Skip to main content
Top
Published in: Hereditary Cancer in Clinical Practice 1/2016

Open Access 01-12-2016 | Research

Implications of using whole genome sequencing to test unselected populations for high risk breast cancer genes: a modelling study

Authors: Charlotte Warren-Gash, Mark Kroese, Hilary Burton, Paul Pharoah

Published in: Hereditary Cancer in Clinical Practice | Issue 1/2016

Login to get access

Abstract

Background

The decision to test for high risk breast cancer gene mutations is traditionally based on risk scores derived from age, family and personal cancer history. Next generation sequencing technologies such as whole genome sequencing (WGS) make wider population testing more feasible. In the UK’s 100,000 Genomes Project, mutations in 16 genes including BRCA1 and BRCA2 are to be actively sought regardless of clinical presentation. The implications of deploying this approach at scale for patients and clinical services are unclear. In this study we aimed to model the effect of using WGS to test an unselected UK population for high risk BRCA1 and BRCA2 gene variants to inform the debate around approaches to secondary genomic findings.

Methods

We modelled the test performance of WGS for identifying pathogenic BRCA1 and BRCA2 mutations in an unselected hypothetical population of 100,000 UK women, using published literature to derive model input parameters. We calculated analytic and clinical validity, described potential health outcomes and highlighted current areas of uncertainty. We also performed a sensitivity analysis in which we re-ran the model 100,000 times to investigate the effect of varying input parameters.

Results

In our models WGS was predicted to identify correctly 93 pathogenic BRCA1 mutations and 151 BRCA2 mutations in 120 and 200 women respectively, resulting in an analytic sensitivity of 75.5-77.5 %. Of 244 women with identified pathogenic mutations, we estimated that 132 (range 121–198) would develop breast cancer, so could potentially be helped by intervention. We also predicted that breast cancer would occur in 41 women (range 36–62) incorrectly identified with no pathogenic mutations and in 12,460 women without BRCA1 or BRCA2 mutations. There was considerable uncertainty about the penetrance of mutations in people without a family history of disease and the appropriate threshold of absolute disease risk for clinical action, which impacts on judgements about the clinical utility of intervention.

