Skip to main content
Top
Published in: CNS Drugs 8/2011

01-08-2011 | Leading Article

Implications of Gliotransmission for the Pharmacotherapy of CNS Disorders

Authors: Dr Daniela Rossi, Francesca Martorana, Liliana Brambilla

Published in: CNS Drugs | Issue 8/2011

Login to get access

Abstract

The seminal discovery that glial cells, particularly astrocytes, can release a number of gliotransmitters that serve as signalling molecules for the crosstalk with neighbouring cellular populations has recently changed our perception of brain functioning, as well as our view of the pathogenesis of several disorders of the CNS. Since glutamate was one of the first gliotransmitters to be identified and characterized, we tackle the mechanisms that underlie its release from astrocytes, including the Ca2+ signals underlying its efflux from astroglia, and we discuss the involvement of these events in a number of relevant physiological processes, from the modulatory control of neighbouring synapses to the regulation of blood supply to cerebral tissues. The relevance of these mechanisms strongly indicates that the contribution of glial cells and gliotransmission to the activities of the brain cannot be overlooked, and any study of CNS physiopathology needs to consider glial biology to have a comprehensive overview of brain function and dysfunction. Abnormalites in the signalling that controls the astrocytic release of glutamate are described in several experimental models of neurological disorders, for example, AIDS dementia complex, Alzheimer’s disease and cerebral ischaemia. While the modalities of glutamate release from astrocytes remain poorly understood, and this represents a major impediment to the definition of novel therapeutic strategies targeting this process at the molecular level, some key mediators deputed to the control of the glial release of this excitatory amino acid have been identified. Among these, we can mention, for instance, proinflammatory cytokines, such as tumour necrosis factor-α, and prostaglandins. Agents that are able to block the major steps of tumour necrosis factor-α and prostaglandin production and/or signalling can be proposed as novel therapeutic targets for the treatment of these disorders.
Literature
1.
go back to reference Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 2005; 6(8): 626–40PubMedCrossRef Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 2005; 6(8): 626–40PubMedCrossRef
2.
go back to reference Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 2009; 32(8): 421–31PubMedCrossRef Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 2009; 32(8): 421–31PubMedCrossRef
3.
go back to reference Halassa MM, Haydon PG. Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 2010; 72: 335–55PubMedCrossRef Halassa MM, Haydon PG. Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 2010; 72: 335–55PubMedCrossRef
4.
go back to reference Virchow R. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Zwanzig Vorlesungen gehalten während der Monate Februar, März und April 1858 im pathologischen Institut zu Berlin. 1st ed. Berlin: A. Hirschwald, 1858 Virchow R. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Zwanzig Vorlesungen gehalten während der Monate Februar, März und April 1858 im pathologischen Institut zu Berlin. 1st ed. Berlin: A. Hirschwald, 1858
5.
go back to reference Kettenmann H, Ransom BR. In: Neuroglia. Kettenmann H, Ransom BR, editors. 2nd ed. Oxford: Oxford University Press, 2005 Kettenmann H, Ransom BR. In: Neuroglia. Kettenmann H, Ransom BR, editors. 2nd ed. Oxford: Oxford University Press, 2005
6.
7.
go back to reference Tower DB, Young OM. The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. J Neurochem 1973; 20(2): 269–78PubMedCrossRef Tower DB, Young OM. The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. J Neurochem 1973; 20(2): 269–78PubMedCrossRef
8.
go back to reference Heneka MT, Rodriguez JJ, Verkhratsky A. Neuroglia in neurodegeneration. Brain Res Rev 2010; 63(1–2): 189–211PubMedCrossRef Heneka MT, Rodriguez JJ, Verkhratsky A. Neuroglia in neurodegeneration. Brain Res Rev 2010; 63(1–2): 189–211PubMedCrossRef
9.
go back to reference Hansson E, Ronnback L. Glial neuronal signalling in the central nervous system. FASEB J 2003; 17(3): 341–8PubMedCrossRef Hansson E, Ronnback L. Glial neuronal signalling in the central nervous system. FASEB J 2003; 17(3): 341–8PubMedCrossRef
10.
go back to reference Jourdain P, Bergersen LH, Bhaukaurally K, et al. Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 2007; 10(3): 331–9PubMedCrossRef Jourdain P, Bergersen LH, Bhaukaurally K, et al. Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 2007; 10(3): 331–9PubMedCrossRef
11.
go back to reference Navarrete M, Araque A. Endocannabinoids mediate neuron-astrocyte communication. Neuron 2008; 57(6): 883–93PubMedCrossRef Navarrete M, Araque A. Endocannabinoids mediate neuron-astrocyte communication. Neuron 2008; 57(6): 883–93PubMedCrossRef
12.
go back to reference Henneberger C, Papouin T, Oliet SH, et al. Long-term potentiation depends on release of D-serine from astrocytes. Nature 2010; 463(7278): 232–6PubMedCrossRef Henneberger C, Papouin T, Oliet SH, et al. Long-term potentiation depends on release of D-serine from astrocytes. Nature 2010; 463(7278): 232–6PubMedCrossRef
13.
go back to reference Suzuki A, Stern SA, Bozdagi O, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 2011; 144(5): 810–23PubMedCrossRef Suzuki A, Stern SA, Bozdagi O, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 2011; 144(5): 810–23PubMedCrossRef
14.
go back to reference Santello M, Bezzi P, Volterra A. TNFalpha controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 2011; 69(5): 988–1001PubMedCrossRef Santello M, Bezzi P, Volterra A. TNFalpha controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 2011; 69(5): 988–1001PubMedCrossRef
15.
go back to reference Halassa MM, Florian C, Fellin T, et al. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 2009; 61(2): 213–9PubMedCrossRef Halassa MM, Florian C, Fellin T, et al. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 2009; 61(2): 213–9PubMedCrossRef
16.
go back to reference Gourine AV, Kasymov V, Marina N, et al. Astrocytes control breathing through pH-dependent release of ATP. Science 2010; 329(5991): 571–5PubMedCrossRef Gourine AV, Kasymov V, Marina N, et al. Astrocytes control breathing through pH-dependent release of ATP. Science 2010; 329(5991): 571–5PubMedCrossRef
17.
go back to reference Huxtable AG, Zwicker JD, Alvares TS, et al. Glia contribute to the purinergic modulation of inspiratory rhythmgenerating networks. J Neurosci 2010; 30(11): 3947–58PubMedCrossRef Huxtable AG, Zwicker JD, Alvares TS, et al. Glia contribute to the purinergic modulation of inspiratory rhythmgenerating networks. J Neurosci 2010; 30(11): 3947–58PubMedCrossRef
18.
go back to reference Giaume C, Koulakoff A, Roux L, et al. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 2010; 11(2): 87–99PubMedCrossRef Giaume C, Koulakoff A, Roux L, et al. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 2010; 11(2): 87–99PubMedCrossRef
20.
go back to reference Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience 2004; 129(4): 1045–56PubMedCrossRef Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience 2004; 129(4): 1045–56PubMedCrossRef
21.
go back to reference Simard M, Nedergaard M. The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 2004; 129(4): 877–96PubMedCrossRef Simard M, Nedergaard M. The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 2004; 129(4): 877–96PubMedCrossRef
22.
go back to reference Giaume C, Kirchhoff F, Matute C, et al. Glia: the fulcrum of brain diseases. Cell Death Differ 2007; 14(7): 1324–35PubMedCrossRef Giaume C, Kirchhoff F, Matute C, et al. Glia: the fulcrum of brain diseases. Cell Death Differ 2007; 14(7): 1324–35PubMedCrossRef
23.
go back to reference Verkhratsky A, Parpura V. Recent advances in (patho)-physiology of astroglia. Acta Pharmacol Sin 2010; 31(9): 1044–54PubMedCrossRef Verkhratsky A, Parpura V. Recent advances in (patho)-physiology of astroglia. Acta Pharmacol Sin 2010; 31(9): 1044–54PubMedCrossRef
24.
go back to reference Verkhratsky A, Orkand RK, Kettenmann H. Glial calcium: homeostasis and signalling function. Physiol Rev 1998; 78(1): 99–141PubMed Verkhratsky A, Orkand RK, Kettenmann H. Glial calcium: homeostasis and signalling function. Physiol Rev 1998; 78(1): 99–141PubMed
25.
go back to reference Volterra A, Magistretti PJ, Haydon PG, editors. The tripartite synapse: glia in synaptic transmission. Oxford, UK: Oxford University Press, 2002 Volterra A, Magistretti PJ, Haydon PG, editors. The tripartite synapse: glia in synaptic transmission. Oxford, UK: Oxford University Press, 2002
26.
go back to reference Miller RH, Raff MC. Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. J Neurosci 1984; 4(2): 585–92PubMed Miller RH, Raff MC. Fibrous and protoplasmic astrocytes are biochemically and developmentally distinct. J Neurosci 1984; 4(2): 585–92PubMed
27.
