Skip to main content
Top
Published in: Annals of Nuclear Medicine 8/2020

01-08-2020 | Original Article

Improvement of biodistribution profile of a radiogallium-labeled, αvβ6 integrin-targeting peptide probe by incorporation of negatively charged amino acids

Authors: Shunsuke Nakamura, Aya Matsuno, Masashi Ueda

Published in: Annals of Nuclear Medicine | Issue 8/2020

Login to get access

Abstract

Objective

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. Since αvβ6 integrin has been reported as a promising target for PDAC diagnosis, we previously developed H-Cys(mal-NOTA-67Ga)-(Gly)6-A20FMDV2-NH2 ([67Ga]CG6) as an αvβ6 integrin-targeting probe. Although [67Ga]CG6 specifically binds to αvβ6 integrin-positive xenografts, the uptake of [67Ga]CG6 in the organs surrounding the pancreas, such as the liver and spleen, was comparable to that in the αvβ6 integrin-positive xenografts. We hypothesized that the undesirable accumulation of [67Ga]CG6 in those organs was caused by the positive charges of [67Ga]CG6 (+ 3). In this study, we aimed to decrease [67Ga]CG6 uptake in the liver and spleen by reducing the electric charges of the probe.

Methods

We synthesized H-Cys(mal-NOTA-67Ga)-(Asp)6-A20FMDV2-NH2 ([67Ga]CD6) and evaluated its affinity to αvβ6 integrin via in vitro competitive binding assay. Isoelectric points of the probes were determined by electrophoresis. Biodistribution study, autoradiography, and immunostaining for β6 integrin were conducted using αvβ6 integrin-positive and negative tumor-bearing mice.

Results

In vitro competitive binding assay showed that the alteration of the linker had a negligible impact on the affinity of [67Ga]CG6 to αvβ6 integrin. The results of electrophoresis revealed that [67Ga]CG6 was positively charged whereas [67Ga]CD6 was negatively charged. In the biodistribution study, the uptake of [67Ga]CD6 in the αvβ6 integrin-positive xenografts was significantly higher than that in the αvβ6 integrin-negative ones at 60 and 120 min. The uptake of [67Ga]CD6 in the liver and spleen was more than two-fold lower than that of [67Ga]CG6 at both time points. In the immunohistochemistry study, the radioactivity accumulated areas in the autoradiogram of the αvβ6 integrin-positive xenograft roughly coincided with β6 integrin-expressing areas.