Conclusions

This simple model demonstrates the need for robust processes to support the testing for secondary genomic findings in unselected populations that acknowledge levels of uncertainty about the clinical validity and clinical utility of testing positive for a cancer risk gene.
Literature
2.
go back to reference Allyse M, Michie M. Not-so-incidental findings: the ACMG recommendations on the reporting of incidental findings in clinical whole genome and whole exome sequencing. Trends Biotechnol. 2013;31(8):439–41.CrossRefPubMedPubMedCentral Allyse M, Michie M. Not-so-incidental findings: the ACMG recommendations on the reporting of incidental findings in clinical whole genome and whole exome sequencing. Trends Biotechnol. 2013;31(8):439–41.CrossRefPubMedPubMedCentral
3.
go back to reference Rosenblatt DS. Who’s on first in exome and whole genome sequencing? Is it the patient or the incidental findings? Mol Genet Metab. 2013;110(1–2):1–2.CrossRefPubMed Rosenblatt DS. Who’s on first in exome and whole genome sequencing? Is it the patient or the incidental findings? Mol Genet Metab. 2013;110(1–2):1–2.CrossRefPubMed
4.
go back to reference Burke W, Matheny Antommaria AH, Bennett R, Botkin J, Clayton EW, Henderson GE, et al. Recommendations for returning genomic incidental findings? We need to talk! Genet Med. 2013;15(11):854–9.CrossRefPubMed Burke W, Matheny Antommaria AH, Bennett R, Botkin J, Clayton EW, Henderson GE, et al. Recommendations for returning genomic incidental findings? We need to talk! Genet Med. 2013;15(11):854–9.CrossRefPubMed
5.
go back to reference Ross LF, Rothstein MA, Clayton EW. Mandatory extended searches in all genome sequencing: “incidental findings”, patient autonomy, and shared decision making. JAMA. 2013;310(4):367–8.CrossRefPubMed Ross LF, Rothstein MA, Clayton EW. Mandatory extended searches in all genome sequencing: “incidental findings”, patient autonomy, and shared decision making. JAMA. 2013;310(4):367–8.CrossRefPubMed
7.
go back to reference Presidential Commission for the Study of Bioethical Issues. Anticipate and communicate: ethical management of incidental and secondary findings in the clinical, research and direct-to-consumer contexts. Washington D.C: Presidential Commission for the Study of Bioethical Issues; 2013. Presidential Commission for the Study of Bioethical Issues. Anticipate and communicate: ethical management of incidental and secondary findings in the clinical, research and direct-to-consumer contexts. Washington D.C: Presidential Commission for the Study of Bioethical Issues; 2013.
9.
go back to reference Moyer VA, U.S. Preventive Services Task Force. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;160:271–81.PubMed Moyer VA, U.S. Preventive Services Task Force. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer in women: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;160:271–81.PubMed
10.
go back to reference National Institute for Health and Care Excellence. Clinical Guideline 164: Familial breast cancer. 2013. National Institute for Health and Care Excellence. Clinical Guideline 164: Familial breast cancer. 2013.
12.
go back to reference Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, Deignan JL, et al. ACMG clinical laboratory standards for next-generation sequencing. Genet Med. 2013;15:733–47.CrossRefPubMedPubMedCentral Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, Deignan JL, et al. ACMG clinical laboratory standards for next-generation sequencing. Genet Med. 2013;15:733–47.CrossRefPubMedPubMedCentral
14.
go back to reference Hall A, Finnegan T, Alberg C. Realising Genomics in Clinical Practice. PHG Foundation. 2014. ISBN 978-1-907198-15-1. Hall A, Finnegan T, Alberg C. Realising Genomics in Clinical Practice. PHG Foundation. 2014. ISBN 978-1-907198-15-1.
15.
go back to reference Antoniou AC, Cunningham AP, Peto J, Evans DG, Lalloo F, Narod SA, et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer. 2008;98:1457–66.CrossRefPubMedPubMedCentral Antoniou AC, Cunningham AP, Peto J, Evans DG, Lalloo F, Narod SA, et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer. 2008;98:1457–66.CrossRefPubMedPubMedCentral
16.
go back to reference Petrucelli N, Daly M & Feldman G. BRCA1 and BRCA2 hereditary breast and ovarian cancer. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews [internet]. Seattle (WA): University of Washington, Seattle, 1993–2015. Available at: http://www.ncbi.nlm.nih.gov/books/NBK1247/ Accessed 5 March 2015. Petrucelli N, Daly M & Feldman G. BRCA1 and BRCA2 hereditary breast and ovarian cancer. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews [internet]. Seattle (WA): University of Washington, Seattle, 1993–2015. Available at: http://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK1247/​ Accessed 5 March 2015.
17.