go back to reference Bushong EA, Martone ME, Jones YZ, et al. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 2002; 22(1): 183–92PubMed Bushong EA, Martone ME, Jones YZ, et al. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 2002; 22(1): 183–92PubMed
28.
go back to reference Bushong EA, Martone ME, Ellisman MH. Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 2004; 22(2): 73–86PubMedCrossRef Bushong EA, Martone ME, Ellisman MH. Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 2004; 22(2): 73–86PubMedCrossRef
29.
go back to reference Halassa MM, Fellin T, Takano H, et al. Synaptic islands defined by the territory of a single astrocyte. J Neurosci 2007; 27(24): 6473–7PubMedCrossRef Halassa MM, Fellin T, Takano H, et al. Synaptic islands defined by the territory of a single astrocyte. J Neurosci 2007; 27(24): 6473–7PubMedCrossRef
30.
go back to reference Nedergaard M, Rodriguez JJ, Verkhratsky A. Glial calcium and diseases of the nervous system. Cell Calcium 2010; 47(2): 140–9PubMedCrossRef Nedergaard M, Rodriguez JJ, Verkhratsky A. Glial calcium and diseases of the nervous system. Cell Calcium 2010; 47(2): 140–9PubMedCrossRef
31.
go back to reference Charles AC, Merrill JE, Dirksen ER, et al. Intercellular signalling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 1991; 6(6): 983–92PubMedCrossRef Charles AC, Merrill JE, Dirksen ER, et al. Intercellular signalling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 1991; 6(6): 983–92PubMedCrossRef
32.
go back to reference Cornell-Bell AH, Finkbeiner SM, Cooper MS, et al. Glutamate induces calcium waves in cultured astrocytes: long-range glial signalling. Science 1990; 247(4941): 470–3PubMedCrossRef Cornell-Bell AH, Finkbeiner SM, Cooper MS, et al. Glutamate induces calcium waves in cultured astrocytes: long-range glial signalling. Science 1990; 247(4941): 470–3PubMedCrossRef
33.
go back to reference Aguado F, Espinosa-Parrilla JF, Carmona MA, et al. Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. J Neurosci 2002; 22(21): 9430–44PubMed Aguado F, Espinosa-Parrilla JF, Carmona MA, et al. Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. J Neurosci 2002; 22(21): 9430–44PubMed
34.
go back to reference Hirase H, Qian L, Barthó P, et al. Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol 2004; 2(4): E96PubMedCrossRef Hirase H, Qian L, Barthó P, et al. Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol 2004; 2(4): E96PubMedCrossRef
35.
go back to reference Nett WJ, Oloff SH, McCarthy KD. Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J Neurophysiol 2002; 87(1): 528–37PubMed Nett WJ, Oloff SH, McCarthy KD. Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J Neurophysiol 2002; 87(1): 528–37PubMed
36.
go back to reference Nimmerjahn A, Kirchhoff F, Kerr JN, et al. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 2004; 1(1): 31–7PubMedCrossRef Nimmerjahn A, Kirchhoff F, Kerr JN, et al. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 2004; 1(1): 31–7PubMedCrossRef
37.
go back to reference Parri HR, Gould TM, Crunelli V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 2001; 4(8): 803–12PubMedCrossRef Parri HR, Gould TM, Crunelli V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 2001; 4(8): 803–12PubMedCrossRef
38.
go back to reference Simard M, Arcuino G, Takano T, et al. Signalling at the gliovascular interface. J Neurosci 2003; 23(27): 9254–62PubMed Simard M, Arcuino G, Takano T, et al. Signalling at the gliovascular interface. J Neurosci 2003; 23(27): 9254–62PubMed
39.
go back to reference Zonta M, Angulo MC, Gobbo S, et al. Neuron-to-astrocyte signalling is central to the dynamic control of brain microcirculation. Nat Neurosci 2003; 6(1): 43–50PubMedCrossRef Zonta M, Angulo MC, Gobbo S, et al. Neuron-to-astrocyte signalling is central to the dynamic control of brain microcirculation. Nat Neurosci 2003; 6(1): 43–50PubMedCrossRef
40.
go back to reference Zonta M, Sebelin A, Gobbo S, et al. Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes. J Physiol 2003; 553 (Pt 2): 407–14PubMedCrossRef Zonta M, Sebelin A, Gobbo S, et al. Glutamate-mediated cytosolic calcium oscillations regulate a pulsatile prostaglandin release from cultured rat astrocytes. J Physiol 2003; 553 (Pt 2): 407–14PubMedCrossRef
41.
go back to reference Mulligan SJ, Mac Vicar BA. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 2004; 431(7005): 195–9PubMedCrossRef Mulligan SJ, Mac Vicar BA. Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 2004; 431(7005): 195–9PubMedCrossRef
42.
go back to reference Metea MR, Newman EA. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 2006; 26(11): 2862–70PubMedCrossRef Metea MR, Newman EA. Glial cells dilate and constrict blood vessels: a mechanism of neurovascular coupling. J Neurosci 2006; 26(11): 2862–70PubMedCrossRef
43.
go back to reference Takano T, Tian GF, Peng W, et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2006; 9(2): 260–7PubMedCrossRef Takano T, Tian GF, Peng W, et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2006; 9(2): 260–7PubMedCrossRef
44.
go back to reference Gordon GR, Choi HB, Rungta RL, et al. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 2008; 456(7223): 745–9PubMedCrossRef Gordon GR, Choi HB, Rungta RL, et al. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 2008; 456(7223): 745–9PubMedCrossRef
45.
go back to reference Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci 2007; 10(11): 1369–76PubMedCrossRef Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci 2007; 10(11): 1369–76PubMedCrossRef
46.
go back to reference Gordon GR, Mulligan SJ, MacVicar BA. Astrocyte control of the cerebrovasculature. Glia 2007; 55(12): 1214–21PubMedCrossRef Gordon GR, Mulligan SJ, MacVicar BA. Astrocyte control of the cerebrovasculature. Glia 2007; 55(12): 1214–21PubMedCrossRef
47.
go back to reference Carmignoto G, Gomez-Gonzalo M. The contribution of astrocyte signalling to neurovascular coupling. Brain Res Rev 2010; 63(1–2): 138–48PubMedCrossRef Carmignoto G, Gomez-Gonzalo M. The contribution of astrocyte signalling to neurovascular coupling. Brain Res Rev 2010; 63(1–2): 138–48PubMedCrossRef
48.
go back to reference Attwell D, Buchan AM, Charpak S, et al. Glial and neuronal control of brain blood flow. Nature 2010; 468(7321): 232–43PubMedCrossRef Attwell D, Buchan AM, Charpak S, et al. Glial and neuronal control of brain blood flow. Nature 2010; 468(7321): 232–43PubMedCrossRef
49.
go back to reference Pasti L, Volterra A, Pozzan T, et al. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 1997; 17(20): 7817–30PubMed Pasti L, Volterra A, Pozzan T, et al. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 1997; 17(20): 7817–30PubMed
50.
go back to reference Angulo MC, Kozlov AS, Charpak S, et al. Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci 2004; 24(31): 6920–7PubMedCrossRef Angulo MC, Kozlov AS, Charpak S, et al. Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci 2004; 24(31): 6920–7PubMedCrossRef
51.
go back to reference Fellin T, Pascual O, Gobbo S, et al. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 2004; 43(5): 729–43PubMedCrossRef Fellin T, Pascual O, Gobbo S, et al. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 2004; 43(5): 729–43PubMedCrossRef
52.
go back to reference Kozlov AS, Angulo MC, Audinat E, et al. Target cell-specific modulation of neuronal activity by astrocytes. Proc Natl Acad Sci U S A 2006; 103(26): 10058–63PubMedCrossRef Kozlov AS, Angulo MC, Audinat E, et al. Target cell-specific modulation of neuronal activity by astrocytes. Proc Natl Acad Sci U S A 2006; 103(26): 10058–63PubMedCrossRef
53.
go back to reference Lee CJ, Mannaioni G, Yuan H, et al. Astrocytic control of synaptic NMDA receptors. J Physiol 2007; 581 (Pt 3): 1057–81PubMedCrossRef Lee CJ, Mannaioni G, Yuan H, et al. Astrocytic control of synaptic NMDA receptors. J Physiol 2007; 581 (Pt 3): 1057–81PubMedCrossRef
54.
go back to reference Perea G, Araque A. Astrocytes potentiate transmitter release at single hippocampal synapses. Science 2007; 317(5841): 1083–6PubMedCrossRef Perea G, Araque A. Astrocytes potentiate transmitter release at single hippocampal synapses. Science 2007; 317(5841): 1083–6PubMedCrossRef
55.