Conclusion

We have successfully reduced the nonspecific uptake in the liver and spleen by altering the linker amino acid from G6 to D6. [67Ga]CD6 overcame the drawbacks of [67Ga]CG6 in its biodistribution.
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.CrossRef
2.
go back to reference Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.CrossRef Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.CrossRef
3.
go back to reference Ueda M, Fukushima T, Ogawa K, Kimura H, Ono M, Yamaguchi T, et al. Synthesis and evaluation of a radioiodinated peptide probe targeting αvβ6 integrin for the detection of pancreatic ductal adenocarcinoma. Biochem Biophys Res Commun. 2014;445:661–6.CrossRef Ueda M, Fukushima T, Ogawa K, Kimura H, Ono M, Yamaguchi T, et al. Synthesis and evaluation of a radioiodinated peptide probe targeting αvβ6 integrin for the detection of pancreatic ductal adenocarcinoma. Biochem Biophys Res Commun. 2014;445:661–6.CrossRef
4.
go back to reference Desai K, Nair MG, Prabhu JS, Vinod A, Korlimarla A, Rajarajan S, et al. High expression of integrin β6 in association with the Rho-Rac pathway identifies a poor prognostic subgroup within HER2 amplified breast cancers. Cancer Med. 2016;5:2000–111.CrossRef Desai K, Nair MG, Prabhu JS, Vinod A, Korlimarla A, Rajarajan S, et al. High expression of integrin β6 in association with the Rho-Rac pathway identifies a poor prognostic subgroup within HER2 amplified breast cancers. Cancer Med. 2016;5:2000–111.CrossRef
5.
go back to reference Niu J, Li Z. The roles of integrin αvβ6 in cancer. Cancer Lett. 2017;403:128–37.CrossRef Niu J, Li Z. The roles of integrin αvβ6 in cancer. Cancer Lett. 2017;403:128–37.CrossRef
6.
go back to reference Zhang ZY, Xu KS, Wang JS, Yang GY, Wang W, Wang JY, et al. Integrin αvβ6 acts as a prognostic indicator in gastric carcinoma. Clin Oncol (R Coll Radiol). 2008;20:61–6.CrossRef Zhang ZY, Xu KS, Wang JS, Yang GY, Wang W, Wang JY, et al. Integrin αvβ6 acts as a prognostic indicator in gastric carcinoma. Clin Oncol (R Coll Radiol). 2008;20:61–6.CrossRef
7.
go back to reference Yang GY, Guo S, Dong CY, Wang XQ, Hu BY, Liu YF, et al. Integrin αvβ6 sustains and promotes tumor invasive growth in colon cancer progression. World J Gastroenterol. 2015;21:7457–67.CrossRef Yang GY, Guo S, Dong CY, Wang XQ, Hu BY, Liu YF, et al. Integrin αvβ6 sustains and promotes tumor invasive growth in colon cancer progression. World J Gastroenterol. 2015;21:7457–67.CrossRef
8.
go back to reference Thomas GJ, Nystrom ML, Marshall JF. αvβ6 integrin in wound healing and cancer of the oral cavity. J Oral Pathol Med. 2006;35:1–10.CrossRef Thomas GJ, Nystrom ML, Marshall JF. αvβ6 integrin in wound healing and cancer of the oral cavity. J Oral Pathol Med. 2006;35:1–10.CrossRef
9.
go back to reference Hezel AF, Deshpande V, Zimmerman SM, Contino G, Alagesan B, O'Dell MR, et al. TGF-β and αvβ6 integrin act in a common pathway to suppress pancreatic cancer progression. Cancer Res. 2012;72:4840–5.CrossRef Hezel AF, Deshpande V, Zimmerman SM, Contino G, Alagesan B, O'Dell MR, et al. TGF-β and αvβ6 integrin act in a common pathway to suppress pancreatic cancer progression. Cancer Res. 2012;72:4840–5.CrossRef
10.
go back to reference Notni J, Reich D, Maltsev OV, Kapp TG, Steiger K, Hoffmann F, et al. In vivo PET imaging of the cancer integrin αvβ6 using 68Ga-labeled cyclic RGD nonapeptides. J Nucl Med. 2017;58:671–7.CrossRef Notni J, Reich D, Maltsev OV, Kapp TG, Steiger K, Hoffmann F, et al. In vivo PET imaging of the cancer integrin αvβ6 using 68Ga-labeled cyclic RGD nonapeptides. J Nucl Med. 2017;58:671–7.CrossRef
11.
go back to reference Tummers WS, Farina-Sarasqueta A, Boonstra MC, Prevoo HA, Sier CF, Mieog JS, et al. Selection of optimal molecular targets for tumor-specific imaging in pancreatic ductal adenocarcinoma. Oncotarget. 2017;8:56816–28.CrossRef Tummers WS, Farina-Sarasqueta A, Boonstra MC, Prevoo HA, Sier CF, Mieog JS, et al. Selection of optimal molecular targets for tumor-specific imaging in pancreatic ductal adenocarcinoma. Oncotarget. 2017;8:56816–28.CrossRef
12.