go back to reference Song H, Cicek MS, Dicks E, Harrington P, Ramus SJ, Cunningham JM, et al. The contribution of deleterious germline mutations in BRCA1, BRCA2 and the mismatch repair genes to ovarian cancer in the population. Hum Mol Genet. 2014;23:4703–9.CrossRefPubMedPubMedCentral Song H, Cicek MS, Dicks E, Harrington P, Ramus SJ, Cunningham JM, et al. The contribution of deleterious germline mutations in BRCA1, BRCA2 and the mismatch repair genes to ovarian cancer in the population. Hum Mol Genet. 2014;23:4703–9.CrossRefPubMedPubMedCentral
18.
go back to reference Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1998;62:676–89.CrossRefPubMedPubMedCentral Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1998;62:676–89.CrossRefPubMedPubMedCentral
19.
go back to reference Mavaddat N, Peock S, Frost D, Ellis S, Platte R, Fineberg E, et al. Cancer Risks for BRCA1 and BRCA2 Mutation Carriers: Results from Prospective Analysis of EMBRACE. J Natl Cancer Inst. 2013;105:812–22.CrossRefPubMed Mavaddat N, Peock S, Frost D, Ellis S, Platte R, Fineberg E, et al. Cancer Risks for BRCA1 and BRCA2 Mutation Carriers: Results from Prospective Analysis of EMBRACE. J Natl Cancer Inst. 2013;105:812–22.CrossRefPubMed
21.
go back to reference Antoniou A, Pharoah PDP, Narod S, Risch HA, Eyfjord JE, Hopper JL, et al. Average risks of breast and ovarian cancer associated with BRCA1 and BRCA2 mutations detected in case seris unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72:1117–30.CrossRefPubMedPubMedCentral Antoniou A, Pharoah PDP, Narod S, Risch HA, Eyfjord JE, Hopper JL, et al. Average risks of breast and ovarian cancer associated with BRCA1 and BRCA2 mutations detected in case seris unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72:1117–30.CrossRefPubMedPubMedCentral
22.
go back to reference Van Der Kolk D, De Bock GH, Leegte BK, Schaapveld M, Mourits MJE, De Vries J, et al. Penetrance of breast cancer, ovarian cancer and contralateral breast cancer in BRCA1 and BRCA2 families: high cancer incidence at older age. Breast Cancer Res Treat. 2010;124:643–51.CrossRefPubMed Van Der Kolk D, De Bock GH, Leegte BK, Schaapveld M, Mourits MJE, De Vries J, et al. Penetrance of breast cancer, ovarian cancer and contralateral breast cancer in BRCA1 and BRCA2 families: high cancer incidence at older age. Breast Cancer Res Treat. 2010;124:643–51.CrossRefPubMed
24.
go back to reference Palomaki GE. Is it time for BRCA1/2 mutation screening in the general adult population?: impact of population characteristics. Genet Med. 2015;17:24–6.CrossRefPubMed Palomaki GE. Is it time for BRCA1/2 mutation screening in the general adult population?: impact of population characteristics. Genet Med. 2015;17:24–6.CrossRefPubMed
25.
go back to reference Dewey FE, Grove ME, Pan C, Goldstein BA, Bernstein JA, Chaib H, et al. Clinical Interpretation and Implications of Whole-Genome Sequencing. JAMA. 2014;311:1035–44.CrossRefPubMedPubMedCentral Dewey FE, Grove ME, Pan C, Goldstein BA, Bernstein JA, Chaib H, et al. Clinical Interpretation and Implications of Whole-Genome Sequencing. JAMA. 2014;311:1035–44.CrossRefPubMedPubMedCentral
26.
go back to reference Bennette CS, Gallego CJ, Burke W, Jarvik GP, Veenstra DL. The cost-effectiveness of returning incidental findings from next-generation genomic sequencing. Genet Med 2014 Nov 13. doi:10.1038/gim.2014.156 [Epub ahead of print]. Bennette CS, Gallego CJ, Burke W, Jarvik GP, Veenstra DL. The cost-effectiveness of returning incidental findings from next-generation genomic sequencing. Genet Med 2014 Nov 13. doi:10.​1038/​gim.​2014.​156 [Epub ahead of print].
27.
go back to reference Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. ACMG recommendation for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15:565–74.CrossRefPubMedPubMedCentral Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. ACMG recommendation for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15:565–74.CrossRefPubMedPubMedCentral
28.
go back to reference American College of Medical Genetics and Genomics. Incidental findings in clinical genomics: a clarification. Genet Med. 2013;15:664–6.CrossRef American College of Medical Genetics and Genomics. Incidental findings in clinical genomics: a clarification. Genet Med. 2013;15:664–6.CrossRef
29.
Metadata
Title
Implications of using whole genome sequencing to test unselected populations for high risk breast cancer genes: a modelling study
Authors
Charlotte Warren-Gash
Mark Kroese
Hilary Burton
Paul Pharoah
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Hereditary Cancer in Clinical Practice / Issue 1/2016
Electronic ISSN: 1897-4287
DOI
https://doi.org/10.1186/s13053-016-0052-7

Other articles of this Issue 1/2016

Hereditary Cancer in Clinical Practice 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine