.
go back to reference Long PM, Tighe SW, Driscoll HE, Fortner KA, Viapiano MS, Jaworski DM. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest. J Cell Physiol. 2015;230(8):1929–43.CrossRefPubMedPubMedCentral Long PM, Tighe SW, Driscoll HE, Fortner KA, Viapiano MS, Jaworski DM. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest. J Cell Physiol. 2015;230(8):1929–43.CrossRefPubMedPubMedCentral
32.
go back to reference Frisell WR, Mackenzie CG. The binding sites of sarcosine oxidase. J Biol Chem. 1955;217(1):275–86.PubMed Frisell WR, Mackenzie CG. The binding sites of sarcosine oxidase. J Biol Chem. 1955;217(1):275–86.PubMed
33.
go back to reference Tanaka K, Sasayama T, Irino Y, Takata K, Nagashima H, Satoh N, Kyotani K, Mizowaki T, Imahori T, Ejima Y, et al. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J Clin Invest. 2015;125(4):1591–602.CrossRefPubMedPubMedCentral Tanaka K, Sasayama T, Irino Y, Takata K, Nagashima H, Satoh N, Kyotani K, Mizowaki T, Imahori T, Ejima Y, et al. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J Clin Invest. 2015;125(4):1591–602.CrossRefPubMedPubMedCentral
34.
go back to reference Panosyan EH, Lasky JL, Lin HJ, Lai A, Hai Y, Guo X, Quinn M, Nelson SF, Cloughesy TF, Nghiemphu PL. Clinical aggressiveness of malignant gliomas is linked to augmented metabolism of amino acids. J Neurooncol. 2016;128:57–66.CrossRefPubMed Panosyan EH, Lasky JL, Lin HJ, Lai A, Hai Y, Guo X, Quinn M, Nelson SF, Cloughesy TF, Nghiemphu PL. Clinical aggressiveness of malignant gliomas is linked to augmented metabolism of amino acids. J Neurooncol. 2016;128:57–66.CrossRefPubMed
35.
go back to reference Park S, Ahn ES, Han DW, Lee JH, Min KT, Kim H, Hong Y-W. Pregabalin and gabapentin inhibit substance P-induced NF-κB activation in neuroblastoma and glioma cells. J Cell Biochem. 2008;105(2):414–23.CrossRefPubMed Park S, Ahn ES, Han DW, Lee JH, Min KT, Kim H, Hong Y-W. Pregabalin and gabapentin inhibit substance P-induced NF-κB activation in neuroblastoma and glioma cells. J Cell Biochem. 2008;105(2):414–23.CrossRefPubMed
36.
go back to reference Anderson CP, Matthay KK, Perentesis JP, Neglia JP, Bailey HH, Villablanca JG, Groshen S, Hasenauer B, Maris JM, Seeger RC, et al. Pilot study of intravenous melphalan combined with continuous infusion L-S, R-buthionine sulfoximine for children with recurrent neuroblastoma. Pediatr Blood Cancer. 2015;62(10):1739–46.CrossRefPubMed Anderson CP, Matthay KK, Perentesis JP, Neglia JP, Bailey HH, Villablanca JG, Groshen S, Hasenauer B, Maris JM, Seeger RC, et al. Pilot study of intravenous melphalan combined with continuous infusion L-S, R-buthionine sulfoximine for children with recurrent neuroblastoma. Pediatr Blood Cancer. 2015;62(10):1739–46.CrossRefPubMed
37.
go back to reference Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, Yong WH, Nelson SF, Liau LM. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res. 2011;17(6):1603–15.CrossRefPubMed Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, Yong WH, Nelson SF, Liau LM. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res. 2011;17(6):1603–15.CrossRefPubMed
38.
go back to reference Platten M, von Knebel DN, Oezen I, Wick W, Ochs K. Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front Immunol. 2015;5:673.CrossRefPubMedPubMedCentral Platten M, von Knebel DN, Oezen I, Wick W, Ochs K. Cancer immunotherapy by targeting IDO1/TDO and their downstream effectors. Front Immunol. 2015;5:673.CrossRefPubMedPubMedCentral
39.
go back to reference Wolf A, Agnihotri S, Guha A. Targeting metabolic remodeling in glioblastoma multiforme. Oncotarget. 2010;1:552–62.CrossRefPubMed Wolf A, Agnihotri S, Guha A. Targeting metabolic remodeling in glioblastoma multiforme. Oncotarget. 2010;1:552–62.CrossRefPubMed
Metadata
Title
In search of druggable targets for GBM amino acid metabolism
Authors
Eduard H. Panosyan
Henry J. Lin
Jan Koster
Joseph L. Lasky III
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3148-1

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine