Skip to main content
Top
Published in: Molecular Cancer 1/2011

Open Access 01-12-2011 | Review

Improvement of different vaccine delivery systems for cancer therapy

Authors: Azam Bolhassani, Shima Safaiyan, Sima Rafati

Published in: Molecular Cancer | Issue 1/2011

Login to get access

Abstract

Cancer vaccines are the promising tools in the hands of the clinical oncologist. Many tumor-associated antigens are excellent targets for immune therapy and vaccine design. Optimally designed cancer vaccines should combine the best tumor antigens with the most effective immunotherapy agents and/or delivery strategies to achieve positive clinical results. Various vaccine delivery systems such as different routes of immunization and physical/chemical delivery methods have been used in cancer therapy with the goal to induce immunity against tumor-associated antigens. Two basic delivery approaches including physical delivery to achieve higher levels of antigen production and formulation with microparticles to target antigen-presenting cells (APCs) have demonstrated to be effective in animal models. New developments in vaccine delivery systems will improve the efficiency of clinical trials in the near future. Among them, nanoparticles (NPs) such as dendrimers, polymeric NPs, metallic NPs, magnetic NPs and quantum dots have emerged as effective vaccine adjuvants for infectious diseases and cancer therapy. Furthermore, cell-penetrating peptides (CPP) have been known as attractive carrier having applications in drug delivery, gene transfer and DNA vaccination. This review will focus on the utilization of different vaccine delivery systems for prevention or treatment of cancer. We will discuss their clinical applications and the future prospects for cancer vaccine development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bodles-Brakhop AM, Draghia-Akli R: DNA vaccination and gene therapy: optimization and delivery for cancer therapy. Expert Rev Vaccines. 2008, 7: 1085-1101. 10.1586/14760584.7.7.1085PubMedCrossRef Bodles-Brakhop AM, Draghia-Akli R: DNA vaccination and gene therapy: optimization and delivery for cancer therapy. Expert Rev Vaccines. 2008, 7: 1085-1101. 10.1586/14760584.7.7.1085PubMedCrossRef
2.
go back to reference Bolhassani A, Mohit E, Rafati S: Different spectra of therapeutic vaccine development against HPV infections. Human Vaccines. 2009, 5: 671-689. 10.4161/hv.5.10.9370PubMedCrossRef Bolhassani A, Mohit E, Rafati S: Different spectra of therapeutic vaccine development against HPV infections. Human Vaccines. 2009, 5: 671-689. 10.4161/hv.5.10.9370PubMedCrossRef
3.
go back to reference Palena C, Abrams SI, Schlom J, Hodge JW: Cancer vaccines: Preclinical studies and novel strategies. Advances in Cancer Research. 2006, 115-137. Palena C, Abrams SI, Schlom J, Hodge JW: Cancer vaccines: Preclinical studies and novel strategies. Advances in Cancer Research. 2006, 115-137.
4.
go back to reference Fioretti D, Iurescia S, Fazio VM, Rinaldi M: DNA Vaccines: Developing New Strategies against Cancer. Journal of Biomedicine and Biotechnology. 2010, 1-16. 10.1155/2010/174378. Fioretti D, Iurescia S, Fazio VM, Rinaldi M: DNA Vaccines: Developing New Strategies against Cancer. Journal of Biomedicine and Biotechnology. 2010, 1-16. 10.1155/2010/174378.
5.
go back to reference Schweighoffer T: Molecular cancer vaccines: Tumor therapy using antigen-specific immunizations. Pathology & Oncology Research. 1997, 3 (3): 164-176.CrossRef Schweighoffer T: Molecular cancer vaccines: Tumor therapy using antigen-specific immunizations. Pathology & Oncology Research. 1997, 3 (3): 164-176.CrossRef
6.
7.
8.
go back to reference Zheng C, Juhls C, Oswald D, Sack F, Westfehling I, Wittig B, Babiuk LA, Hurk SDL: Effect of different nuclear localization sequences on the immune responses induced by a MIDGE vector encoding bovine herpesvirus-1 glycoprotein D. Vaccine. 2006, 24: 4625-4629. 10.1016/j.vaccine.2005.08.046PubMedCrossRef Zheng C, Juhls C, Oswald D, Sack F, Westfehling I, Wittig B, Babiuk LA, Hurk SDL: Effect of different nuclear localization sequences on the immune responses induced by a MIDGE vector encoding bovine herpesvirus-1 glycoprotein D. Vaccine. 2006, 24: 4625-4629. 10.1016/j.vaccine.2005.08.046PubMedCrossRef
9.
go back to reference Kutzler MA, Weiner DB: DNA vaccines: ready for prime time?. Nat Rev. 2008, 9: 776-788. 10.1038/nrg2432. 10.1038/nrg2432CrossRef Kutzler MA, Weiner DB: DNA vaccines: ready for prime time?. Nat Rev. 2008, 9: 776-788. 10.1038/nrg2432. 10.1038/nrg2432CrossRef
10.
go back to reference Ulmer JB, Wahren B, Liu MA: Gene-based vaccines: recent technical and clinical advances. Trends in Molecular Medicine. 2006, 12: 216-222. 10.1016/j.molmed.2006.03.007PubMedCrossRef Ulmer JB, Wahren B, Liu MA: Gene-based vaccines: recent technical and clinical advances. Trends in Molecular Medicine. 2006, 12: 216-222. 10.1016/j.molmed.2006.03.007PubMedCrossRef
11.
go back to reference Doria-Rose NA, Haigwood NL: DNA vaccine strategies: candidates for immune modulation and immunization regimens. Methods. 2003, 31: 207-216. 10.1016/S1046-2023(03)00135-XPubMedCrossRef Doria-Rose NA, Haigwood NL: DNA vaccine strategies: candidates for immune modulation and immunization regimens. Methods. 2003, 31: 207-216. 10.1016/S1046-2023(03)00135-XPubMedCrossRef
12.
go back to reference Mikszta JA, Laurent PE: Cutaneous delivery of prophylactic and therapeutic vaccines: historical perspective and future outlook. Expert Rev Vaccines. 2008, 7: 1329-1339. 10.1586/14760584.7.9.1329PubMedCrossRef Mikszta JA, Laurent PE: Cutaneous delivery of prophylactic and therapeutic vaccines: historical perspective and future outlook. Expert Rev Vaccines. 2008, 7: 1329-1339. 10.1586/14760584.7.9.1329PubMedCrossRef
13.
go back to reference Zaman M, Simerska P, Toth I: Synthetic polyacrylate polymers as particulate intranasal vaccine delivery systems for the induction of mucosal immune response. Curr Drug Deliv. 2010, 7 (2): 118-24. 10.2174/156720110791011846PubMedCrossRef Zaman M, Simerska P, Toth I: Synthetic polyacrylate polymers as particulate intranasal vaccine delivery systems for the induction of mucosal immune response. Curr Drug Deliv. 2010, 7 (2): 118-24. 10.2174/156720110791011846PubMedCrossRef
14.
go back to reference Lai MD, Yen MC, Lin CM, Tu CF, Wang CC, Lin PS, Yang HJ, Lin CC: The effects of DNA formulation and administration route on cancer therapeutic efficacy with xenogenic EGFR DNA vaccine in a lung cancer animal model. Genetic Vaccines and Therapy. 2009, 7: 1-13. 10.1186/1479-0556-7-2CrossRef Lai MD, Yen MC, Lin CM, Tu CF, Wang CC, Lin PS, Yang HJ, Lin CC: The effects of DNA formulation and administration route on cancer therapeutic efficacy with xenogenic EGFR DNA vaccine in a lung cancer animal model. Genetic Vaccines and Therapy. 2009, 7: 1-13. 10.1186/1479-0556-7-2CrossRef
15.
go back to reference Pokorna D, Rubio I, Müller M: DNA-vaccination via tattooing induces stronger humoral and cellular immune responses than intramuscular delivery supported by molecular adjuvants. Genet Vaccines Ther. 2008, 6: 1-8. 10.1186/1479-0556-6-4CrossRef Pokorna D, Rubio I, Müller M: DNA-vaccination via tattooing induces stronger humoral and cellular immune responses than intramuscular delivery supported by molecular adjuvants. Genet Vaccines Ther. 2008, 6: 1-8. 10.1186/1479-0556-6-4CrossRef
16.
go back to reference Pokorna D, Polakova I, Kindlova M, Du skova M, Ludvikova V, Gabriel P, Kutinova L, Muller M, Smahel M: Vaccination with human papillomavirus type 16-derived peptides using a tattoo device. Vaccine. 2009, 27: 3519-3529. 10.1016/j.vaccine.2009.03.073PubMedCrossRef Pokorna D, Polakova I, Kindlova M, Du skova M, Ludvikova V, Gabriel P, Kutinova L, Muller M, Smahel M: Vaccination with human papillomavirus type 16-derived peptides using a tattoo device. Vaccine. 2009, 27: 3519-3529. 10.1016/j.vaccine.2009.03.073PubMedCrossRef
17.
go back to reference Aravindaram K, Yang NS: Gene gun delivery systems for cancer vaccine approaches. Methods Mol Biol. 2009, 542: 167-178. full_textPubMedCrossRef Aravindaram K, Yang NS: Gene gun delivery systems for cancer vaccine approaches. Methods Mol Biol. 2009, 542: 167-178. full_textPubMedCrossRef
18.
go back to reference Lin K, Roosinovich E, Ma B, Hung CF, Wu TC: Therapeutic HPV DNA vaccines. Immunol Res. 2010, 1-27. Lin K, Roosinovich E, Ma B, Hung CF, Wu TC: Therapeutic HPV DNA vaccines. Immunol Res. 2010, 1-27.
19.
go back to reference Liu L, Zhou X, Liu H, Xiang L, Yuan Z: CpG motif acts as a 'danger signal' and provides a T helper type 1-biased microenvironment for DNA vaccination. Immunology. 2005, 115: 223-230. 10.1111/j.1365-2567.2005.02150.xPubMedCentralPubMedCrossRef Liu L, Zhou X, Liu H, Xiang L, Yuan Z: CpG motif acts as a 'danger signal' and provides a T helper type 1-biased microenvironment for DNA vaccination. Immunology. 2005, 115: 223-230. 10.1111/j.1365-2567.2005.02150.xPubMedCentralPubMedCrossRef
20.
go back to reference Trimble C, Lin CT, Hung CF, Pai S, Juang J, He L, Gillison M, Pardoll D, Wu L, Wu TC: Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector and syringe. Vaccine. 2003, 21: 4036-4042. 10.1016/S0264-410X(03)00275-5PubMedCrossRef Trimble C, Lin CT, Hung CF, Pai S, Juang J, He L, Gillison M, Pardoll D, Wu L, Wu TC: Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector and syringe. Vaccine. 2003, 21: 4036-4042. 10.1016/S0264-410X(03)00275-5PubMedCrossRef
21.
go back to reference Fechheimer M, Boylan JF, Parker S, Sisken JE, Patel GL, Zimmer SG: Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc Natl Acad Sci USA. 1987, 84: 8463-8467. 10.1073/pnas.84.23.8463PubMedCentralPubMedCrossRef Fechheimer M, Boylan JF, Parker S, Sisken JE, Patel GL, Zimmer SG: Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc Natl Acad Sci USA. 1987, 84: 8463-8467. 10.1073/pnas.84.23.8463PubMedCentralPubMedCrossRef
22.
go back to reference Miller MW, Miller DL, Brayman AA: A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol. 1996, 22: 1131-1154. 10.1016/S0301-5629(96)00089-0PubMedCrossRef Miller MW, Miller DL, Brayman AA: A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol. 1996, 22: 1131-1154. 10.1016/S0301-5629(96)00089-0PubMedCrossRef
23.
go back to reference Shen ZP, Brayman AA, Chen L, Miao CH: Ultrasound with microbubbles enhances gene expression of plasmid DNA in the liver via intraportal delivery. Gene Ther. 2008, 15: 1147-1155. 10.1038/gt.2008.51PubMedCentralPubMedCrossRef Shen ZP, Brayman AA, Chen L, Miao CH: Ultrasound with microbubbles enhances gene expression of plasmid DNA in the liver via intraportal delivery. Gene Ther. 2008, 15: 1147-1155. 10.1038/gt.2008.51PubMedCentralPubMedCrossRef
24.
go back to reference Bekeredjian R, Kuecherer HF, Kroll RD, Katus HA, Hardt SE: Ultrasound-targeted microbubble destruction augments protein delivery into testes. Urology. 2007, 69: 386-389. 10.1016/j.urology.2006.12.004PubMedCrossRef Bekeredjian R, Kuecherer HF, Kroll RD, Katus HA, Hardt SE: Ultrasound-targeted microbubble destruction augments protein delivery into testes. Urology. 2007, 69: 386-389. 10.1016/j.urology.2006.12.004PubMedCrossRef
25.
go back to reference Wallace M, Evans B, Woods S, Mogg R, Zhang L, Finnefrock AC, Rabussay D, Fons M, Mallee J, Mehrotra D, Schodel F, Musey L: Tolerability of two sequential electroporation treatments using MedPulser DNA delivery system (DDS) in healthy adults. The American Society of Gene Therapy. 2009, 17: 922-928.CrossRef Wallace M, Evans B, Woods S, Mogg R, Zhang L, Finnefrock AC, Rabussay D, Fons M, Mallee J, Mehrotra D, Schodel F, Musey L: Tolerability of two sequential electroporation treatments using MedPulser DNA delivery system (DDS) in healthy adults. The American Society of Gene Therapy. 2009, 17: 922-928.CrossRef
26.
go back to reference Sundararajan R: Nano-electroporation: A first look. Methods in Molecular Biology. 2008, 423: 109-128. full_textPubMedCrossRef Sundararajan R: Nano-electroporation: A first look. Methods in Molecular Biology. 2008, 423: 109-128. full_textPubMedCrossRef
27.
go back to reference Hu H, Huang X, Tao L, Huang Y, Cui B, Wang H: Comparative analysis of the immunogenicity of SARS-CoV nucleocapsid DNA vaccine administrated with different routes in mouse model. Vaccine. 2009, 27: 1758-1763. 10.1016/j.vaccine.2009.01.021PubMedCrossRef Hu H, Huang X, Tao L, Huang Y, Cui B, Wang H: Comparative analysis of the immunogenicity of SARS-CoV nucleocapsid DNA vaccine administrated with different routes in mouse model. Vaccine. 2009, 27: 1758-1763. 10.1016/j.vaccine.2009.01.021PubMedCrossRef
28.
go back to reference Buchan S, Grønevik E, Mathiesen I, King CA, Stevenson FK, Rice J: Electroporation as a "prime/boost" strategy for naked DNA vaccination against a tumor antigen. J Immunol. 2005, 174: 6292-6298.PubMedCrossRef Buchan S, Grønevik E, Mathiesen I, King CA, Stevenson FK, Rice J: Electroporation as a "prime/boost" strategy for naked DNA vaccination against a tumor antigen. J Immunol. 2005, 174: 6292-6298.PubMedCrossRef
29.
go back to reference Ahmad S, Casey G, Sweeney P, Tangney M, O'Sullivan GC: Optimized electroporation mediated DNA vaccination for treatment of prostate cancer. Genetic Vaccines and Therapy. 2010, 8: 1-13. 10.1186/1479-0556-8-1PubMedCentralPubMedCrossRef Ahmad S, Casey G, Sweeney P, Tangney M, O'Sullivan GC: Optimized electroporation mediated DNA vaccination for treatment of prostate cancer. Genetic Vaccines and Therapy. 2010, 8: 1-13. 10.1186/1479-0556-8-1PubMedCentralPubMedCrossRef
30.
go back to reference Seo SH, Jin HT, Park SH, Youn JI, Sung YC: Optimal induction of HPV DNA vaccine-induced CD8+ T cell responses and therapeutic antitumor effect by antigen engineering and electroporation. Vaccine. 2009, 27: 5906-5912. 10.1016/j.vaccine.2009.07.033PubMedCrossRef Seo SH, Jin HT, Park SH, Youn JI, Sung YC: Optimal induction of HPV DNA vaccine-induced CD8+ T cell responses and therapeutic antitumor effect by antigen engineering and electroporation. Vaccine. 2009, 27: 5906-5912. 10.1016/j.vaccine.2009.07.033PubMedCrossRef
31.
go back to reference Best SR, Peng S, Juang CM, Hung CF, Hannaman D, Saunders JR, Wu TC, Pai SI: Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery. Vaccine. 2009, 27: 5450-5459. 10.1016/j.vaccine.2009.07.005PubMedCentralPubMedCrossRef Best SR, Peng S, Juang CM, Hung CF, Hannaman D, Saunders JR, Wu TC, Pai SI: Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery. Vaccine. 2009, 27: 5450-5459. 10.1016/j.vaccine.2009.07.005PubMedCentralPubMedCrossRef
32.
go back to reference Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R: Phase I Trial of Interleukin-12 Plasmid Electroporation in Patients With Metastatic Melanoma. Journal of Clinical Oncology. 2008, 26 (36): 5896-5903.PubMedCentralPubMed Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R: Phase I Trial of Interleukin-12 Plasmid Electroporation in Patients With Metastatic Melanoma. Journal of Clinical Oncology. 2008, 26 (36): 5896-5903.PubMedCentralPubMed
33.
go back to reference Bodles-Brakhop AM, Heller R, Draghia-Akli R: Electroporation for the delivery of DNA-based vaccines and immunotherapeutics: current clinical developments. Molecular Therapy. 2009, 17 (4): 585-592. 10.1038/mt.2009.5PubMedCentralPubMedCrossRef Bodles-Brakhop AM, Heller R, Draghia-Akli R: Electroporation for the delivery of DNA-based vaccines and immunotherapeutics: current clinical developments. Molecular Therapy. 2009, 17 (4): 585-592. 10.1038/mt.2009.5PubMedCentralPubMedCrossRef
34.
go back to reference Kraft SD, Richter C, Zeil K, Baumann M, Beyreuther E, Bock S, Bussmann M, Cowan TE, Dammene Y, Enghardt W, Helbig U, Karsch L, Kluge T, Laschinsky L, Lessmann E, Metzkes J, Naumburger D, Sauerbrey R, Schürer M, Sobiella M, Woithe J, Schramm U, Pawelke J: Dose dependent biological damage of tumor cells by laser-accelerated proton beams. New Journal of Physics. 2010, 12: 10.1088/1367-2630/12/8/085003. Kraft SD, Richter C, Zeil K, Baumann M, Beyreuther E, Bock S, Bussmann M, Cowan TE, Dammene Y, Enghardt W, Helbig U, Karsch L, Kluge T, Laschinsky L, Lessmann E, Metzkes J, Naumburger D, Sauerbrey R, Schürer M, Sobiella M, Woithe J, Schramm U, Pawelke J: Dose dependent biological damage of tumor cells by laser-accelerated proton beams. New Journal of Physics. 2010, 12: 10.1088/1367-2630/12/8/085003.
35.
36.
go back to reference Azevedo V, Levitus G, Miyoshi A, Cândido AL, Goes AM, Oliveira SC: Main features of DNA-based immunization vectors. Braz J Med Biol Res. 1999, 32 (2): 147-153. 10.1590/S0100-879X1999000200002PubMedCrossRef Azevedo V, Levitus G, Miyoshi A, Cândido AL, Goes AM, Oliveira SC: Main features of DNA-based immunization vectors. Braz J Med Biol Res. 1999, 32 (2): 147-153. 10.1590/S0100-879X1999000200002PubMedCrossRef
37.
go back to reference Hilleman MR: Overview of vaccinology with special reference to papillomavirus vaccines. J Clin Virol. 2000, 19: 79-90. 10.1016/S1386-6532(00)00132-3PubMedCrossRef Hilleman MR: Overview of vaccinology with special reference to papillomavirus vaccines. J Clin Virol. 2000, 19: 79-90. 10.1016/S1386-6532(00)00132-3PubMedCrossRef
38.
go back to reference Mills KHG: Designer adjuvants for enhancing the efficacy of infectious disease and cancer vaccines based on suppression of regulatory T cell induction. Immunology Letters. 2009, 122: 108-111. 10.1016/j.imlet.2008.11.007PubMedCrossRef Mills KHG: Designer adjuvants for enhancing the efficacy of infectious disease and cancer vaccines based on suppression of regulatory T cell induction. Immunology Letters. 2009, 122: 108-111. 10.1016/j.imlet.2008.11.007PubMedCrossRef
39.
go back to reference Marconi P, Argnani R, Epstein AL, Manservigi R: HSV as a Vector in Vaccine Development and Gene Therapy. Adv Exp Med Biol. 2009, 655: 118-144. full_textPubMedCrossRef Marconi P, Argnani R, Epstein AL, Manservigi R: HSV as a Vector in Vaccine Development and Gene Therapy. Adv Exp Med Biol. 2009, 655: 118-144. full_textPubMedCrossRef
40.
go back to reference Singh R, Kostarelos K: Designer adenoviruses for nanomedicine and nanodiagnostics. Trends Biotechnol. 2009, 27: 220-9. 10.1016/j.tibtech.2009.01.003PubMedCrossRef Singh R, Kostarelos K: Designer adenoviruses for nanomedicine and nanodiagnostics. Trends Biotechnol. 2009, 27: 220-9. 10.1016/j.tibtech.2009.01.003PubMedCrossRef
41.
go back to reference Basak SK, Kiertscher SM, Harui A, Roth MD: Modifying Adenoviral Vectors for Use as Gene-Based Cancer Vaccines. Viral Immunology. 2004, 17 (2): 182-196. 10.1089/0882824041310603PubMedCrossRef Basak SK, Kiertscher SM, Harui A, Roth MD: Modifying Adenoviral Vectors for Use as Gene-Based Cancer Vaccines. Viral Immunology. 2004, 17 (2): 182-196. 10.1089/0882824041310603PubMedCrossRef
42.
go back to reference Barzon L, Bonaguro R, Castagliuolo I, Chilosi M, Franchin E, Del Vecchio C, Giaretta I, Boscaro M, Palu G: Gene therapy of thyroid cancer via retrovirally-driven combined expression of human IL-2 and herpes simplex virus thymidine kinase. Eur J Endocrinol. 2003, 148: 73-80. 10.1530/eje.0.1480073PubMedCrossRef Barzon L, Bonaguro R, Castagliuolo I, Chilosi M, Franchin E, Del Vecchio C, Giaretta I, Boscaro M, Palu G: Gene therapy of thyroid cancer via retrovirally-driven combined expression of human IL-2 and herpes simplex virus thymidine kinase. Eur J Endocrinol. 2003, 148: 73-80. 10.1530/eje.0.1480073PubMedCrossRef
43.
go back to reference El-Aneed A: An overview of current delivery systems in cancer gene therapy. Journal of Controlled Release. 2004, 94: 1-14. 10.1016/j.jconrel.2003.09.013PubMedCrossRef El-Aneed A: An overview of current delivery systems in cancer gene therapy. Journal of Controlled Release. 2004, 94: 1-14. 10.1016/j.jconrel.2003.09.013PubMedCrossRef
44.
go back to reference Kaufman HL, Flanagan K, Lee CS, Perretta DJ, Horig H: Insertion of IL-2 and IL-12 genes into vaccinia virus results in effective anti-tumor responses without toxicity. Vaccine. 2002, 20: 1862-1869. 10.1016/S0264-410X(02)00032-4PubMedCrossRef Kaufman HL, Flanagan K, Lee CS, Perretta DJ, Horig H: Insertion of IL-2 and IL-12 genes into vaccinia virus results in effective anti-tumor responses without toxicity. Vaccine. 2002, 20: 1862-1869. 10.1016/S0264-410X(02)00032-4PubMedCrossRef
45.
go back to reference Moreno M, Kramer MG, Yim L, Chabalgoity JA: Salmonella as live trojan horse for vaccine development and cancer gene therapy. Curr Gene Ther. 2010, 10: 56-76. 10.2174/156652310790945566PubMedCrossRef Moreno M, Kramer MG, Yim L, Chabalgoity JA: Salmonella as live trojan horse for vaccine development and cancer gene therapy. Curr Gene Ther. 2010, 10: 56-76. 10.2174/156652310790945566PubMedCrossRef
46.
go back to reference Kim-Schulze S, Kaufman HL: Gene therapy for anti-tumor vaccination. Methods in Molecular Biology, Gene Therapy of Cancer. Edited by: Walther W, Stein US. 542: 515-527. full_text. Kim-Schulze S, Kaufman HL: Gene therapy for anti-tumor vaccination. Methods in Molecular Biology, Gene Therapy of Cancer. Edited by: Walther W, Stein US. 542: 515-527. full_text.
47.
go back to reference Vergati M, Intrivici C, Huen NY, Schlom J, Tsang KY: Strategies for cancer vaccine development. Journal of Biomedicine and Biotechnology. 2010, 1-13. 10.1155/2010/596432. Vergati M, Intrivici C, Huen NY, Schlom J, Tsang KY: Strategies for cancer vaccine development. Journal of Biomedicine and Biotechnology. 2010, 1-13. 10.1155/2010/596432.
48.
go back to reference Narayani R: Polymeric delivery systems in biotechnology: a mini review. Trends Biomater Artif Organs. 2007, 21: 14-19. Narayani R: Polymeric delivery systems in biotechnology: a mini review. Trends Biomater Artif Organs. 2007, 21: 14-19.
49.
go back to reference Hellgren I, Gorman J, Sylven C: Factors controlling the efficiency of Tat-mediated plasmid DNA transfer. J Drug Target. 2004, 12: 39-47. 10.1080/106118604200041403PubMedCrossRef Hellgren I, Gorman J, Sylven C: Factors controlling the efficiency of Tat-mediated plasmid DNA transfer. J Drug Target. 2004, 12: 39-47. 10.1080/106118604200041403PubMedCrossRef
50.
go back to reference Khatri K, Goyal AK, Vyas SP: Potential of nanocarriers in genetic immunization. Recent Pat Drug Deliv Formul. 2008, 2: 68-82. 10.2174/187221108783331348PubMedCrossRef Khatri K, Goyal AK, Vyas SP: Potential of nanocarriers in genetic immunization. Recent Pat Drug Deliv Formul. 2008, 2: 68-82. 10.2174/187221108783331348PubMedCrossRef
51.
go back to reference Martin ME, Rice KG: Peptide-guided gene delivery. AAPS J. 2007, 9: 18-29. 10.1208/aapsj0901003. 10.1208/aapsj0901003CrossRef Martin ME, Rice KG: Peptide-guided gene delivery. AAPS J. 2007, 9: 18-29. 10.1208/aapsj0901003. 10.1208/aapsj0901003CrossRef
53.
go back to reference Narayani R: Polymeric delivery systems in biotechnology: A mini-Review. Trends Biomater Artif Organs. 2007, 21: 14-19. Narayani R: Polymeric delivery systems in biotechnology: A mini-Review. Trends Biomater Artif Organs. 2007, 21: 14-19.
54.
go back to reference Gao X, Huang L: Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry. 1996, 35: 1027-1036. 10.1021/bi952436aPubMedCrossRef Gao X, Huang L: Potentiation of cationic liposome-mediated gene delivery by polycations. Biochemistry. 1996, 35: 1027-1036. 10.1021/bi952436aPubMedCrossRef
55.
go back to reference Fenske DB, Cullis PR: Liposomal nanomedicines. Expert Opin Drug Deliv. 2008, 5: 25-44. 10.1517/17425247.5.1.25PubMedCrossRef Fenske DB, Cullis PR: Liposomal nanomedicines. Expert Opin Drug Deliv. 2008, 5: 25-44. 10.1517/17425247.5.1.25PubMedCrossRef
56.
go back to reference Myschik J, Rades T, Hook S: Advances in lipid-based subunit vaccine formulations. Current Immunology Reviews. 2009, 5: 42-48. 10.2174/157339509787314378. 10.2174/157339509787314378CrossRef Myschik J, Rades T, Hook S: Advances in lipid-based subunit vaccine formulations. Current Immunology Reviews. 2009, 5: 42-48. 10.2174/157339509787314378. 10.2174/157339509787314378CrossRef
57.
go back to reference Vergati M, Intrivici C, Huen NY, Schlom J, Tsang KY: Strategies for cancer vaccine development. Journal of Biomedicine and Biotechnology. 2010, 1-13. 10.1155/2010/596432. Vergati M, Intrivici C, Huen NY, Schlom J, Tsang KY: Strategies for cancer vaccine development. Journal of Biomedicine and Biotechnology. 2010, 1-13. 10.1155/2010/596432.
58.
go back to reference Masotti A, Ortaggi G: Chitosan micro- and nanospheres: fabrication and applications for drug and DNA delivery. Mini Rev Med Chem. 2009, 9: 463-469. 10.2174/138955709787847976PubMedCrossRef Masotti A, Ortaggi G: Chitosan micro- and nanospheres: fabrication and applications for drug and DNA delivery. Mini Rev Med Chem. 2009, 9: 463-469. 10.2174/138955709787847976PubMedCrossRef
59.
go back to reference Kircheis R, Schuller S, Brunner S, Ogris M, Heider KH, Zauner W, Wagner E: Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J Gene Med. 1999, 1: 111-120. 10.1002/(SICI)1521-2254(199903/04)1:2<111::AID-JGM22>3.0.CO;2-YPubMedCrossRef Kircheis R, Schuller S, Brunner S, Ogris M, Heider KH, Zauner W, Wagner E: Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J Gene Med. 1999, 1: 111-120. 10.1002/(SICI)1521-2254(199903/04)1:2<111::AID-JGM22>3.0.CO;2-YPubMedCrossRef
60.