go back to reference Shigetomi E, Bowser DN, Sofroniew MV, et al. Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons. J Neurosci 2008; 28(26): 6659–63PubMedCrossRef Shigetomi E, Bowser DN, Sofroniew MV, et al. Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons. J Neurosci 2008; 28(26): 6659–63PubMedCrossRef
56.
go back to reference Hamilton NB, Attwell D. Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 2010; 11(4): 227–38PubMedCrossRef Hamilton NB, Attwell D. Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 2010; 11(4): 227–38PubMedCrossRef
57.
go back to reference Fiacco TA, Agulhon C, Taves SR, et al. Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron 2007; 54(4): 611–26PubMedCrossRef Fiacco TA, Agulhon C, Taves SR, et al. Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity. Neuron 2007; 54(4): 611–26PubMedCrossRef
58.
go back to reference Agulhon C, Fiacco TA, McCarthy KD. Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signalling. Science 2010; 327(5970): 1250–4PubMedCrossRef Agulhon C, Fiacco TA, McCarthy KD. Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signalling. Science 2010; 327(5970): 1250–4PubMedCrossRef
59.
go back to reference Parpura V, Basarsky TA, Liu F, et al. Glutamate-mediated astrocyte-neuron signalling. Nature 1994; 369(6483): 744–7PubMedCrossRef Parpura V, Basarsky TA, Liu F, et al. Glutamate-mediated astrocyte-neuron signalling. Nature 1994; 369(6483): 744–7PubMedCrossRef
60.
go back to reference Bezzi P, Carmignoto G, Pasti L, et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 1998; 391(6664): 281–5PubMedCrossRef Bezzi P, Carmignoto G, Pasti L, et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 1998; 391(6664): 281–5PubMedCrossRef
61.
go back to reference Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 2000; 403(6767): 316–21PubMedCrossRef Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 2000; 403(6767): 316–21PubMedCrossRef
62.
go back to reference Duan S, Anderson CM, Keung EC, et al. P2X7 receptormediated release of excitatory amino acids from astrocytes. J Neurosci 2003; 23(4): 1320–8PubMed Duan S, Anderson CM, Keung EC, et al. P2X7 receptormediated release of excitatory amino acids from astrocytes. J Neurosci 2003; 23(4): 1320–8PubMed
63.
go back to reference Ye ZC, Wyeth MS, Baltan-Tekkok S, et al. Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 2003; 23(9): 3588–96PubMed Ye ZC, Wyeth MS, Baltan-Tekkok S, et al. Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 2003; 23(9): 3588–96PubMed
64.
go back to reference Kang J, Kang N, Lovatt D, et al. Connexin 43 hemichannels are permeable to ATP. J Neurosci 2008; 28(18): 4702–11PubMedCrossRef Kang J, Kang N, Lovatt D, et al. Connexin 43 hemichannels are permeable to ATP. J Neurosci 2008; 28(18): 4702–11PubMedCrossRef
65.
go back to reference Kimelberg HK, Goderie SK, Higman S, et al. Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci 1990; 10(5): 1583–91PubMed Kimelberg HK, Goderie SK, Higman S, et al. Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci 1990; 10(5): 1583–91PubMed
66.
go back to reference Sanzgiri RP, Araque A, Haydon PG. Prostaglandin E(2) stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells. J Neurobiol 1999; 41(2): 221–9PubMedCrossRef Sanzgiri RP, Araque A, Haydon PG. Prostaglandin E(2) stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells. J Neurobiol 1999; 41(2): 221–9PubMedCrossRef
67.
go back to reference Jeremic A, Jeftinija K, Stevanovic J, et al. ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J Neurochem 2001; 77(2): 664–75PubMedCrossRef Jeremic A, Jeftinija K, Stevanovic J, et al. ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J Neurochem 2001; 77(2): 664–75PubMedCrossRef
68.
go back to reference Bezzi P, Domercq M, Brambilla L, et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 2001; 4(7): 702–10PubMedCrossRef Bezzi P, Domercq M, Brambilla L, et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 2001; 4(7): 702–10PubMedCrossRef
69.
go back to reference Takano T, Kang J, Jaiswal JK, et al. Receptor-mediated glutamate release from volume sensitive channels in astrocytes. Proc Natl Acad Sci U S A 2005; 102(45): 16466–71PubMedCrossRef Takano T, Kang J, Jaiswal JK, et al. Receptor-mediated glutamate release from volume sensitive channels in astrocytes. Proc Natl Acad Sci U S A 2005; 102(45): 16466–71PubMedCrossRef
70.
go back to reference Kang N, Xu J, Xu Q, et al. Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J Neurophysiol 2005; 94(6): 4121–30PubMedCrossRef Kang N, Xu J, Xu Q, et al. Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J Neurophysiol 2005; 94(6): 4121–30PubMedCrossRef
71.
go back to reference Domercq M, Brambilla L, Pilati E, et al. P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-alpha and prostaglandins. J Biol Chem 2006; 281(41): 30684–96PubMedCrossRef Domercq M, Brambilla L, Pilati E, et al. P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-alpha and prostaglandins. J Biol Chem 2006; 281(41): 30684–96PubMedCrossRef
72.
go back to reference Bowser DN, Khakh BS. Two forms of single-vesicle astrocyte exocytosis imaged with total internal reflection fluorescence microscopy. Proc Natl Acad Sci U S A 2007; 104(10): 4212–7PubMedCrossRef Bowser DN, Khakh BS. Two forms of single-vesicle astrocyte exocytosis imaged with total internal reflection fluorescence microscopy. Proc Natl Acad Sci U S A 2007; 104(10): 4212–7PubMedCrossRef
73.
go back to reference Calì C, Marchaland J, Regazzi R, et al. SDF 1-alpha (CXCL12) triggers glutamate exocytosis from astrocytes on a millisecond time scale: imaging analysis at the single-vesicle level with TIRF microscopy. J Neuroimmunol 2008; 198(1–2): 82–91PubMedCrossRef Calì C, Marchaland J, Regazzi R, et al. SDF 1-alpha (CXCL12) triggers glutamate exocytosis from astrocytes on a millisecond time scale: imaging analysis at the single-vesicle level with TIRF microscopy. J Neuroimmunol 2008; 198(1–2): 82–91PubMedCrossRef
74.
go back to reference Montana V, Ni Y, Sunjara V, et al. Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 2004; 24(11): 2633–42PubMedCrossRef Montana V, Ni Y, Sunjara V, et al. Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 2004; 24(11): 2633–42PubMedCrossRef
75.
go back to reference Bezzi P, Gundersen V, Galbete JL, et al. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 2004; 7(6): 613–20PubMedCrossRef Bezzi P, Gundersen V, Galbete JL, et al. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 2004; 7(6): 613–20PubMedCrossRef
76.
go back to reference Martineau M, Galli T, Baux G, et al. Confocal imaging and tracking of the exocytotic routes for D-serine-mediated gliotransmission. Glia 2008; 56(12): 1271–84PubMedCrossRef Martineau M, Galli T, Baux G, et al. Confocal imaging and tracking of the exocytotic routes for D-serine-mediated gliotransmission. Glia 2008; 56(12): 1271–84PubMedCrossRef
77.
go back to reference Crippa D, Schenk U, Francolini M, et al. Synaptobrevin2-expressing vesicles in rat astrocytes: insights into molecular characterization, dynamics and exocytosis. J Physiol 2006; 570 (Pt 3): 567–82PubMedCrossRef Crippa D, Schenk U, Francolini M, et al. Synaptobrevin2-expressing vesicles in rat astrocytes: insights into molecular characterization, dynamics and exocytosis. J Physiol 2006; 570 (Pt 3): 567–82PubMedCrossRef
78.
go back to reference Marchaland J, Calì C, Voglmaier SM, et al. Fast sub-plasma membrane Ca2+ transients control exoendocytosis of synaptic-like microvesicles in astrocytes. J Neurosci 2008; 28(37): 9122–32PubMedCrossRef Marchaland J, Calì C, Voglmaier SM, et al. Fast sub-plasma membrane Ca2+ transients control exoendocytosis of synaptic-like microvesicles in astrocytes. J Neurosci 2008; 28(37): 9122–32PubMedCrossRef
79.
go back to reference Kreft M, Stenovec M, Rupnik M, et al. Properties of Ca(2+)-dependent exocytosis in cultured astrocytes. Glia 2004; 46(4): 437–45PubMedCrossRef Kreft M, Stenovec M, Rupnik M, et al. Properties of Ca(2+)-dependent exocytosis in cultured astrocytes. Glia 2004; 46(4): 437–45PubMedCrossRef
80.
go back to reference Zhang Q, Pangršič T, Kreft M, et al. Fusion-related release of glutamate from astrocytes. J Biol Chem 2004; 279(13): 12724–33PubMedCrossRef Zhang Q, Pangršič T, Kreft M, et al. Fusion-related release of glutamate from astrocytes. J Biol Chem 2004; 279(13): 12724–33PubMedCrossRef
81.
go back to reference Chen X, Wang L, Zhou Y, et al. ‘Kiss-and-run’ glutamate secretion in cultured and freshly isolated rat hippocampal astrocytes. J Neurosci 2005; 25(40): 9236–43PubMedCrossRef Chen X, Wang L, Zhou Y, et al. ‘Kiss-and-run’ glutamate secretion in cultured and freshly isolated rat hippocampal astrocytes. J Neurosci 2005; 25(40): 9236–43PubMedCrossRef
82.
go back to reference Zhang Q, Fukuda M, Van Bockstaele E, et al. Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci U S A 2004; 101(25): 9441–6PubMedCrossRef Zhang Q, Fukuda M, Van Bockstaele E, et al. Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci U S A 2004; 101(25): 9441–6PubMedCrossRef
83.
go back to reference Bergersen LH, Gundersen V. Morphological evidence for vesicular glutamate release from astrocytes. Neuroscience 2009; 158(1): 260–5PubMedCrossRef Bergersen LH, Gundersen V. Morphological evidence for vesicular glutamate release from astrocytes. Neuroscience 2009; 158(1): 260–5PubMedCrossRef
84.
go back to reference Kasai H. Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretory function. Trends Neurosci 1999; 22(2): 88–93PubMedCrossRef Kasai H. Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretory function. Trends Neurosci 1999; 22(2): 88–93PubMedCrossRef
85.
go back to reference Santello M, Volterra A. Synaptic modulation by astrocytes via Ca2+-dependent glutamate release. Neuroscience 2009; 158(1): 253–9PubMedCrossRef Santello M, Volterra A. Synaptic modulation by astrocytes via Ca2+-dependent glutamate release. Neuroscience 2009; 158(1): 253–9PubMedCrossRef
86.
go back to reference Perea G, Araque A. Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 2005; 25(9): 2192–203PubMedCrossRef Perea G, Araque A. Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 2005; 25(9): 2192–203PubMedCrossRef
87.
go back to reference D’Ascenzo M, Fellin T, Terunuma M, et al. mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc Natl Acad Sci U S A 2007; 104(6): 1995–2000PubMedCrossRef D’Ascenzo M, Fellin T, Terunuma M, et al. mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc Natl Acad Sci U S A 2007; 104(6): 1995–2000PubMedCrossRef
88.
go back to reference Agulhon C, Petravicz J, McMullen AB, et al. What is the role of astrocyte calcium in neurophysiology? Neuron 2008; 59(6): 932–46PubMedCrossRef Agulhon C, Petravicz J, McMullen AB, et al. What is the role of astrocyte calcium in neurophysiology? Neuron 2008; 59(6): 932–46PubMedCrossRef
90.
go back to reference Chuquet J, Hollender L, Nimchinsky EA. High-resolution in vivo imaging of the neurovascular unit during spreading depression. J Neurosci 2007; 27(15): 4036–44PubMedCrossRef Chuquet J, Hollender L, Nimchinsky EA. High-resolution in vivo imaging of the neurovascular unit during spreading depression. J Neurosci 2007; 27(15): 4036–44PubMedCrossRef
91.
go back to reference Peng X, Zhang C, Alkayed NJ, et al. Dependency of cortical functional hyperemia to forepaw stimulation on epoxygenase and nitric oxide synthase activities in rats. J Cereb Blood Flow Metab 2004; 24(5): 509–17PubMedCrossRef Peng X, Zhang C, Alkayed NJ, et al. Dependency of cortical functional hyperemia to forepaw stimulation on epoxygenase and nitric oxide synthase activities in rats. J Cereb Blood Flow Metab 2004; 24(5): 509–17PubMedCrossRef
92.
go back to reference Murphy S. Production of nitric oxide by glial cells: regulation and potential roles in the CNS. Glia 2000; 29(1): 1–13PubMedCrossRef Murphy S. Production of nitric oxide by glial cells: regulation and potential roles in the CNS. Glia 2000; 29(1): 1–13PubMedCrossRef
93.
go back to reference Rossi D, Brambilla L, Valori CF, et al. Focal degeneration of astrocytes in amyotrophic lateral sclerosis. Cell Death Differ 2008; 15(11): 1691–700PubMedCrossRef Rossi D, Brambilla L, Valori CF, et al. Focal degeneration of astrocytes in amyotrophic lateral sclerosis. Cell Death Differ 2008; 15(11): 1691–700PubMedCrossRef
94.
go back to reference Rodriguez JJ, Olabarria M, Chvatal A, et al. Astroglia in dementia and Alzheimer’s disease. Cell Death Differ 2009; 16(3): 378–85PubMedCrossRef Rodriguez JJ, Olabarria M, Chvatal A, et al. Astroglia in dementia and Alzheimer’s disease. Cell Death Differ 2009; 16(3): 378–85PubMedCrossRef
95.
go back to reference Hewett JA. Determinants of regional and local diversity within the astroglial lineage of the normal central nervous system. J Neurochem 2009; 110(6): 1717–36PubMedCrossRef Hewett JA. Determinants of regional and local diversity within the astroglial lineage of the normal central nervous system. J Neurochem 2009; 110(6): 1717–36PubMedCrossRef
96.
go back to reference Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol 2007; 28(3): 138–45PubMedCrossRef Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. Trends Immunol 2007; 28(3): 138–45PubMedCrossRef
97.
go back to reference Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 2009; 32(12): 638–47PubMedCrossRef Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 2009; 32(12): 638–47PubMedCrossRef
98.
go back to reference Perry VH, Bell MD, Brown HC, et al. Inflammation in the nervous system. Curr Opin Neurobiol 1995; 5(5): 636–41PubMedCrossRef Perry VH, Bell MD, Brown HC, et al. Inflammation in the nervous system. Curr Opin Neurobiol 1995; 5(5): 636–41PubMedCrossRef
99.
go back to reference Rossi D, Brambilla L, Valori CF, et al. Defective tumor necrosis factor-alpha-dependent control of astrocyte glutamate release in a transgenic mouse model of Alzheimer disease. J Biol Chem 2005; 280(51): 42088–96PubMedCrossRef Rossi D, Brambilla L, Valori CF, et al. Defective tumor necrosis factor-alpha-dependent control of astrocyte glutamate release in a transgenic mouse model of Alzheimer disease. J Biol Chem 2005; 280(51): 42088–96PubMedCrossRef
100.
go back to reference McArthur JC, Hoover DR, Bacellar H, et al. Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS Cohort Study. Neurology 1993; 43(11): 2245–52 McArthur JC, Hoover DR, Bacellar H, et al. Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS Cohort Study. Neurology 1993; 43(11): 2245–52
101.
go back to reference Budka H, Costanzi G, Cristina S, et al. Brain pathology induced by infection with the human immunodeficiency virus (HIV): a histological, immunocytochemical, and electron microscopical study of 100 autopsy cases. Acta Neuropathol 1987; 75(2): 185–98PubMedCrossRef Budka H, Costanzi G, Cristina S, et al. Brain pathology induced by infection with the human immunodeficiency virus (HIV): a histological, immunocytochemical, and electron microscopical study of 100 autopsy cases. Acta Neuropathol 1987; 75(2): 185–98PubMedCrossRef
102.
go back to reference Eilbott DJ, Peress N, Burger H, et al. Human immunodeficiency virus type 1 in spinal cords of acquired immunodeficiency syndrome patients with myelopathy: expression and replication in macrophages. Proc Natl Acad Sci U S A 1989; 86(9): 3337–41PubMedCrossRef Eilbott DJ, Peress N, Burger H, et al. Human immunodeficiency virus type 1 in spinal cords of acquired immunodeficiency syndrome patients with myelopathy: expression and replication in macrophages. Proc Natl Acad Sci U S A 1989; 86(9): 3337–41PubMedCrossRef
103.
go back to reference Petito CK, Roberts B. Evidence of apoptotic cell death in HIV encephalitis. Am J Pathol 1995; 146(5): 1121–30PubMed Petito CK, Roberts B. Evidence of apoptotic cell death in HIV encephalitis. Am J Pathol 1995; 146(5): 1121–30PubMed
104.
go back to reference Magnuson DS, Knudsen BE, Geiger JD, et al. Human immunodeficiency virus type 1 tat activates non-N-methyl-D-aspartate excitatory amino acid receptors and causes neurotoxicity. Ann Neurol 1995; 37(3): 373–80PubMedCrossRef Magnuson DS, Knudsen BE, Geiger JD, et al. Human immunodeficiency virus type 1 tat activates non-N-methyl-D-aspartate excitatory amino acid receptors and causes neurotoxicity. Ann Neurol 1995; 37(3): 373–80PubMedCrossRef
105.
go back to reference Kaul M, Zheng J, Okamoto S, et al. HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 2005; 12 Suppl. 1: 878–92CrossRef Kaul M, Zheng J, Okamoto S, et al. HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 2005; 12 Suppl. 1: 878–92CrossRef
106.
go back to reference Mattson MP, Haughey NJ, Nath A. Cell death in HIV dementia. Cell Death Differ 2005; 12 Suppl. 1: 893–904CrossRef Mattson MP, Haughey NJ, Nath A. Cell death in HIV dementia. Cell Death Differ 2005; 12 Suppl. 1: 893–904CrossRef
107.
go back to reference Meucci O, Miller RJ. gp120-induced neurotoxicity in hippocampal pyramidal neuron cultures: protective action of TGF-beta1. J Neurosci 1996; 16(13): 4080–8PubMed Meucci O, Miller RJ. gp120-induced neurotoxicity in hippocampal pyramidal neuron cultures: protective action of TGF-beta1. J Neurosci 1996; 16(13): 4080–8PubMed
108.
go back to reference Toggas SM, Masliah E, Mucke L. Prevention of HIV-1 gp120-induced neuronal damage in the central nervous system of transgenic mice by the NMDA receptor antagonist memantine. Brain Res 1996; 706(2): 303–7PubMedCrossRef Toggas SM, Masliah E, Mucke L. Prevention of HIV-1 gp120-induced neuronal damage in the central nervous system of transgenic mice by the NMDA receptor antagonist memantine. Brain Res 1996; 706(2): 303–7PubMedCrossRef
109.
go back to reference Kaul M, Garden GA, Lipton SA. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 2001; 410(6831): 988–94PubMedCrossRef Kaul M, Garden GA, Lipton SA. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 2001; 410(6831): 988–94PubMedCrossRef
110.
go back to reference Schifitto G, Navia BA, Yiannoutsos CT, et al. Memantine and HIV-associated cognitive impairment: a neuropsychological and proton magnetic resonance spectroscopy study. AIDS 2007; 21(14): 1877–86PubMedCrossRef Schifitto G, Navia BA, Yiannoutsos CT, et al. Memantine and HIV-associated cognitive impairment: a neuropsychological and proton magnetic resonance spectroscopy study. AIDS 2007; 21(14): 1877–86PubMedCrossRef
111.
go back to reference Zhao Y, Navia BA, Marra CM, et al. Memantine for AIDS dementia complex: open-label report of ACTG 301. HIV Clin Trials 2010; 11(1): 59–67PubMedCrossRef Zhao Y, Navia BA, Marra CM, et al. Memantine for AIDS dementia complex: open-label report of ACTG 301. HIV Clin Trials 2010; 11(1): 59–67PubMedCrossRef
112.
go back to reference Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 2006; 5(2): 160–70PubMedCrossRef Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 2006; 5(2): 160–70PubMedCrossRef
113.
go back to reference Lipton SA. Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation. Curr Drug Targets 2007; 8(5): 621–32PubMedCrossRef Lipton SA. Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation. Curr Drug Targets 2007; 8(5): 621–32PubMedCrossRef
114.
go back to reference Pearse DD, Pereira FC, Stolyarova A, et al. Inhibition of tumour necrosis factor-alpha by antisense targeting produces immunophenotypical and morphological changes in injury-activated microglia and macrophages. Eur J Neurosci 2004; 20(12): 3387–96PubMedCrossRef Pearse DD, Pereira FC, Stolyarova A, et al. Inhibition of tumour necrosis factor-alpha by antisense targeting produces immunophenotypical and morphological changes in injury-activated microglia and macrophages. Eur J Neurosci 2004; 20(12): 3387–96PubMedCrossRef
115.
go back to reference Van Eldik LJ, Thompson WL, Ralay Ranaivo H, et al. Glia proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative diseases: function-based and target-based discovery approaches. Int Rev Neurobiol 2007; 82: 277–96PubMedCrossRef Van Eldik LJ, Thompson WL, Ralay Ranaivo H, et al. Glia proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative diseases: function-based and target-based discovery approaches. Int Rev Neurobiol 2007; 82: 277–96PubMedCrossRef
116.
go back to reference Janelsins MC, Mastrangelo MA, Oddo S, et al. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer’s disease mice. J Neuroinflammation 2005; 2: 23PubMedCrossRef Janelsins MC, Mastrangelo MA, Oddo S, et al. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer’s disease mice. J Neuroinflammation 2005; 2: 23PubMedCrossRef
117.
go back to reference Kaushal V, Schlichter LC. Mechanisms of microgliamediated neurotoxicity in a new model of the stroke penumbra. J Neurosci 2008; 28(9): 2221–30PubMedCrossRef Kaushal V, Schlichter LC. Mechanisms of microgliamediated neurotoxicity in a new model of the stroke penumbra. J Neurosci 2008; 28(9): 2221–30PubMedCrossRef
118.
go back to reference Marchand F, Tsantoulas C, Singh D, et al. Effects of etanercept and minocycline in a rat model of spinal cord injury. Eur J Pain 2009; 13(7): 673–81PubMedCrossRef Marchand F, Tsantoulas C, Singh D, et al. Effects of etanercept and minocycline in a rat model of spinal cord injury. Eur J Pain 2009; 13(7): 673–81PubMedCrossRef
119.
go back to reference Tobinick E. Tumour necrosis factor modulation for treatment of Alzheimer’s disease: rationale and current evidence. CNS Drugs 2009; 23(9): 713–25PubMedCrossRef Tobinick E. Tumour necrosis factor modulation for treatment of Alzheimer’s disease: rationale and current evidence. CNS Drugs 2009; 23(9): 713–25PubMedCrossRef
120.
go back to reference Chio CC, Lin JW, Chang MW, et al. Therapeutic evaluation of etanercept in a model of traumatic brain injury. J Neurochem 2010; 115(4): 921–9PubMedCrossRef Chio CC, Lin JW, Chang MW, et al. Therapeutic evaluation of etanercept in a model of traumatic brain injury. J Neurochem 2010; 115(4): 921–9PubMedCrossRef
121.
go back to reference Clark IA, Alleva LM, Vissel B. The roles of TNF in brain dysfunction and disease. Pharmacol Ther 2010; 128(3): 519–48PubMedCrossRef Clark IA, Alleva LM, Vissel B. The roles of TNF in brain dysfunction and disease. Pharmacol Ther 2010; 128(3): 519–48PubMedCrossRef
122.
go back to reference Shen CH, Tsai RY, Shih MS, et al. Etanercept restores the antinociceptive effect of morphine and suppresses spinal neuroinflammation in morphine-tolerant rats. Anesth Analg 2010; 112(2): 454–9PubMedCrossRef Shen CH, Tsai RY, Shih MS, et al. Etanercept restores the antinociceptive effect of morphine and suppresses spinal neuroinflammation in morphine-tolerant rats. Anesth Analg 2010; 112(2): 454–9PubMedCrossRef
123.
go back to reference Lim GP, Yang F, Chu T, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 2000; 20(15): 5709–14PubMed Lim GP, Yang F, Chu T, et al. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 2000; 20(15): 5709–14PubMed
124.
go back to reference Jantzen PT, Connor KE, DiCarlo G, et al. Microglial activation and beta-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J Neurosci 2002; 22(6): 2246–54PubMed Jantzen PT, Connor KE, DiCarlo G, et al. Microglial activation and beta-amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice. J Neurosci 2002; 22(6): 2246–54PubMed
125.
go back to reference Choi JK, Jenkins BG, Carreras I, et al. Anti-inflammatory treatment in AD mice protects against neuronal pathology. Exp Neurol 2010; 223(2): 377–84PubMedCrossRef Choi JK, Jenkins BG, Carreras I, et al. Anti-inflammatory treatment in AD mice protects against neuronal pathology. Exp Neurol 2010; 223(2): 377–84PubMedCrossRef
126.
go back to reference Martin BK, Szekely C, Brandt J, et al. Cognitive function over time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol 2008; 65(7): 896–905PubMedCrossRef Martin BK, Szekely C, Brandt J, et al. Cognitive function over time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol 2008; 65(7): 896–905PubMedCrossRef
127.
go back to reference Vlad SC, Miller DR, Kowall NW, et al. Protective effects of NSAIDs on the development of Alzheimer disease. Neurology 2008; 70(19): 1672–7PubMedCrossRef Vlad SC, Miller DR, Kowall NW, et al. Protective effects of NSAIDs on the development of Alzheimer disease. Neurology 2008; 70(19): 1672–7PubMedCrossRef
128.
go back to reference Abraham NS, El-Serag HB, Hartman C, et al. Cyclooxygenase-2 selectivity of non-steroidal anti-inflammatory drugs and the risk of myocardial infarction and cerebrovascular accident. Aliment Pharmacol Ther 2007; 25(8): 913–24PubMedCrossRef Abraham NS, El-Serag HB, Hartman C, et al. Cyclooxygenase-2 selectivity of non-steroidal anti-inflammatory drugs and the risk of myocardial infarction and cerebrovascular accident. Aliment Pharmacol Ther 2007; 25(8): 913–24PubMedCrossRef
129.