go back to reference Hausner SH, DiCara D, Marik J, Marshall JF, Sutcliffe JL. Use of a peptide derived from foot-and-mouth disease virus for the noninvasive imaging of human cancer: generation and evaluation of 4-[18F]fluorobenzoyl A20FMDV2 for in vivo imaging of integrin αvβ6 expression with positron emission tomography. Cancer Res. 2007;67:7833–40.CrossRef Hausner SH, DiCara D, Marik J, Marshall JF, Sutcliffe JL. Use of a peptide derived from foot-and-mouth disease virus for the noninvasive imaging of human cancer: generation and evaluation of 4-[18F]fluorobenzoyl A20FMDV2 for in vivo imaging of integrin αvβ6 expression with positron emission tomography. Cancer Res. 2007;67:7833–40.CrossRef
13.
go back to reference Kapp TG, Rechenmacher F, Neubauer S, Maltsev OV, Cavalcanti-Adam EA, Zarka R, et al. A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins. Sci Rep. 2017;7:39805.CrossRef Kapp TG, Rechenmacher F, Neubauer S, Maltsev OV, Cavalcanti-Adam EA, Zarka R, et al. A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins. Sci Rep. 2017;7:39805.CrossRef
14.
go back to reference Hausner SH, Bauer N, Hu LY, Knight LM, Sutcliffe JL. The effect of bi-terminal PEGylation of an integrin αvβ6-targeted 18F peptide on pharmacokinetics and tumor uptake. J Nucl Med. 2015;56:784–90.CrossRef Hausner SH, Bauer N, Hu LY, Knight LM, Sutcliffe JL. The effect of bi-terminal PEGylation of an integrin αvβ6-targeted 18F peptide on pharmacokinetics and tumor uptake. J Nucl Med. 2015;56:784–90.CrossRef
15.
go back to reference Hu LY, Bauer N, Knight LM, Li Z, Liu S, Anderson CJ, et al. Characterization and evaluation of 64Cu-labeled A20FMDV2 conjugates for imaging the integrin αvβ6. Mol Imaging Biol. 2014;16:567–77.CrossRef Hu LY, Bauer N, Knight LM, Li Z, Liu S, Anderson CJ, et al. Characterization and evaluation of 64Cu-labeled A20FMDV2 conjugates for imaging the integrin αvβ6. Mol Imaging Biol. 2014;16:567–77.CrossRef
16.
go back to reference Saha A, Ellison D, Thomas GJ, Vallath S, Mather SJ, Hart IR, et al. High-resolution in vivo imaging of breast cancer by targeting the pro-invasive integrin αvβ6. J Pathol. 2010;222:52–63.PubMed Saha A, Ellison D, Thomas GJ, Vallath S, Mather SJ, Hart IR, et al. High-resolution in vivo imaging of breast cancer by targeting the pro-invasive integrin αvβ6. J Pathol. 2010;222:52–63.PubMed
17.
go back to reference Ui T, Ueda M, Higaki Y, Kamino S, Sano K, Kimura H, et al. Development and characterization of a 68Ga-labeled A20FMDV2 peptide probe for the PET imaging of αvβ6 integrin-positive pancreatic ductal adenocarcinoma. Bioorg Med Chem. 2020;28:115189.CrossRef Ui T, Ueda M, Higaki Y, Kamino S, Sano K, Kimura H, et al. Development and characterization of a 68Ga-labeled A20FMDV2 peptide probe for the PET imaging of αvβ6 integrin-positive pancreatic ductal adenocarcinoma. Bioorg Med Chem. 2020;28:115189.CrossRef
18.
go back to reference Ueda M, Ogawa K, Miyano A, Ono M, Kizaka-Kondoh S, Saji H. Development of an oxygen-sensitive degradable peptide probe for the imaging of hypoxia-inducible factor-1-active regions in tumors. Mol Imaging Biol. 2013;15:713–21.CrossRef Ueda M, Ogawa K, Miyano A, Ono M, Kizaka-Kondoh S, Saji H. Development of an oxygen-sensitive degradable peptide probe for the imaging of hypoxia-inducible factor-1-active regions in tumors. Mol Imaging Biol. 2013;15:713–21.CrossRef
19.
go back to reference Yamamoto Y, Nagasaki Y, Kato Y, Sugiyama Y, Kataoka K. Long-circulating poly(ethylene glycol)-poly(D, L-lactide) block copolymer micelles with modulated surface charge. J Control Release. 2001;77:27–38.CrossRef Yamamoto Y, Nagasaki Y, Kato Y, Sugiyama Y, Kataoka K. Long-circulating poly(ethylene glycol)-poly(D, L-lactide) block copolymer micelles with modulated surface charge. J Control Release. 2001;77:27–38.CrossRef
20.
go back to reference Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 2011;32:3435–46.CrossRef Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 2011;32:3435–46.CrossRef
21.
go back to reference Garcia Garayoa E, Schweinsberg C, Maes V, Brans L, Blauenstein P, Tourwe DA, et al. Influence of the molecular charge on the biodistribution of bombesin analogues labeled with the [99mTc(CO)3]-core. Bioconjug Chem. 2008;19:2409–16.CrossRef Garcia Garayoa E, Schweinsberg C, Maes V, Brans L, Blauenstein P, Tourwe DA, et al. Influence of the molecular charge on the biodistribution of bombesin analogues labeled with the [99mTc(CO)3]-core. Bioconjug Chem. 2008;19:2409–16.CrossRef
22.
go back to reference Ogawa K, Ishizaki A, Takai K, Kitamura Y, Kiwada T, Shiba K, et al. Development of novel radiogallium-labeled bone imaging agents using oligo-aspartic acid peptides as carriers. PLoS ONE. 2013;8:e84335.CrossRef Ogawa K, Ishizaki A, Takai K, Kitamura Y, Kiwada T, Shiba K, et al. Development of novel radiogallium-labeled bone imaging agents using oligo-aspartic acid peptides as carriers. PLoS ONE. 2013;8:e84335.CrossRef
23.
go back to reference Ogawa K, Yu J, Ishizaki A, Yokokawa M, Kitamura M, Kitamura Y, et al. Radiogallium complex-conjugated bifunctional peptides for detecting primary cancer and bone metastases simultaneously. Bioconjug Chem. 2015;26:1561–70.CrossRef Ogawa K, Yu J, Ishizaki A, Yokokawa M, Kitamura M, Kitamura Y, et al. Radiogallium complex-conjugated bifunctional peptides for detecting primary cancer and bone metastases simultaneously. Bioconjug Chem. 2015;26:1561–70.CrossRef
24.
go back to reference Uehara T, Rokugawa T, Kinoshita M, Nemoto S, Fransisco Lazaro GG, Hanaoka H, et al. 67/68Ga-labeling agent that liberates 67/68Ga-NOTA-methionine by lysosomal proteolysis of parental low molecular weight polypeptides to reduce renal radioactivity levels. Bioconjug Chem. 2014;25:2038–45.CrossRef Uehara T, Rokugawa T, Kinoshita M, Nemoto S, Fransisco Lazaro GG, Hanaoka H, et al. 67/68Ga-labeling agent that liberates 67/68Ga-NOTA-methionine by lysosomal proteolysis of parental low molecular weight polypeptides to reduce renal radioactivity levels. Bioconjug Chem. 2014;25:2038–45.CrossRef
25.
go back to reference Oshima N, Akizawa H, Zhao S, Zhao Y, Nishijima K, Kitamura Y, et al. Design, synthesis and biological evaluation of negatively charged 111In-DTPA-octreotide derivatives. Bioorg Med Chem. 2014;22:1377–82.CrossRef Oshima N, Akizawa H, Zhao S, Zhao Y, Nishijima K, Kitamura Y, et al. Design, synthesis and biological evaluation of negatively charged 111In-DTPA-octreotide derivatives. Bioorg Med Chem. 2014;22:1377–82.CrossRef
26.
go back to reference Uehara T, Yokoyama M, Suzuki H, Hanaoka H, Arano Y. A Gallium-67/68-labeled antibody fragment for immuno-SPECT/PET shows low renal radioactivity without loss of tumor uptake. Clin Cancer Res. 2018;24:3309–16.CrossRef Uehara T, Yokoyama M, Suzuki H, Hanaoka H, Arano Y. A Gallium-67/68-labeled antibody fragment for immuno-SPECT/PET shows low renal radioactivity without loss of tumor uptake. Clin Cancer Res. 2018;24:3309–16.CrossRef
27.
go back to reference Hausner SH, Abbey CK, Bold RJ, Gagnon MK, Marik J, Marshall JF, et al. Targeted in vivo imaging of integrin αvβ6 with an improved radiotracer and its relevance in a pancreatic tumor model. Cancer Res. 2009;69:5843–50.CrossRef Hausner SH, Abbey CK, Bold RJ, Gagnon MK, Marik J, Marshall JF, et al. Targeted in vivo imaging of integrin αvβ6 with an improved radiotracer and its relevance in a pancreatic tumor model. Cancer Res. 2009;69:5843–50.CrossRef
28.
go back to reference Keat N, Kenny J, Chen K, Onega M, Garman N, Slack RJ, et al. A microdose PET study of the safety, immunogenicity, biodistribution, and radiation dosimetry of 18F-FB-A20FMDV2 for imaging the integrin αvβ6. J Nucl Med Technol. 2018;46:136–43.CrossRef Keat N, Kenny J, Chen K, Onega M, Garman N, Slack RJ, et al. A microdose PET study of the safety, immunogenicity, biodistribution, and radiation dosimetry of 18F-FB-A20FMDV2 for imaging the integrin αvβ6. J Nucl Med Technol. 2018;46:136–43.CrossRef
Metadata
Title
Improvement of biodistribution profile of a radiogallium-labeled, αvβ6 integrin-targeting peptide probe by incorporation of negatively charged amino acids
Authors
Shunsuke Nakamura
Aya Matsuno
Masashi Ueda
Publication date
01-08-2020
Publisher
Springer Singapore
Published in
Annals of Nuclear Medicine / Issue 8/2020
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-020-01483-6

Other articles of this Issue 8/2020

Annals of Nuclear Medicine 8/2020 Go to the issue