go back to reference Brown MD, Schatzlein A, Brownlie A, Jack V, Wang W, Tetley L, Gray AI, Uchegbu IF: Preliminary characterization of novel amino acid based polymeric vesicles as gene and drug delivery agents. Bioconjug Chem. 2000, 11: 880-891. 10.1021/bc000052dPubMedCrossRef Brown MD, Schatzlein A, Brownlie A, Jack V, Wang W, Tetley L, Gray AI, Uchegbu IF: Preliminary characterization of novel amino acid based polymeric vesicles as gene and drug delivery agents. Bioconjug Chem. 2000, 11: 880-891. 10.1021/bc000052dPubMedCrossRef
61.
go back to reference Moroson H: Polycation-treated tumor cells in vivo and in vitro. Cancer Research. 1971, 31: 373-380.PubMed Moroson H: Polycation-treated tumor cells in vivo and in vitro. Cancer Research. 1971, 31: 373-380.PubMed
62.
go back to reference Lu JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, Chen C: Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009, 9: 325-341. 10.1586/erm.09.15PubMedCentralPubMedCrossRef Lu JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, Chen C: Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009, 9: 325-341. 10.1586/erm.09.15PubMedCentralPubMedCrossRef
63.
go back to reference Baker JR: Dendrimer-based nanoparticles for cancer therapy. Nanotechnology for Hematology. 2009, 708-719. Baker JR: Dendrimer-based nanoparticles for cancer therapy. Nanotechnology for Hematology. 2009, 708-719.
64.
go back to reference Chatterjee DK, Zhang Y: Multi-functional nanoparticles for cancer therapy. Science and Technology of Advanced Materials. 2007, 8: 131-133. 10.1016/j.stam.2006.09.008. 10.1016/j.stam.2006.09.008CrossRef Chatterjee DK, Zhang Y: Multi-functional nanoparticles for cancer therapy. Science and Technology of Advanced Materials. 2007, 8: 131-133. 10.1016/j.stam.2006.09.008. 10.1016/j.stam.2006.09.008CrossRef
65.
go back to reference Praetorius NP, Mandal TK: Engineered nanoparticles in cancer therapy. Recent Patents on Drug Delivery & Formulation. 2007, 1: 37-51.CrossRef Praetorius NP, Mandal TK: Engineered nanoparticles in cancer therapy. Recent Patents on Drug Delivery & Formulation. 2007, 1: 37-51.CrossRef
66.
go back to reference Brooks NA, Pouniotis DS, Tang CK, Apostolopoulos V, Pietersz GA: Cell-penetrating peptides: application in vaccine delivery. Biochimica et biophysica Acta. 2010, 1805: 25-34.PubMed Brooks NA, Pouniotis DS, Tang CK, Apostolopoulos V, Pietersz GA: Cell-penetrating peptides: application in vaccine delivery. Biochimica et biophysica Acta. 2010, 1805: 25-34.PubMed
67.
go back to reference Jarver P, Langel U: The use of cell-penetrating peptides as a tool for gene regulation. DDT. 2004, 9: 395-402.PubMedCrossRef Jarver P, Langel U: The use of cell-penetrating peptides as a tool for gene regulation. DDT. 2004, 9: 395-402.PubMedCrossRef
68.
go back to reference Wagstaff KM, Jans DA: Protein transduction: cell penetrating peptides and their therapeutic applications. Current Medicinal Chemistry. 2006, 13: 1371-1387. 10.2174/092986706776872871PubMedCrossRef Wagstaff KM, Jans DA: Protein transduction: cell penetrating peptides and their therapeutic applications. Current Medicinal Chemistry. 2006, 13: 1371-1387. 10.2174/092986706776872871PubMedCrossRef
69.
go back to reference Zeng J, Wang S: Enhanced gene delivery to PC12 cells by a cationic polypeptide. Biomaterials. 2005, 26: 679-686. 10.1016/j.biomaterials.2004.03.006PubMedCrossRef Zeng J, Wang S: Enhanced gene delivery to PC12 cells by a cationic polypeptide. Biomaterials. 2005, 26: 679-686. 10.1016/j.biomaterials.2004.03.006PubMedCrossRef
70.
go back to reference Schirmbeck R, Riedl P, Zurbriggen R, Akira S, Reimann J: Antigenic epitopes fused to cationic peptide bound to oligonucleotides facilitate toll-like receptor 9-dependent, but CD4+ T cell help-independent, priming of CD8+ T cells. The Journal of Immunology. 2003, 171: 5198-5207.PubMedCrossRef Schirmbeck R, Riedl P, Zurbriggen R, Akira S, Reimann J: Antigenic epitopes fused to cationic peptide bound to oligonucleotides facilitate toll-like receptor 9-dependent, but CD4+ T cell help-independent, priming of CD8+ T cells. The Journal of Immunology. 2003, 171: 5198-5207.PubMedCrossRef
71.
go back to reference Riedl P, Reimann J, Schirmbeck R: Peptides containing antigenic and cationic domains have enhanced, multivalent immunogenicity when bound to DNA vaccines. J Mol Med. 2004, 82: 144-152. 10.1007/s00109-003-0502-3PubMedCrossRef Riedl P, Reimann J, Schirmbeck R: Peptides containing antigenic and cationic domains have enhanced, multivalent immunogenicity when bound to DNA vaccines. J Mol Med. 2004, 82: 144-152. 10.1007/s00109-003-0502-3PubMedCrossRef
72.
go back to reference Brooks H, Lebleu B, Vives E: Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev. 2005, 57: 559-577. 10.1016/j.addr.2004.12.001PubMedCrossRef Brooks H, Lebleu B, Vives E: Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev. 2005, 57: 559-577. 10.1016/j.addr.2004.12.001PubMedCrossRef
73.
go back to reference Kim DT, Mitchell DJ, Brockstedt DG, Fong L, Nolan GP, Fathman CG, Engleman EG, Rothbard JB: Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV tat peptide. J Immunol. 1997, 159: 1666-1668.PubMed Kim DT, Mitchell DJ, Brockstedt DG, Fong L, Nolan GP, Fathman CG, Engleman EG, Rothbard JB: Introduction of soluble proteins into the MHC class I pathway by conjugation to an HIV tat peptide. J Immunol. 1997, 159: 1666-1668.PubMed
74.
go back to reference Riedl P, Reimann J, Schirmbeck R: Complexes of DNA vaccines with cationic, antigenic peptides are potent, polyvalent CD8+ T cell-stimulating immunogens. Methods Mol Med. 2004, 127: 159-169. Riedl P, Reimann J, Schirmbeck R: Complexes of DNA vaccines with cationic, antigenic peptides are potent, polyvalent CD8+ T cell-stimulating immunogens. Methods Mol Med. 2004, 127: 159-169.