go back to reference Andersohn F, Schade R, Suissa S, et al. Cyclooxygenase-2 selective nonsteroidal anti-inflammatory drugs and the risk of ischemic stroke: a nested case-control study. Stroke 2006; 37(7): 1725–30PubMedCrossRef Andersohn F, Schade R, Suissa S, et al. Cyclooxygenase-2 selective nonsteroidal anti-inflammatory drugs and the risk of ischemic stroke: a nested case-control study. Stroke 2006; 37(7): 1725–30PubMedCrossRef
130.
go back to reference Chen LC, Ashcroft DM. Do selective COX-2 inhibitors increase the risk of cerebrovascular events? A meta-analysis of randomized controlled trials. J Clin Pharm Ther 2006; 31(6): 565–76PubMedCrossRef Chen LC, Ashcroft DM. Do selective COX-2 inhibitors increase the risk of cerebrovascular events? A meta-analysis of randomized controlled trials. J Clin Pharm Ther 2006; 31(6): 565–76PubMedCrossRef
131.
go back to reference Andreasson K. Emerging roles of PGE2 receptors in models of neurological disease. Prostaglandins Other Lipid Mediat 2010; 91(3–4): 104–12PubMedCrossRef Andreasson K. Emerging roles of PGE2 receptors in models of neurological disease. Prostaglandins Other Lipid Mediat 2010; 91(3–4): 104–12PubMedCrossRef
132.
go back to reference Ahmad AS, Saleem S, Ahmad M, et al. Prostaglandin EP1 receptor contributes to excitotoxicity and focal ischemic brain damage. Toxicol Sci 2006; 89(1): 265–70PubMedCrossRef Ahmad AS, Saleem S, Ahmad M, et al. Prostaglandin EP1 receptor contributes to excitotoxicity and focal ischemic brain damage. Toxicol Sci 2006; 89(1): 265–70PubMedCrossRef
133.
go back to reference Kawano T, Anrather J, Zhou P, et al. Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med 2006; 12(2): 225–9PubMedCrossRef Kawano T, Anrather J, Zhou P, et al. Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med 2006; 12(2): 225–9PubMedCrossRef
134.
go back to reference Abe T, Kunz A, Shimamura M, et al. The neuroprotective effect of prostaglandin E2 EP1 receptor inhibition has a wide therapeutic window, is sustained in time and is not sexually dimorphic. J Cereb Blood Flow Metab 2009; 29(1): 66–72PubMedCrossRef Abe T, Kunz A, Shimamura M, et al. The neuroprotective effect of prostaglandin E2 EP1 receptor inhibition has a wide therapeutic window, is sustained in time and is not sexually dimorphic. J Cereb Blood Flow Metab 2009; 29(1): 66–72PubMedCrossRef
135.
go back to reference Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120(3): 885–90PubMedCrossRef Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120(3): 885–90PubMedCrossRef
136.
go back to reference Cummings BJ, Pike CJ, Shankle R, et al. Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer’s disease. Neurobiol Aging 1996; 17(6): 921–33PubMedCrossRef Cummings BJ, Pike CJ, Shankle R, et al. Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer’s disease. Neurobiol Aging 1996; 17(6): 921–33PubMedCrossRef
137.
go back to reference Naslund J, Haroutunian V, Mohs R, et al. Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 2000; 283(12): 1571–7PubMedCrossRef Naslund J, Haroutunian V, Mohs R, et al. Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 2000; 283(12): 1571–7PubMedCrossRef
138.
go back to reference Bussiere T, Friend PD, Sadeghi N, et al. Stereologic assessment of the total cortical volume occupied by amyloid deposits and its relationship with cognitive status in aging and Alzheimer’s disease. Neuroscience 2002; 112(1): 75–91PubMedCrossRef Bussiere T, Friend PD, Sadeghi N, et al. Stereologic assessment of the total cortical volume occupied by amyloid deposits and its relationship with cognitive status in aging and Alzheimer’s disease. Neuroscience 2002; 112(1): 75–91PubMedCrossRef
139.
140.
go back to reference LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 2002; 3(11): 862–72PubMedCrossRef LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 2002; 3(11): 862–72PubMedCrossRef
141.
go back to reference Busche MA, Eichhoff G, Adelsberger H, et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 2008; 321(5896): 1686–9PubMedCrossRef Busche MA, Eichhoff G, Adelsberger H, et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science 2008; 321(5896): 1686–9PubMedCrossRef
142.
go back to reference Kuchibhotla KV, Lattarulo CR, Hyman BT, et al. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 2009; 323(5918): 1211–5PubMedCrossRef Kuchibhotla KV, Lattarulo CR, Hyman BT, et al. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 2009; 323(5918): 1211–5PubMedCrossRef
143.
go back to reference Takano T, Han X, Deane R, et al. Two-photon imaging of astrocytic Ca2+ signalling and the microvasculature in experimental mice models of Alzheimer’s disease. Ann N Y Acad Sci 2007; 1097: 40–50PubMedCrossRef Takano T, Han X, Deane R, et al. Two-photon imaging of astrocytic Ca2+ signalling and the microvasculature in experimental mice models of Alzheimer’s disease. Ann N Y Acad Sci 2007; 1097: 40–50PubMedCrossRef
144.
go back to reference Abramov AY, Canevari L, Duchen MR. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci 2003; 23(12): 5088–95PubMed Abramov AY, Canevari L, Duchen MR. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci 2003; 23(12): 5088–95PubMed
145.
go back to reference Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 2006; 12(9): 1005–15PubMed Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 2006; 12(9): 1005–15PubMed
146.
go back to reference McGeer PL, McGeer EG. Local neuroinflammation and the progression of Alzheimer’s disease. J Neurovirol 2002; 8(6): 529–38PubMedCrossRef McGeer PL, McGeer EG. Local neuroinflammation and the progression of Alzheimer’s disease. J Neurovirol 2002; 8(6): 529–38PubMedCrossRef
147.
go back to reference Ralay Ranaivo H, Craft JM, Hu W, et al. Glia as a therapeutic target: selective suppression of human amyloid-beta-induced upregulation of brain proinflammatory cytokine production attenuates neurodegeneration. J Neurosci 2006; 26(2): 662–70PubMedCrossRef Ralay Ranaivo H, Craft JM, Hu W, et al. Glia as a therapeutic target: selective suppression of human amyloid-beta-induced upregulation of brain proinflammatory cytokine production attenuates neurodegeneration. J Neurosci 2006; 26(2): 662–70PubMedCrossRef
148.
go back to reference Giuliani F, Vernay A, Leuba G, et al. Decreased behavioral impairments in an Alzheimer mice model by interfering with TNF-alpha metabolism. Brain Res Bull 2009; 80(4–5): 302–8PubMedCrossRef Giuliani F, Vernay A, Leuba G, et al. Decreased behavioral impairments in an Alzheimer mice model by interfering with TNF-alpha metabolism. Brain Res Bull 2009; 80(4–5): 302–8PubMedCrossRef
149.
go back to reference Zhao M, Cribbs DH, Anderson AJ, et al. The induction of the TNFalpha death domain signalling pathway in Alzheimer’s disease brain. Neurochem Res 2003; 28(2): 307–18PubMedCrossRef Zhao M, Cribbs DH, Anderson AJ, et al. The induction of the TNFalpha death domain signalling pathway in Alzheimer’s disease brain. Neurochem Res 2003; 28(2): 307–18PubMedCrossRef
150.
go back to reference Del Villar K, Miller CA. Down-regulation of DENN/ MADD, a TNF receptor binding protein, correlates with neuronal cell death in Alzheimer’s disease brain and hippocampal neurons. Proc Natl Acad Sci U S A 2004; 101(12): 4210–5PubMedCrossRef Del Villar K, Miller CA. Down-regulation of DENN/ MADD, a TNF receptor binding protein, correlates with neuronal cell death in Alzheimer’s disease brain and hippocampal neurons. Proc Natl Acad Sci U S A 2004; 101(12): 4210–5PubMedCrossRef
151.
go back to reference Beattie EC, Stellwagen D, Morishita W, et al. Control of synaptic strength by glial TNFalpha. Science 2002; 295(5563): 2282–5PubMedCrossRef Beattie EC, Stellwagen D, Morishita W, et al. Control of synaptic strength by glial TNFalpha. Science 2002; 295(5563): 2282–5PubMedCrossRef
152.
go back to reference Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-alpha. Nature 2006; 440(7087): 1054–9PubMedCrossRef Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-alpha. Nature 2006; 440(7087): 1054–9PubMedCrossRef
153.
