Skip to main content
Top
Published in: Surgical Endoscopy 5/2014

01-05-2014

Improved insulin sensitivity after gastric bypass correlates with decreased total body fat, but not with changes in free fatty acids

Authors: Alessandro Mor, Lawrence Tabone, Philip Omotosho, Alfonso Torquati

Published in: Surgical Endoscopy | Issue 5/2014

Login to get access

Abstract

Background

Increased plasma free fatty acids (FFAs) are considered one of the key elements in the pathogenesis of insulin resistance (IR) and type 2 diabetes (T2DM). We hypothesize that, in diabetic patients undergoing laparoscopic Roux-en-Y gastric bypass (LRYGB), a postoperative decrease in FFA will correlate with improved insulin sensitivity (Si).

Methods

A total of 30 obese [body mass index ((BMI) >35 kg/m2] patients with a diagnosis of T2DM were studied preoperatively and 12 months after LRYGB in a prospective cohort study. Collected data included intravenous glucose tolerance test (IVGTT), total body composition by dual-energy X-ray absorptiometry and plasma levels of FFA. Si analysis from the IVGTT was estimated from minimal model analysis. Pre- and postoperative variables were compared using a paired sample t test. Relationships between changes in variables were determined with Pearson’s correlation test.

Results

Twelve months after LRYGB the study population showed a significant decrease in BMI (p = 0.001), FFA (p = 0.03), and total body fat (p = 0.03), with an increase in Si (p = 0.001). Postoperative changes in Si significantly correlated (Pearson’s r = –0.53, p = 0.01) with change in total body fat, but not with changes in plasma FFA (Pearson’s r = –0.22, p = 0.31).