75.
go back to reference Giannouli C, Brulet JM, Gesché F, Rappaport J, Burny A, Leo O, Hallez S: Fusion of a tumor-associated antigen to HIV-1 Tat improves protein-based immunotherapy of cancer. Anticancer Res. 2003, 23: 3523-3532.PubMed Giannouli C, Brulet JM, Gesché F, Rappaport J, Burny A, Leo O, Hallez S: Fusion of a tumor-associated antigen to HIV-1 Tat improves protein-based immunotherapy of cancer. Anticancer Res. 2003, 23: 3523-3532.PubMed
76.
go back to reference Kleemann E, Neu M, Jekel N, Fink L, Schmehl T, Gessler T, Seeger W, Kissel T: Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI. Journal of Controlled Release. 2005, 109: 299-316. 10.1016/j.jconrel.2005.09.036PubMedCrossRef Kleemann E, Neu M, Jekel N, Fink L, Schmehl T, Gessler T, Seeger W, Kissel T: Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG-PEI. Journal of Controlled Release. 2005, 109: 299-316. 10.1016/j.jconrel.2005.09.036PubMedCrossRef
77.
go back to reference Alexis F, Lo SL, Wang S: Covalent attachment of low molecular weight poly (ethyleneimine) improves Tat peptide mediated gene delivery. Adv Mater. 2006, 18: 2174-2178. 10.1002/adma.200502173. 10.1002/adma.200502173CrossRef Alexis F, Lo SL, Wang S: Covalent attachment of low molecular weight poly (ethyleneimine) improves Tat peptide mediated gene delivery. Adv Mater. 2006, 18: 2174-2178. 10.1002/adma.200502173. 10.1002/adma.200502173CrossRef
78.
go back to reference Putnam D, Gentry CA, Pack DW, Langer R: Polymer based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc Natl Acad Sci. 2001, 98: 1200-1205. 10.1073/pnas.031577698PubMedCentralPubMedCrossRef Putnam D, Gentry CA, Pack DW, Langer R: Polymer based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proc Natl Acad Sci. 2001, 98: 1200-1205. 10.1073/pnas.031577698PubMedCentralPubMedCrossRef
79.
go back to reference Wang S: Tat peptide conjugates of low molecular weight polyethylenimine as effective non-viral gene delivery vectors. Mol Ther. 2006, 13: 76-10.1016/j.ymthe.2006.08.219. 10.1016/j.ymthe.2006.08.219CrossRef Wang S: Tat peptide conjugates of low molecular weight polyethylenimine as effective non-viral gene delivery vectors. Mol Ther. 2006, 13: 76-10.1016/j.ymthe.2006.08.219. 10.1016/j.ymthe.2006.08.219CrossRef
80.
go back to reference Bolhassani A, Ghasemi N, Servis C, Taghikhani M, Rafati S: Comparison of two delivery systems efficiency by using polyethylenimine (PEI) for plasmid HPV16 E7 DNA transfection into COS-7 cells. Modarres J Med Sci. 2008, 11: 15-19. Bolhassani A, Ghasemi N, Servis C, Taghikhani M, Rafati S: Comparison of two delivery systems efficiency by using polyethylenimine (PEI) for plasmid HPV16 E7 DNA transfection into COS-7 cells. Modarres J Med Sci. 2008, 11: 15-19.
81.
go back to reference Bolhassani A, Ghasemi N, Servis C, Taghikhani M, Rafati S: The efficiency of a novel delivery system (PEI600-Tat) in development of potent DNA vaccine using HPV16 E7 as a model antigen. Drug Deliv. 2009, 16: 196-204. 10.1080/10717540902757721PubMedCrossRef Bolhassani A, Ghasemi N, Servis C, Taghikhani M, Rafati S: The efficiency of a novel delivery system (PEI600-Tat) in development of potent DNA vaccine using HPV16 E7 as a model antigen. Drug Deliv. 2009, 16: 196-204. 10.1080/10717540902757721PubMedCrossRef
82.
go back to reference Michel N, Osen W, Gissmann L, Schumacher TN, Zentgraf H, Müller M: Enhanced immunogenicity of HPV16 E7 fusion proteins in DNA vaccination. Virology. 2002, 294: 47-59. 10.1006/viro.2001.1321PubMedCrossRef Michel N, Osen W, Gissmann L, Schumacher TN, Zentgraf H, Müller M: Enhanced immunogenicity of HPV16 E7 fusion proteins in DNA vaccination. Virology. 2002, 294: 47-59. 10.1006/viro.2001.1321PubMedCrossRef
83.
go back to reference Zender L, Kuhnel F, Kock R, Manns M, Kubicka S: VP22-mediated intercellular transport of p53 in hepatoma cells in vitro and in vivo. Cancer Gene Therapy. 2002, 9: 489-496. 10.1038/sj.cgt.7700465PubMedCrossRef Zender L, Kuhnel F, Kock R, Manns M, Kubicka S: VP22-mediated intercellular transport of p53 in hepatoma cells in vitro and in vivo. Cancer Gene Therapy. 2002, 9: 489-496. 10.1038/sj.cgt.7700465PubMedCrossRef
84.
85.
go back to reference Schafer K, Muller M, Faath S, Henn A, Osen W, Zentgraf H: Immune response to human papillomavirus 16L1E7 chimeric virus-like particles: induction of cytotoxic T cells and specific tumor protection. Int J Cancer. 1999, 81: 881-888. 10.1002/(SICI)1097-0215(19990611)81:6<881::AID-IJC8>3.0.CO;2-TPubMedCrossRef Schafer K, Muller M, Faath S, Henn A, Osen W, Zentgraf H: Immune response to human papillomavirus 16L1E7 chimeric virus-like particles: induction of cytotoxic T cells and specific tumor protection. Int J Cancer. 1999, 81: 881-888. 10.1002/(SICI)1097-0215(19990611)81:6<881::AID-IJC8>3.0.CO;2-TPubMedCrossRef
86.
go back to reference Greenstone HL, Nieland JD, de Visser KE, De Bruijn ML, Kirnbauer R, Roden RBS, Lowy DR, Kast WM, Schiller JT: Chimeric papillomavirus virus-like particles elicitanti-tumor immunity against the E7 oncoprotein in an HPV16 tumor model. Proc Natl Acad Sci USA. 1998, 95: 1800-1805. 10.1073/pnas.95.4.1800PubMedCentralPubMedCrossRef Greenstone HL, Nieland JD, de Visser KE, De Bruijn ML, Kirnbauer R, Roden RBS, Lowy DR, Kast WM, Schiller JT: Chimeric papillomavirus virus-like particles elicitanti-tumor immunity against the E7 oncoprotein in an HPV16 tumor model. Proc Natl Acad Sci USA. 1998, 95: 1800-1805. 10.1073/pnas.95.4.1800PubMedCentralPubMedCrossRef
87.
go back to reference Schiller J, Lowy D: Papillomavirus-like particle vaccines. J Natl Cancer Inst Monogr. 2001, 28: 50-54.PubMed Schiller J, Lowy D: Papillomavirus-like particle vaccines. J Natl Cancer Inst Monogr. 2001, 28: 50-54.PubMed
88.
go back to reference Kanodia S, Fahey LM, Kast WM: Mechanisms used by human papillomaviruses to escape the host immune response. Curr Cancer Drug Targets. 2007, 7: 79-89. 10.2174/156800907780006869PubMedCrossRef Kanodia S, Fahey LM, Kast WM: Mechanisms used by human papillomaviruses to escape the host immune response. Curr Cancer Drug Targets. 2007, 7: 79-89. 10.2174/156800907780006869PubMedCrossRef
89.
go back to reference Krauzewicz N, Cox C, Soeda E, Clark B, Rayner S, Griffin BE: Sustained ex vivo and in vivo transfer of a reporter gene using polyoma virus pseudocapsids. Gene Ther. 2000, 7: 1094-1102. 10.1038/sj.gt.3301219PubMedCrossRef Krauzewicz N, Cox C, Soeda E, Clark B, Rayner S, Griffin BE: Sustained ex vivo and in vivo transfer of a reporter gene using polyoma virus pseudocapsids. Gene Ther. 2000, 7: 1094-1102. 10.1038/sj.gt.3301219PubMedCrossRef
90.
go back to reference Krauzewicz N, Stokrova J, Jenkins C, Elliott M, Higgins CF, Griffin BE: Virus-like gene transfer into cells mediated by polyoma virus pseudocapsids. Gene Ther. 2000, 7: 2122-2131. 10.1038/sj.gt.3301322PubMedCrossRef Krauzewicz N, Stokrova J, Jenkins C, Elliott M, Higgins CF, Griffin BE: Virus-like gene transfer into cells mediated by polyoma virus pseudocapsids. Gene Ther. 2000, 7: 2122-2131. 10.1038/sj.gt.3301322PubMedCrossRef
91.
go back to reference Combita AL, Touze A, Bousarghin L, Sizaret PY, Munoz N, Coursaget P: Gene transfer using human papillomavirus pseudovirions varies according to virus genotype and requires cell surface heparan sulfate. FEMS Microbiol Lett. 2001, 204: 183-188. 10.1111/j.1574-6968.2001.tb10883.xPubMedCrossRef Combita AL, Touze A, Bousarghin L, Sizaret PY, Munoz N, Coursaget P: Gene transfer using human papillomavirus pseudovirions varies according to virus genotype and requires cell surface heparan sulfate. FEMS Microbiol Lett. 2001, 204: 183-188. 10.1111/j.1574-6968.2001.tb10883.xPubMedCrossRef
92.