go back to reference Kaneko M, Stellwagen D, Malenka RC, et al. Tumor necrosis factor-alpha mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 2008; 58(5): 673–80PubMedCrossRef Kaneko M, Stellwagen D, Malenka RC, et al. Tumor necrosis factor-alpha mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 2008; 58(5): 673–80PubMedCrossRef
154.
go back to reference Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999; 79(4): 1431–568PubMed Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999; 79(4): 1431–568PubMed
155.
go back to reference Nedergaard M. Neuronal injury in the infarct border: a neuropathological study in the rat. Acta Neuropathol 1987; 73(3): 267–74PubMedCrossRef Nedergaard M. Neuronal injury in the infarct border: a neuropathological study in the rat. Acta Neuropathol 1987; 73(3): 267–74PubMedCrossRef
156.
go back to reference Nedergaard M, Astrup J, Klinken L. Cell density and cortex thickness in the border zone surrounding old infarcts in the human brain. Stroke 1984; 15(6): 1033–9PubMedCrossRef Nedergaard M, Astrup J, Klinken L. Cell density and cortex thickness in the border zone surrounding old infarcts in the human brain. Stroke 1984; 15(6): 1033–9PubMedCrossRef
157.
go back to reference Rossi DJ, Brady JD, Mohr C. Astrocyte metabolism and signalling during brain ischemia. Nat Neurosci 2007; 10(11): 1377–86PubMedCrossRef Rossi DJ, Brady JD, Mohr C. Astrocyte metabolism and signalling during brain ischemia. Nat Neurosci 2007; 10(11): 1377–86PubMedCrossRef
158.
go back to reference Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 1990; 13: 171–82PubMedCrossRef Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 1990; 13: 171–82PubMedCrossRef
159.
go back to reference Hansen AJ, Nedergaard M. Brain ion homeostasis in cerebral ischemia. Neurochem Pathol 1988; 9: 195–209PubMed Hansen AJ, Nedergaard M. Brain ion homeostasis in cerebral ischemia. Neurochem Pathol 1988; 9: 195–209PubMed
160.
go back to reference Silver IA, Deas J, Erecinska M. Ion homeostasis in brain cells: differences in intracellular ion responses to energy limitation between cultured neurons and glial cells. Neuroscience 1997; 78(2): 589–601PubMedCrossRef Silver IA, Deas J, Erecinska M. Ion homeostasis in brain cells: differences in intracellular ion responses to energy limitation between cultured neurons and glial cells. Neuroscience 1997; 78(2): 589–601PubMedCrossRef
161.
go back to reference Mies G, Kohno K, Hossmann KA. Prevention of peri-infarct direct current shifts with glutamate antagonist NBQX following occlusion of the middle cerebral artery in the rat. J Cereb Blood Flow Metab 1994; 14(5): 802–7PubMedCrossRef Mies G, Kohno K, Hossmann KA. Prevention of peri-infarct direct current shifts with glutamate antagonist NBQX following occlusion of the middle cerebral artery in the rat. J Cereb Blood Flow Metab 1994; 14(5): 802–7PubMedCrossRef
162.
go back to reference Phillis JW, Smith-Barbour M, O’Regan MH. Changes in extracellular amino acid neurotransmitters and purines during and following ischemias of different durations in the rat cerebral cortex. Neurochem Int 1996; 29(2): 115–20PubMedCrossRef Phillis JW, Smith-Barbour M, O’Regan MH. Changes in extracellular amino acid neurotransmitters and purines during and following ischemias of different durations in the rat cerebral cortex. Neurochem Int 1996; 29(2): 115–20PubMedCrossRef
163.
go back to reference Higuchi T, Takeda Y, Hashimoto M, et al. Dynamic changes in cortical NADH fluorescence and direct current potential in rat focal ischemia: relationship between propagation of recurrent depolarization and growth of the ischemic core. J Cereb Blood Flow Metab 2002; 22(1): 71–9PubMedCrossRef Higuchi T, Takeda Y, Hashimoto M, et al. Dynamic changes in cortical NADH fluorescence and direct current potential in rat focal ischemia: relationship between propagation of recurrent depolarization and growth of the ischemic core. J Cereb Blood Flow Metab 2002; 22(1): 71–9PubMedCrossRef
164.
go back to reference Xie M, Wang W, Kimelberg HK, et al. Oxygen and glucose deprivation-induced changes in astrocyte membrane potential and their underlying mechanisms in acute rat hippocampal slices. J Cereb Blood Flow Metab 2008; 28(3): 456–67PubMedCrossRef Xie M, Wang W, Kimelberg HK, et al. Oxygen and glucose deprivation-induced changes in astrocyte membrane potential and their underlying mechanisms in acute rat hippocampal slices. J Cereb Blood Flow Metab 2008; 28(3): 456–67PubMedCrossRef
165.
go back to reference Duffy S, MacVicar BA. In vitro ischemia promotes calcium influx and intracellular calcium release in hippocampal astrocytes. J Neurosci 1996; 16(1): 71–81PubMed Duffy S, MacVicar BA. In vitro ischemia promotes calcium influx and intracellular calcium release in hippocampal astrocytes. J Neurosci 1996; 16(1): 71–81PubMed
166.
go back to reference Budd SL, Lipton SA. Calcium tsunamis: do astrocytes transmit cell death messages via gap junctions during ischemia? Nat Neurosci 1998; 1(6): 431–2PubMedCrossRef Budd SL, Lipton SA. Calcium tsunamis: do astrocytes transmit cell death messages via gap junctions during ischemia? Nat Neurosci 1998; 1(6): 431–2PubMedCrossRef
167.
168.
go back to reference Ding S, Wang T, Cui W, et al. Photothrombosis ischemia stimulates a sustained astrocytic Ca2+ signalling in vivo. Glia 2009; 57(7): 767–76PubMedCrossRef Ding S, Wang T, Cui W, et al. Photothrombosis ischemia stimulates a sustained astrocytic Ca2+ signalling in vivo. Glia 2009; 57(7): 767–76PubMedCrossRef
169.
go back to reference Juranyi Z, Sperlagh B, Vizi ES. Involvement of P2 purinoceptors and the nitric oxide pathway in [3H]purine outflow evoked by short-term hypoxia and hypoglycemia in rat hippocampal slices. Brain Res 1999; 823(1–2): 183–90PubMedCrossRef Juranyi Z, Sperlagh B, Vizi ES. Involvement of P2 purinoceptors and the nitric oxide pathway in [3H]purine outflow evoked by short-term hypoxia and hypoglycemia in rat hippocampal slices. Brain Res 1999; 823(1–2): 183–90PubMedCrossRef
170.
go back to reference Melani A, Turchi D, Vannucchi MG, et al. ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia. Neurochem Int 2005; 47(6): 442–8PubMedCrossRef Melani A, Turchi D, Vannucchi MG, et al. ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia. Neurochem Int 2005; 47(6): 442–8PubMedCrossRef
171.
go back to reference Fellin T, Pozzan T, Carmignoto G. Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J Biol Chem 2006; 281(7): 4274–84PubMedCrossRef Fellin T, Pozzan T, Carmignoto G. Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J Biol Chem 2006; 281(7): 4274–84PubMedCrossRef
172.
go back to reference Oliveira JF, Riedel T, Leichsenring A, et al. Rodent cortical astroglia express in situ functional P2X7 receptors sensing pathologically high ATP concentrations. Cereb Cortex 2010; 21(4): 806–20PubMedCrossRef Oliveira JF, Riedel T, Leichsenring A, et al. Rodent cortical astroglia express in situ functional P2X7 receptors sensing pathologically high ATP concentrations. Cereb Cortex 2010; 21(4): 806–20PubMedCrossRef
173.
go back to reference Rothstein JD, Dykes-Hoberg M, Pardo CA, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996; 16(3): 675–86PubMedCrossRef Rothstein JD, Dykes-Hoberg M, Pardo CA, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996; 16(3): 675–86PubMedCrossRef
174.
go back to reference Trendelenburg G, Dirnagl U. Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia 2005; 50(4): 307–20PubMedCrossRef Trendelenburg G, Dirnagl U. Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia 2005; 50(4): 307–20PubMedCrossRef
175.
go back to reference Kimelberg HK. Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 2005; 50(4): 389–97PubMedCrossRef Kimelberg HK. Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 2005; 50(4): 389–97PubMedCrossRef
176.
go back to reference Dawson DA, Wadsworth G, Palmer AM. A comparative assessment of the efficacy and side-effect liability of neuroprotective compounds in experimental stroke. Brain Res 2001; 892(2): 344–50PubMedCrossRef Dawson DA, Wadsworth G, Palmer AM. A comparative assessment of the efficacy and side-effect liability of neuroprotective compounds in experimental stroke. Brain Res 2001; 892(2): 344–50PubMedCrossRef
177.