Conclusions

Our study challenges the notion that IR is mediated to a significant degree by changes in plasma FFA concentration. Instead, changes in adiposity and consequently changes in adipokine release can be the key players in determining remission of T2DM after LRYGB.
Literature
1.
go back to reference Abate N, Garg A, Peshock RM, Stray-Gundersen J, Adams-Huet B, Grundy SM (1996) Relationship of generalized and regional adiposity to insulin sensitivity in men with NIDDM. Diabetes 45(12):1684–1693PubMedCrossRef Abate N, Garg A, Peshock RM, Stray-Gundersen J, Adams-Huet B, Grundy SM (1996) Relationship of generalized and regional adiposity to insulin sensitivity in men with NIDDM. Diabetes 45(12):1684–1693PubMedCrossRef
2.
go back to reference Campbell PJ, Carlson MG (1993) Impact of obesity on insulin action in NIDDM. Diabetes 42(3):405–410PubMedCrossRef Campbell PJ, Carlson MG (1993) Impact of obesity on insulin action in NIDDM. Diabetes 42(3):405–410PubMedCrossRef
3.
go back to reference Ludvik B, Nolan JJ, Baloga J, Sacks D, Olefsky J (1995) Effect of obesity on insulin resistance in normal subjects and patients with NIDDM. Diabetes 44(9):1121–1125PubMedCrossRef Ludvik B, Nolan JJ, Baloga J, Sacks D, Olefsky J (1995) Effect of obesity on insulin resistance in normal subjects and patients with NIDDM. Diabetes 44(9):1121–1125PubMedCrossRef
5.
go back to reference Boden G (1997) Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46(1):3–10PubMedCrossRef Boden G (1997) Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46(1):3–10PubMedCrossRef
6.
go back to reference Björntorp P, Bergman H, Varnauskas E (1969) Plasma free fatty acid turnover rate in obesity. Acta Med Scand 185(4):351–356PubMed Björntorp P, Bergman H, Varnauskas E (1969) Plasma free fatty acid turnover rate in obesity. Acta Med Scand 185(4):351–356PubMed
7.
go back to reference Dresner A, Laurent D, Marcucci M et al (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103(2):253–259PubMedCentralPubMedCrossRef Dresner A, Laurent D, Marcucci M et al (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103(2):253–259PubMedCentralPubMedCrossRef
8.
go back to reference Yu C, Chen Y, Cline GW et al (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277(52):50230–50236PubMedCrossRef Yu C, Chen Y, Cline GW et al (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277(52):50230–50236PubMedCrossRef
9.
go back to reference Guo QY, Gao Y, Cong L (2002) Effects of free fatty acids on insulin signaling proteins in rat islet cells [Chinese]. Zhongguo Ying Yong Sheng Li Xue Za Zhi 18(3):283–286PubMed Guo QY, Gao Y, Cong L (2002) Effects of free fatty acids on insulin signaling proteins in rat islet cells [Chinese]. Zhongguo Ying Yong Sheng Li Xue Za Zhi 18(3):283–286PubMed
10.
go back to reference Boden G, She P, Mozzoli M et al (2005) Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes 54(12):3458–3465PubMedCrossRef Boden G, She P, Mozzoli M et al (2005) Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes 54(12):3458–3465PubMedCrossRef
11.
go back to reference Abbasi F, McLaughlin T, Lamendola C, Reaven GM (2000) Insulin regulation of plasma free fatty acid concentrations is abnormal in healthy subjects with muscle insulin resistance. Metabolism 49(2):151–154PubMedCrossRef Abbasi F, McLaughlin T, Lamendola C, Reaven GM (2000) Insulin regulation of plasma free fatty acid concentrations is abnormal in healthy subjects with muscle insulin resistance. Metabolism 49(2):151–154PubMedCrossRef
12.
go back to reference McLaughlin T, Abbasi F, Lamendola C, Kim HS, Reaven GM (2001) Metabolic changes following sibutramine-assisted weight loss in obese individuals: role of plasma free fatty acids in the insulin resistance of obesity. Metabolism 50(7):819–824PubMedCrossRef McLaughlin T, Abbasi F, Lamendola C, Kim HS, Reaven GM (2001) Metabolic changes following sibutramine-assisted weight loss in obese individuals: role of plasma free fatty acids in the insulin resistance of obesity. Metabolism 50(7):819–824PubMedCrossRef
13.
go back to reference Buchwald H, Avidor Y, Braunwald E et al (2004) Bariatric surgery: a systematic review and meta-analysis. JAMA 292(14):1724–1737PubMedCrossRef Buchwald H, Avidor Y, Braunwald E et al (2004) Bariatric surgery: a systematic review and meta-analysis. JAMA 292(14):1724–1737PubMedCrossRef