93.
go back to reference Malboeuf CM, Simon DAL, Lee YEE, Lankes HA, Dewhurst S, Frelinger JG, Rose RC: Human papillomavirus-like particles mediate functional delivery of plasmid DNA to antigen presenting cells in vivo. Vaccine. 2007, 25: 3270-3276. 10.1016/j.vaccine.2007.01.067PubMedCrossRef Malboeuf CM, Simon DAL, Lee YEE, Lankes HA, Dewhurst S, Frelinger JG, Rose RC: Human papillomavirus-like particles mediate functional delivery of plasmid DNA to antigen presenting cells in vivo. Vaccine. 2007, 25: 3270-3276. 10.1016/j.vaccine.2007.01.067PubMedCrossRef
94.
go back to reference Kamper N, Day PM, Nowak T, Selinka HC, Florin L, Bolscher J, Hilbig L, Schiller JT, Sapp M: A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. J Virol. 2006, 80: 759-768. 10.1128/JVI.80.2.759-768.2006PubMedCentralPubMedCrossRef Kamper N, Day PM, Nowak T, Selinka HC, Florin L, Bolscher J, Hilbig L, Schiller JT, Sapp M: A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. J Virol. 2006, 80: 759-768. 10.1128/JVI.80.2.759-768.2006PubMedCentralPubMedCrossRef
95.
go back to reference Day PM, Baker CC, Lowy DR, Schiller JT: Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. Proc Natl Acad Sci USA. 2004, 101: 14252-14257. 10.1073/pnas.0404229101PubMedCentralPubMedCrossRef Day PM, Baker CC, Lowy DR, Schiller JT: Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. Proc Natl Acad Sci USA. 2004, 101: 14252-14257. 10.1073/pnas.0404229101PubMedCentralPubMedCrossRef
96.
go back to reference Kiesslich A, von Mikecz A, Hemmerich P: Cell cycle-dependent association of PML bodies with sites of active transcription in nuclei of mammalian cells. J Struct Biol. 2002, 140: 167-79. 10.1016/S1047-8477(02)00571-3PubMedCrossRef Kiesslich A, von Mikecz A, Hemmerich P: Cell cycle-dependent association of PML bodies with sites of active transcription in nuclei of mammalian cells. J Struct Biol. 2002, 140: 167-79. 10.1016/S1047-8477(02)00571-3PubMedCrossRef
97.
go back to reference Cubas R, Zhang S, Kwon S, Sevick-Muraca EM, Li M, Chen C, Yao Q: Virus-like particle (VLP) lymphatic trafficking and immune response generation after immunization by different routes. J immunother. 2009, 32: 118-128. 10.1097/CJI.0b013e31818f13c4PubMedCentralPubMedCrossRef Cubas R, Zhang S, Kwon S, Sevick-Muraca EM, Li M, Chen C, Yao Q: Virus-like particle (VLP) lymphatic trafficking and immune response generation after immunization by different routes. J immunother. 2009, 32: 118-128. 10.1097/CJI.0b013e31818f13c4PubMedCentralPubMedCrossRef
98.
go back to reference Machy P, Serre K, Leserman L: Class I-restricted presentation of exogenous antigen acquired by Fcgamma receptor-mediated endocytosis is regulated in dendritic cells. Eur J Immunol. 2000, 30: 848-857. 10.1002/1521-4141(200003)30:3<848::AID-IMMU848>3.0.CO;2-QPubMedCrossRef Machy P, Serre K, Leserman L: Class I-restricted presentation of exogenous antigen acquired by Fcgamma receptor-mediated endocytosis is regulated in dendritic cells. Eur J Immunol. 2000, 30: 848-857. 10.1002/1521-4141(200003)30:3<848::AID-IMMU848>3.0.CO;2-QPubMedCrossRef
99.
go back to reference Okada N, Saito T, Mori K, Masunaga Y, Fujii Y, Fujita J, Fujimoto K, Nakanishi T, Tanaka K, Nakagawa S, Mayumi T, Fujita T, Yamamoto A: Effects of lipofectin-antigen complexes on major histocompatibility complex class I-restricted antigen presentation pathway in murine dendritic cells and on dendritic cell maturation. Biochim Biophys Acta. 2001, 1527: 97-101.PubMedCrossRef Okada N, Saito T, Mori K, Masunaga Y, Fujii Y, Fujita J, Fujimoto K, Nakanishi T, Tanaka K, Nakagawa S, Mayumi T, Fujita T, Yamamoto A: Effects of lipofectin-antigen complexes on major histocompatibility complex class I-restricted antigen presentation pathway in murine dendritic cells and on dendritic cell maturation. Biochim Biophys Acta. 2001, 1527: 97-101.PubMedCrossRef
100.
go back to reference Yoshikawa T, Okada N, Oda A, Matsuo K, Mukai Y, Yoshioka Y, Akagi T, Akashi M, Nakagawa S: Development of amphiphilic gamma-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier. Biochem Biophys Res Commun. 2008, 366: 408-413. 10.1016/j.bbrc.2007.11.153PubMedCrossRef Yoshikawa T, Okada N, Oda A, Matsuo K, Mukai Y, Yoshioka Y, Akagi T, Akashi M, Nakagawa S: Development of amphiphilic gamma-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier. Biochem Biophys Res Commun. 2008, 366: 408-413. 10.1016/j.bbrc.2007.11.153PubMedCrossRef
101.
go back to reference Wang L, Ikeda H, Ikuta Y, Schmitt M, Miyahara Y, Takahashi Y, Gu X, Nagata Y, Sasaki Y, Akiyoshi K, Sunamoto J, Nakamura H, Kuribayashi K, Shiku H: Bone marrow-derived dendritic cells incorporate and process hydrophobized poly-saccharide/oncoprotein complex as antigen presenting cells. Int J Oncol. 1999, 14: 695-701.PubMed Wang L, Ikeda H, Ikuta Y, Schmitt M, Miyahara Y, Takahashi Y, Gu X, Nagata Y, Sasaki Y, Akiyoshi K, Sunamoto J, Nakamura H, Kuribayashi K, Shiku H: Bone marrow-derived dendritic cells incorporate and process hydrophobized poly-saccharide/oncoprotein complex as antigen presenting cells. Int J Oncol. 1999, 14: 695-701.PubMed
102.