go back to reference Devuyst G, Bogousslavsky J. Update on recent progress in drug treatment for acute ischemic stroke. J Neurol 2001; 248(9): 735–42PubMedCrossRef Devuyst G, Bogousslavsky J. Update on recent progress in drug treatment for acute ischemic stroke. J Neurol 2001; 248(9): 735–42PubMedCrossRef
178.
go back to reference Wang CX, Shuaib A. Involvement of inflammatory cytokines in central nervous system injury. Prog Neurobiol 2002; 67(2): 161–72PubMedCrossRef Wang CX, Shuaib A. Involvement of inflammatory cytokines in central nervous system injury. Prog Neurobiol 2002; 67(2): 161–72PubMedCrossRef
179.
go back to reference Barone FC, Arvin B, White RF, et al. Tumor necrosis factor-alpha: a mediator of focal ischemic brain injury. Stroke 1997; 28(6): 1233–44PubMedCrossRef Barone FC, Arvin B, White RF, et al. Tumor necrosis factor-alpha: a mediator of focal ischemic brain injury. Stroke 1997; 28(6): 1233–44PubMedCrossRef
180.
go back to reference Tobinick E. Rapid improvement of chronic stroke deficits after perispinal etanercept: three consecutive cases. CNS Drugs 2011; 25(2): 145–55PubMedCrossRef Tobinick E. Rapid improvement of chronic stroke deficits after perispinal etanercept: three consecutive cases. CNS Drugs 2011; 25(2): 145–55PubMedCrossRef
181.
go back to reference Candelario-Jalil E, González-Falcón A, García-Cabrera M, et al. Wide therapeutic time window for nimesulide neuroprotection in a model of transient focal cerebral ischemia in the rat. Brain Res 2004; 1007(1–2): 98–108PubMedCrossRef Candelario-Jalil E, González-Falcón A, García-Cabrera M, et al. Wide therapeutic time window for nimesulide neuroprotection in a model of transient focal cerebral ischemia in the rat. Brain Res 2004; 1007(1–2): 98–108PubMedCrossRef
182.
go back to reference Candelario-Jalil E, González-Falcón A, García-Cabrera M, et al. Post-ischaemic treatment with the cyclooxygenase-2 inhibitor nimesulide reduces blood-brain barrier disruption and leukocyte infiltration following transient focal cerebral ischaemia in rats. J Neurochem 2007; 100(4): 1108–20PubMedCrossRef Candelario-Jalil E, González-Falcón A, García-Cabrera M, et al. Post-ischaemic treatment with the cyclooxygenase-2 inhibitor nimesulide reduces blood-brain barrier disruption and leukocyte infiltration following transient focal cerebral ischaemia in rats. J Neurochem 2007; 100(4): 1108–20PubMedCrossRef
183.
go back to reference Nakayama M, Uchimura K, Zhu RL, et al. Cyclooxygenase-2 inhibition prevents delayed death of CA1 hippocampal neurons following global ischemia. Proc Natl Acad Sci U S A 1998; 95(18): 10954–9PubMedCrossRef Nakayama M, Uchimura K, Zhu RL, et al. Cyclooxygenase-2 inhibition prevents delayed death of CA1 hippocampal neurons following global ischemia. Proc Natl Acad Sci U S A 1998; 95(18): 10954–9PubMedCrossRef
184.
go back to reference Yamazaki K, Endo T, Kitajima Y, et al. Elevation of both cyclooxygenase-2 and prostaglandin E2 receptor EP3 expressions in rat placenta after uterine artery ischemiareperfusion. Placenta 2006; 27(4–5): 395–401PubMedCrossRef Yamazaki K, Endo T, Kitajima Y, et al. Elevation of both cyclooxygenase-2 and prostaglandin E2 receptor EP3 expressions in rat placenta after uterine artery ischemiareperfusion. Placenta 2006; 27(4–5): 395–401PubMedCrossRef
185.
go back to reference Ahmad M, Ahmad AS, Zhuang H, et al. Stimulation of prostaglandin E2-EP3 receptors exacerbates stroke and excitotoxic injury. J Neuroimmunol 2007; 184(1–2): 172–9PubMedCrossRef Ahmad M, Ahmad AS, Zhuang H, et al. Stimulation of prostaglandin E2-EP3 receptors exacerbates stroke and excitotoxic injury. J Neuroimmunol 2007; 184(1–2): 172–9PubMedCrossRef
186.
go back to reference Ahmad AS, Yun YT, Ahmad M, et al. Selective blockade of PGE2 EP1 receptor protects brain against experimental ischemia and excitotoxicity, and hippocampal slice cultures against oxygen-glucose deprivation. Neurotox Res 2008; 14(4): 343–51PubMedCrossRef Ahmad AS, Yun YT, Ahmad M, et al. Selective blockade of PGE2 EP1 receptor protects brain against experimental ischemia and excitotoxicity, and hippocampal slice cultures against oxygen-glucose deprivation. Neurotox Res 2008; 14(4): 343–51PubMedCrossRef
187.
go back to reference Liu D, Wu L, Breyer R, et al. Neuroprotection by the PGE2 EP2 receptor in permanent focal cerebral ischemia. Ann Neurol 2005; 57(5): 758–61PubMedCrossRef Liu D, Wu L, Breyer R, et al. Neuroprotection by the PGE2 EP2 receptor in permanent focal cerebral ischemia. Ann Neurol 2005; 57(5): 758–61PubMedCrossRef
188.
go back to reference McCullough L, Wu L, Haughey N, et al. Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J Neurosci 2004; 24(1): 257–68PubMedCrossRef McCullough L, Wu L, Haughey N, et al. Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J Neurosci 2004; 24(1): 257–68PubMedCrossRef
189.
go back to reference Ahmad AS, Ahmad M, de Brum-Fernandes AJ, et al. Prostaglandin EP4 receptor agonist protects against acute neurotoxicity. Brain Res 2005; 1066(1–2): 71–7PubMedCrossRef Ahmad AS, Ahmad M, de Brum-Fernandes AJ, et al. Prostaglandin EP4 receptor agonist protects against acute neurotoxicity. Brain Res 2005; 1066(1–2): 71–7PubMedCrossRef
190.
go back to reference Li J, Liang X, Wang Q, et al. Misoprostol, an anti-ulcer agent and PGE2 receptor agonist, protects against cerebral ischemia. Neurosci Lett 2008; 438(2): 210–5PubMedCrossRef Li J, Liang X, Wang Q, et al. Misoprostol, an anti-ulcer agent and PGE2 receptor agonist, protects against cerebral ischemia. Neurosci Lett 2008; 438(2): 210–5PubMedCrossRef
191.
go back to reference Tian GF, Azmi H, Takano T, et al. An astrocytic basis of epilepsy. Nat Med 2005; 11(9): 973–81PubMed Tian GF, Azmi H, Takano T, et al. An astrocytic basis of epilepsy. Nat Med 2005; 11(9): 973–81PubMed
192.
go back to reference Fellin T, Gomez-Gonzalo M, Gobbo S, et al. Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices. J Neurosci 2006; 26(36): 9312–22PubMedCrossRef Fellin T, Gomez-Gonzalo M, Gobbo S, et al. Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices. J Neurosci 2006; 26(36): 9312–22PubMedCrossRef
193.
go back to reference Ding S, Fellin T, Zhu Y, et al. Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus. J Neurosci 2007; 27(40): 10674–84PubMedCrossRef Ding S, Fellin T, Zhu Y, et al. Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus. J Neurosci 2007; 27(40): 10674–84PubMedCrossRef
194.
go back to reference Gomez-Gonzalo M, Losi G, Chiavegato A, et al. An excitatory loop with astrocytes contributes to drive neurons to seizure threshold. PLoS Biol 2010; 8(4): e1000352PubMedCrossRef Gomez-Gonzalo M, Losi G, Chiavegato A, et al. An excitatory loop with astrocytes contributes to drive neurons to seizure threshold. PLoS Biol 2010; 8(4): e1000352PubMedCrossRef
195.
go back to reference Thrane AS, Rappold PM, Fujita T, et al. Critical role of aquaporin-4 (AQP4) in astrocytic Ca2+ signalling events elicited by cerebral edema. Proc Natl Acad Sci U S A 2011; 108(2): 846–51PubMedCrossRef Thrane AS, Rappold PM, Fujita T, et al. Critical role of aquaporin-4 (AQP4) in astrocytic Ca2+ signalling events elicited by cerebral edema. Proc Natl Acad Sci U S A 2011; 108(2): 846–51PubMedCrossRef
Metadata
Title
Implications of Gliotransmission for the Pharmacotherapy of CNS Disorders
Authors
Dr Daniela Rossi
Francesca Martorana
Liliana Brambilla
Publication date
01-08-2011
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 8/2011
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.2165/11593090-000000000-00000

Other articles of this Issue 8/2011

CNS Drugs 8/2011 Go to the issue

Adis Drug Evaluation

Rotigotine Transdermal Patch

Adis Drug Evaluation

Fingolimod