14.
go back to reference Buchwald H, Estok R, Fahrbach K et al (2009) Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med 122(3):248–256.e5PubMedCrossRef Buchwald H, Estok R, Fahrbach K et al (2009) Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med 122(3):248–256.e5PubMedCrossRef
15.
go back to reference Colquitt JL, Picot J, Loveman E, Clegg AJ (2009) Surgery for obesity. Cochrane Database Syst Rev 2:CD003641PubMed Colquitt JL, Picot J, Loveman E, Clegg AJ (2009) Surgery for obesity. Cochrane Database Syst Rev 2:CD003641PubMed
16.
go back to reference Schauer PR, Kashyap SR, Wolski K et al (2012) Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med 366(17):1567–1576PubMedCentralPubMedCrossRef Schauer PR, Kashyap SR, Wolski K et al (2012) Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med 366(17):1567–1576PubMedCentralPubMedCrossRef
17.
go back to reference Mingrone G, Panunzi S, De Gaetano A et al (2012) Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med 366(17):1577–1585PubMedCrossRef Mingrone G, Panunzi S, De Gaetano A et al (2012) Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med 366(17):1577–1585PubMedCrossRef
18.
go back to reference Kashyap SR, Bhatt DL, Wolski K et al (2013) Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care 36(8):2175–2182PubMedCrossRef Kashyap SR, Bhatt DL, Wolski K et al (2013) Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care 36(8):2175–2182PubMedCrossRef
19.
go back to reference Isbell JM, Tamboli RA, Hansen EN et al (2010) The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery. Diabetes Care 33(7):1438–1442PubMedCentralPubMedCrossRef Isbell JM, Tamboli RA, Hansen EN et al (2010) The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery. Diabetes Care 33(7):1438–1442PubMedCentralPubMedCrossRef
20.
go back to reference Gumbs AA, Modlin IM, Ballantyne GH (2005) Changes in insulin resistance following bariatric surgery: role of caloric restriction and weight loss. Obes Surg 15(4):462–473PubMedCrossRef Gumbs AA, Modlin IM, Ballantyne GH (2005) Changes in insulin resistance following bariatric surgery: role of caloric restriction and weight loss. Obes Surg 15(4):462–473PubMedCrossRef
21.
go back to reference Benedetti G, Mingrone G, Marcoccia S et al (2000) Body composition and energy expenditure after weight loss following bariatric surgery. J Am Coll Nutr 19(2):270–274PubMedCrossRef Benedetti G, Mingrone G, Marcoccia S et al (2000) Body composition and energy expenditure after weight loss following bariatric surgery. J Am Coll Nutr 19(2):270–274PubMedCrossRef
22.
go back to reference Klein S, Mittendorfer B, Eagon JC et al (2006) Gastric bypass surgery improves metabolic and hepatic abnormalities associated with nonalcoholic fatty liver disease. Gastroenterology 130(6):1564–1572PubMedCrossRef Klein S, Mittendorfer B, Eagon JC et al (2006) Gastric bypass surgery improves metabolic and hepatic abnormalities associated with nonalcoholic fatty liver disease. Gastroenterology 130(6):1564–1572PubMedCrossRef
23.
go back to reference Khoo CM, Chen J, Pamuklar Z, Torquati A (2013) Effects of Roux-en-Y gastric bypass or diabetes support and education on insulin sensitivity and insulin secretion in morbidly obese patients with type 2 diabetes. Ann Surg. doi:10.1097/SLA.0b013e318294d19c Khoo CM, Chen J, Pamuklar Z, Torquati A (2013) Effects of Roux-en-Y gastric bypass or diabetes support and education on insulin sensitivity and insulin secretion in morbidly obese patients with type 2 diabetes. Ann Surg. doi:10.​1097/​SLA.​0b013e318294d19c​
24.
go back to reference American Diabetes Assocation (2004) Diagnosis and classification of diabetes mellitus. Diabetes Care 27(Suppl 1):S5–S10 American Diabetes Assocation (2004) Diagnosis and classification of diabetes mellitus. Diabetes Care 27(Suppl 1):S5–S10
25.
go back to reference No authors listed (1991) NIH conference. Gastrointestinal surgery for severe obesity. Consensus Development Conference Panel. Ann Intern Med 115(12):956–961 No authors listed (1991) NIH conference. Gastrointestinal surgery for severe obesity. Consensus Development Conference Panel. Ann Intern Med 115(12):956–961
26.
go back to reference Bergman RN, Finegood DT, Ader M (1985) Assessment of insulin sensitivity in vivo. Endocr Rev 6(1):45–86PubMedCrossRef Bergman RN, Finegood DT, Ader M (1985) Assessment of insulin sensitivity in vivo. Endocr Rev 6(1):45–86PubMedCrossRef
27.
go back to reference Miller MR, Pereira RI, Langefeld CD et al (2012) Levels of free fatty acids (FFA) are associated with insulin resistance but do not explain the relationship between adiposity and insulin resistance in Hispanic Americans: the IRAS Family Study. J Clin Endocrinol Metab 97(9):3285–3291PubMedCentralPubMedCrossRef Miller MR, Pereira RI, Langefeld CD et al (2012) Levels of free fatty acids (FFA) are associated with insulin resistance but do not explain the relationship between adiposity and insulin resistance in Hispanic Americans: the IRAS Family Study. J Clin Endocrinol Metab 97(9):3285–3291PubMedCentralPubMedCrossRef
28.
go back to reference Vazquez-Vela ME, Torres N, Tovar AR (2008) White adipose tissue as endocrine organ and its role in obesity. Arch Med Res 39(8):715–728PubMedCrossRef Vazquez-Vela ME, Torres N, Tovar AR (2008) White adipose tissue as endocrine organ and its role in obesity. Arch Med Res 39(8):715–728PubMedCrossRef
29.
go back to reference Frige F, Laneri M, Veronelli A et al (2009) Bariatric surgery in obesity: changes of glucose and lipid metabolism correlate with changes of fat mass. Nutr Metab Cardiovasc Dis 19(3):198–204PubMedCrossRef Frige F, Laneri M, Veronelli A et al (2009) Bariatric surgery in obesity: changes of glucose and lipid metabolism correlate with changes of fat mass. Nutr Metab Cardiovasc Dis 19(3):198–204PubMedCrossRef
30.
go back to reference Carey DG, Jenkins AB, Campbell LV, Freund J, Chisholm DJ (1996) Abdominal fat and insulin resistance in normal and overweight women: direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM. Diabetes 45(5):633–638PubMedCrossRef Carey DG, Jenkins AB, Campbell LV, Freund J, Chisholm DJ (1996) Abdominal fat and insulin resistance in normal and overweight women: direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM. Diabetes 45(5):633–638PubMedCrossRef
31.
go back to reference Raji A, Seely EW, Arky RA, Simonson DC (2001) Body fat distribution and insulin resistance in healthy Asian Indians and Caucasians. J Clin Endocrinol Metab 86(11):5366–5371PubMedCrossRef Raji A, Seely EW, Arky RA, Simonson DC (2001) Body fat distribution and insulin resistance in healthy Asian Indians and Caucasians. J Clin Endocrinol Metab 86(11):5366–5371PubMedCrossRef
32.
go back to reference Kelley DE, Thaete FL, Troost F, Huwe T, Goodpaster BH (2000) Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am J Physiol Endocrinol Metab 278(5):E941–E948PubMed Kelley DE, Thaete FL, Troost F, Huwe T, Goodpaster BH (2000) Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am J Physiol Endocrinol Metab 278(5):E941–E948PubMed
33.
go back to reference Kelley DE, Williams KV, Price JC, McKolanis TM, Goodpaster BH, Thaete FL (2001) Plasma fatty acids, adiposity, and variance of skeletal muscle insulin resistance in type 2 diabetes mellitus. J Clin Endocrinol Metab 86(11):5412–5419PubMedCrossRef Kelley DE, Williams KV, Price JC, McKolanis TM, Goodpaster BH, Thaete FL (2001) Plasma fatty acids, adiposity, and variance of skeletal muscle insulin resistance in type 2 diabetes mellitus. J Clin Endocrinol Metab 86(11):5412–5419PubMedCrossRef
34.
go back to reference Raz I, Eldor R, Cernea S, Shafrir E (2005) Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage. Diabetes Metab Res Rev 21(1):3–14PubMedCrossRef Raz I, Eldor R, Cernea S, Shafrir E (2005) Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage. Diabetes Metab Res Rev 21(1):3–14PubMedCrossRef
35.
go back to reference Frayn KN (2000) Visceral fat and insulin resistance: causative or correlative? Br J Nutr 83(Suppl 1):S71–S77PubMed Frayn KN (2000) Visceral fat and insulin resistance: causative or correlative? Br J Nutr 83(Suppl 1):S71–S77PubMed
Metadata
Title
Improved insulin sensitivity after gastric bypass correlates with decreased total body fat, but not with changes in free fatty acids
Authors
Alessandro Mor
Lawrence Tabone
Philip Omotosho
Alfonso Torquati
Publication date
01-05-2014
Publisher
Springer US
Published in
Surgical Endoscopy / Issue 5/2014
Print ISSN: 0930-2794
Electronic ISSN: 1432-2218
DOI
https://doi.org/10.1007/s00464-013-3338-0

Other articles of this Issue 5/2014

Surgical Endoscopy 5/2014 Go to the issue