go back to reference Kawamura K, Kadowaki N, Suzuki R, Udagawa S, Kasaoka S, Utoguchi N, Kitawaki T, Sugimoto N, Okada N, Maruyama K, Uchiyama T: Dendritic cells that endocytosed antigen-containing IgG-liposomes elicit effective antitumor immunity. J Immunother. 2006, 29: 165-174. 10.1097/01.cji.0000190169.61416.f5PubMedCrossRef Kawamura K, Kadowaki N, Suzuki R, Udagawa S, Kasaoka S, Utoguchi N, Kitawaki T, Sugimoto N, Okada N, Maruyama K, Uchiyama T: Dendritic cells that endocytosed antigen-containing IgG-liposomes elicit effective antitumor immunity. J Immunother. 2006, 29: 165-174. 10.1097/01.cji.0000190169.61416.f5PubMedCrossRef
103.
go back to reference Kim KW, Kim SH, Jang JH, Lee EY, Park SW, Um JH, Lee YJ, Lee CH, Yoon S, Seo SY, Jeong MH, Lee ST, Chung BS, Kang CD: Dendritic cells loaded with exogenous antigen by electroporation can enhance MHC class I-mediated antitumor immunity. Cancer Immunol Immunother. 2004, 53: 315-322. 10.1007/s00262-003-0461-0PubMedCrossRef Kim KW, Kim SH, Jang JH, Lee EY, Park SW, Um JH, Lee YJ, Lee CH, Yoon S, Seo SY, Jeong MH, Lee ST, Chung BS, Kang CD: Dendritic cells loaded with exogenous antigen by electroporation can enhance MHC class I-mediated antitumor immunity. Cancer Immunol Immunother. 2004, 53: 315-322. 10.1007/s00262-003-0461-0PubMedCrossRef
104.
go back to reference Weiss JM, Allen C, Shivakumar R, Feller S, Li LH, Liu LN: Efficient responses in a murine renal tumor model by electroloading dendritic cells with whole-tumor lysate. J Immunother. 2005, 28: 542-550. 10.1097/01.cji.0000179437.95335.23PubMedCrossRef Weiss JM, Allen C, Shivakumar R, Feller S, Li LH, Liu LN: Efficient responses in a murine renal tumor model by electroloading dendritic cells with whole-tumor lysate. J Immunother. 2005, 28: 542-550. 10.1097/01.cji.0000179437.95335.23PubMedCrossRef
105.
go back to reference Suzuki R, Oda Y, Utoguchi N, Namai E, Taira Y, Okada N, Kadowaki N, Kodama T, Tachibana K, Maruyama K: A novel strategy utilizing ultrasound for antigen delivery in dendritic cell-based cancer immunotherapy. Journal of Controlled Release. 2009, 133: 198-205. 10.1016/j.jconrel.2008.10.015PubMedCrossRef Suzuki R, Oda Y, Utoguchi N, Namai E, Taira Y, Okada N, Kadowaki N, Kodama T, Tachibana K, Maruyama K: A novel strategy utilizing ultrasound for antigen delivery in dendritic cell-based cancer immunotherapy. Journal of Controlled Release. 2009, 133: 198-205. 10.1016/j.jconrel.2008.10.015PubMedCrossRef
106.
go back to reference Klippstein R, Pozo D: Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomedicine. 2010, 1-7. Klippstein R, Pozo D: Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomedicine. 2010, 1-7.
107.
go back to reference Beaudette TT, Bachelder EM, Cohen JA, Obermeyer AC, Broaders KE, Fréchet JM, Kang ES, Mende I, Tseng WW, Davidson MG, Engleman EG: In vivo studies on the effect of co-encapsulation of CpG DNA and antigen in acid-degradable microparticle vaccines. Mol Pharm. 2009, 6 (4): 1160-1169. 10.1021/mp900038ePubMedCentralPubMedCrossRef Beaudette TT, Bachelder EM, Cohen JA, Obermeyer AC, Broaders KE, Fréchet JM, Kang ES, Mende I, Tseng WW, Davidson MG, Engleman EG: In vivo studies on the effect of co-encapsulation of CpG DNA and antigen in acid-degradable microparticle vaccines. Mol Pharm. 2009, 6 (4): 1160-1169. 10.1021/mp900038ePubMedCentralPubMedCrossRef
108.
109.
go back to reference Coulie PG: Human tumor antigens recognized by T cells: new perspectives for anti-cancer vaccines?. Mol Med Today. 1997, 3: 261-268. 10.1016/S1357-4310(97)01049-6PubMedCrossRef Coulie PG: Human tumor antigens recognized by T cells: new perspectives for anti-cancer vaccines?. Mol Med Today. 1997, 3: 261-268. 10.1016/S1357-4310(97)01049-6PubMedCrossRef
110.
go back to reference Vocero-Akbani A, Lissy NA, Dowdy SF: Transduction of full-length Tat fusion proteins directly into mammalian cells: analysis of T cell receptor activation-induced cell death. Methods Enzymol. 2000, 322: 508-521. full_textPubMedCrossRef Vocero-Akbani A, Lissy NA, Dowdy SF: Transduction of full-length Tat fusion proteins directly into mammalian cells: analysis of T cell receptor activation-induced cell death. Methods Enzymol. 2000, 322: 508-521. full_textPubMedCrossRef
111.
go back to reference Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J: Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA. 1994, 91: 664-668. 10.1073/pnas.91.2.664PubMedCentralPubMedCrossRef Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J: Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA. 1994, 91: 664-668. 10.1073/pnas.91.2.664PubMedCentralPubMedCrossRef
112.
go back to reference Black M, Trent A, Tirrell M, Olive C: Advances in the design and delivery of peptide subunit vaccines with a focus on Toll-like receptor agonists. Expert Rev Vaccines. 2010, 9: 157-173. 10.1586/erv.09.160PubMedCentralPubMedCrossRef Black M, Trent A, Tirrell M, Olive C: Advances in the design and delivery of peptide subunit vaccines with a focus on Toll-like receptor agonists. Expert Rev Vaccines. 2010, 9: 157-173. 10.1586/erv.09.160PubMedCentralPubMedCrossRef
113.
go back to reference Chadwick S, Kriegel C, Amiji M: Delivery strategies to enhance mucosal vaccination. Expert Opin Biol Ther. 2009, 9: 427-440. 10.1517/14712590902849224PubMedCrossRef Chadwick S, Kriegel C, Amiji M: Delivery strategies to enhance mucosal vaccination. Expert Opin Biol Ther. 2009, 9: 427-440. 10.1517/14712590902849224PubMedCrossRef
114.
go back to reference Long CM, van Laarhoven HWM, Bulte JWM, Levitsky HI: Magnetovaccination as a novel method to assess and quantify dendritic cell tumor antigen capture and delivery to lymph nodes. Cancer Res. 2009, 69: 3180-3187. 10.1158/0008-5472.CAN-08-3691PubMedCentralPubMedCrossRef Long CM, van Laarhoven HWM, Bulte JWM, Levitsky HI: Magnetovaccination as a novel method to assess and quantify dendritic cell tumor antigen capture and delivery to lymph nodes. Cancer Res. 2009, 69: 3180-3187. 10.1158/0008-5472.CAN-08-3691PubMedCentralPubMedCrossRef
115.
go back to reference Zhang H, Yee D, Wang C: Quantum Dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine. 2008, 3: 83-91. 10.2217/17435889.3.1.83PubMedCrossRef Zhang H, Yee D, Wang C: Quantum Dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine. 2008, 3: 83-91. 10.2217/17435889.3.1.83PubMedCrossRef
Metadata
Title
Improvement of different vaccine delivery systems for cancer therapy
Authors
Azam Bolhassani
Shima Safaiyan
Sima Rafati
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2011
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-10-3

Other articles of this Issue 1/2011

Molecular Cancer 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine