Skip to main content
Top
Published in: Journal of Neural Transmission 10/2016

01-10-2016 | Psychiatry and Preclinical Psychiatric Studies - Review Article

Impaired synaptic plasticity in RASopathies: a mini-review

Authors: Florian Mainberger, Susanne Langer, Volker Mall, Nikolai H. Jung

Published in: Journal of Neural Transmission | Issue 10/2016

Login to get access

Abstract

Synaptic plasticity in the form of long-term potentiation (LTP) and long-term depression (LTD) is considered to be the neurophysiological correlate of learning and memory. Impairments are discussed to be one of the underlying pathophysiological mechanisms of developmental disorders. In so-called RASopathies [e.g., neurofibromatosis 1 (NF1)], neurocognitive impairments are frequent and are affected by components of the RAS pathway which lead to impairments in synaptic plasticity. Transcranial magnetic stimulation (TMS) provides a non-invasive method to investigate synaptic plasticity in humans. Here, we review studies using TMS to evaluate synaptic plasticity in patients with RASopathies. Patients with NF1 and Noonan syndrome (NS) showed reduced cortical LTP-like synaptic plasticity. In contrast, increased LTP-like synaptic plasticity has been shown in Costello syndrome. Notably, lovastatin normalized impaired LTP-like plasticity and increased intracortical inhibition in patients with NF1. TMS has been shown to be a safe and efficient method to investigate synaptic plasticity and intracortical inhibition in patients with RASopathies. Deeper insights in impairments of synaptic plasticity in RASopathies could help to develop new options for the therapy of learning deficits in these patients.
Literature
go back to reference Acosta MT, Kardel PG, Walsh KS, Rosenbaum KN, Gioia GA, Packer RJ (2011) Lovastatin as treatment for neurocognitive deficits in neurofibromatosis type 1: phase I study. Pediatr Neurol 45(4):241–245CrossRefPubMed Acosta MT, Kardel PG, Walsh KS, Rosenbaum KN, Gioia GA, Packer RJ (2011) Lovastatin as treatment for neurocognitive deficits in neurofibromatosis type 1: phase I study. Pediatr Neurol 45(4):241–245CrossRefPubMed
go back to reference Bagnato S, Agostino R, Modugno N, Quartarone A, Berardelli A (2006) Plasticity of the motor cortex in Parkinson’s disease patients on and off therapy. Mov Disord Off J Mov Disord Soc 21(5):639–645. doi:10.1002/mds.20778 CrossRef Bagnato S, Agostino R, Modugno N, Quartarone A, Berardelli A (2006) Plasticity of the motor cortex in Parkinson’s disease patients on and off therapy. Mov Disord Off J Mov Disord Soc 21(5):639–645. doi:10.​1002/​mds.​20778 CrossRef
go back to reference Berardelli A, Rothwell JC, Hallett M, Thompson PD, Manfredi M, Marsden CD (1998) The pathophysiology of primary dystonia. Brain 121(Pt 7):1195–1212CrossRefPubMed Berardelli A, Rothwell JC, Hallett M, Thompson PD, Manfredi M, Marsden CD (1998) The pathophysiology of primary dystonia. Brain 121(Pt 7):1195–1212CrossRefPubMed
go back to reference Bezniakow N, Gos M, Obersztyn E (2014) The RASopathies as an example of RAS/MAPK pathway disturbances—clinical presentation and molecular pathogenesis of selected syndromes. Dev Period Med 18(3):285–296PubMed Bezniakow N, Gos M, Obersztyn E (2014) The RASopathies as an example of RAS/MAPK pathway disturbances—clinical presentation and molecular pathogenesis of selected syndromes. Dev Period Med 18(3):285–296PubMed
go back to reference Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1):18–41CrossRefPubMed Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1):18–41CrossRefPubMed
go back to reference Classen J, Wolters A, Stefan K, Wycislo M, Sandbrink F, Schmidt A, Kunesch E (2004) Paired associative stimulation. Suppl Clin Neurophysiol 57:563–569CrossRefPubMed Classen J, Wolters A, Stefan K, Wycislo M, Sandbrink F, Schmidt A, Kunesch E (2004) Paired associative stimulation. Suppl Clin Neurophysiol 57:563–569CrossRefPubMed
go back to reference Costa RM, Silva AJ (2002) Molecular and cellular mechanisms underlying the cognitive deficits associated with neurofibromatosis 1. J Child Neurol 17(8):622–626CrossRefPubMed Costa RM, Silva AJ (2002) Molecular and cellular mechanisms underlying the cognitive deficits associated with neurofibromatosis 1. J Child Neurol 17(8):622–626CrossRefPubMed
go back to reference Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, Kucherlapati R, Jacks T, Silva AJ (2002) Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415(6871):526–530CrossRefPubMed Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, Kucherlapati R, Jacks T, Silva AJ (2002) Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature 415(6871):526–530CrossRefPubMed
go back to reference Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y, Gutmann DH, Parada LF, Mody I, Silva AJ (2008) Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 135(3):549–560CrossRefPubMedPubMedCentral Cui Y, Costa RM, Murphy GG, Elgersma Y, Zhu Y, Gutmann DH, Parada LF, Mody I, Silva AJ (2008) Neurofibromin regulation of ERK signaling modulates GABA release and learning. Cell 135(3):549–560CrossRefPubMedPubMedCentral
go back to reference Delvendahl I, Kuhnke NG, Jung NH, Mainberger F, Cronjaeger M, Unterrainer J, Hauschke D, Mall V (2011) The time course of motor cortex plasticity after spaced motor practice. Brain Stimul 4(3):156–164CrossRefPubMed Delvendahl I, Kuhnke NG, Jung NH, Mainberger F, Cronjaeger M, Unterrainer J, Hauschke D, Mall V (2011) The time course of motor cortex plasticity after spaced motor practice. Brain Stimul 4(3):156–164CrossRefPubMed
go back to reference Fierro B, Piazza A, Brighina F, La Bua V, Buffa D, Oliveri M (2001) Modulation of intracortical inhibition induced by low- and high-frequency repetitive transcranial magnetic stimulation. Exp Brain Res 138(4):452–457CrossRefPubMed Fierro B, Piazza A, Brighina F, La Bua V, Buffa D, Oliveri M (2001) Modulation of intracortical inhibition induced by low- and high-frequency repetitive transcranial magnetic stimulation. Exp Brain Res 138(4):452–457CrossRefPubMed
go back to reference Flavell SW, Greenberg ME (2008) Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci 31:563–590CrossRefPubMedPubMedCentral Flavell SW, Greenberg ME (2008) Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci 31:563–590CrossRefPubMedPubMedCentral
go back to reference Frantseva MV, Fitzgerald PB, Chen R, Moller B, Daigle M, Daskalakis ZJ (2008) Evidence for impaired long-term potentiation in schizophrenia and its relationship to motor skill learning. Cereb Cortex 18(5):990–996. doi:10.1093/cercor/bhm151 CrossRefPubMed Frantseva MV, Fitzgerald PB, Chen R, Moller B, Daigle M, Daskalakis ZJ (2008) Evidence for impaired long-term potentiation in schizophrenia and its relationship to motor skill learning. Cereb Cortex 18(5):990–996. doi:10.​1093/​cercor/​bhm151 CrossRefPubMed
go back to reference Ghilardi MF, Carbon M, Silvestri G, Dhawan V, Tagliati M, Bressman S, Ghez C, Eidelberg D (2003) Impaired sequence learning in carriers of the DYT1 dystonia mutation. Ann Neurol 54(1):102–109CrossRefPubMed Ghilardi MF, Carbon M, Silvestri G, Dhawan V, Tagliati M, Bressman S, Ghez C, Eidelberg D (2003) Impaired sequence learning in carriers of the DYT1 dystonia mutation. Ann Neurol 54(1):102–109CrossRefPubMed
go back to reference Jung NH, Janzarik WG, Delvendahl I, Munchau A, Biscaldi M, Mainberger F, Baumer T, Rauh R, Mall V (2013) Impaired induction of long-term potentiation-like plasticity in patients with high-functioning autism and Asperger syndrome. Dev Med Child Neurol 55(1):83–89. doi:10.1111/dmcn.12012 CrossRefPubMed Jung NH, Janzarik WG, Delvendahl I, Munchau A, Biscaldi M, Mainberger F, Baumer T, Rauh R, Mall V (2013) Impaired induction of long-term potentiation-like plasticity in patients with high-functioning autism and Asperger syndrome. Dev Med Child Neurol 55(1):83–89. doi:10.​1111/​dmcn.​12012 CrossRefPubMed
go back to reference Krab LC, de Goede-Bolder A, Aarsen FK, Pluijm SM, Bouman MJ, van der Geest JN, Lequin M, Catsman CE, Arts WF, Kushner SA, Silva AJ, de Zeeuw CI, Moll HA, Elgersma Y (2008) Effect of simvastatin on cognitive functioning in children with neurofibromatosis type 1: a randomized controlled trial. JAMA 300(3):287–294CrossRefPubMedPubMedCentral Krab LC, de Goede-Bolder A, Aarsen FK, Pluijm SM, Bouman MJ, van der Geest JN, Lequin M, Catsman CE, Arts WF, Kushner SA, Silva AJ, de Zeeuw CI, Moll HA, Elgersma Y (2008) Effect of simvastatin on cognitive functioning in children with neurofibromatosis type 1: a randomized controlled trial. JAMA 300(3):287–294CrossRefPubMedPubMedCentral
go back to reference Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519CrossRefPubMedPubMedCentral Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519CrossRefPubMedPubMedCentral
go back to reference Lee YS, Ehninger D, Zhou M, Oh JY, Kang M, Kwak C, Ryu HH, Butz D, Araki T, Cai Y, Balaji J, Sano Y, Nam CI, Kim HK, Kaang BK, Burger C, Neel BG, Silva AJ (2014) Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome. Nat Neurosci 17(12):1736–1743. doi:10.1038/nn.3863 CrossRefPubMedPubMedCentral Lee YS, Ehninger D, Zhou M, Oh JY, Kang M, Kwak C, Ryu HH, Butz D, Araki T, Cai Y, Balaji J, Sano Y, Nam CI, Kim HK, Kaang BK, Burger C, Neel BG, Silva AJ (2014) Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome. Nat Neurosci 17(12):1736–1743. doi:10.​1038/​nn.​3863 CrossRefPubMedPubMedCentral
go back to reference Li W, Cui Y, Kushner SA, Brown RA, Jentsch JD, Frankland PW, Cannon TD, Silva AJ (2005) The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol 15(21):1961–1967CrossRefPubMed Li W, Cui Y, Kushner SA, Brown RA, Jentsch JD, Frankland PW, Cannon TD, Silva AJ (2005) The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol 15(21):1961–1967CrossRefPubMed
go back to reference Mainberger F, Jung NH, Zenker M, Wahllander U, Freudenberg L, Langer S, Berweck S, Winkler T, Straube A, Heinen F, Granstrom S, Mautner VF, Lidzba K, Mall V (2013a) Lovastatin improves impaired synaptic plasticity and phasic alertness in patients with neurofibromatosis type 1. BMC Neurol 13:131. doi:10.1186/1471-2377-13-131 CrossRefPubMedPubMedCentral Mainberger F, Jung NH, Zenker M, Wahllander U, Freudenberg L, Langer S, Berweck S, Winkler T, Straube A, Heinen F, Granstrom S, Mautner VF, Lidzba K, Mall V (2013a) Lovastatin improves impaired synaptic plasticity and phasic alertness in patients with neurofibromatosis type 1. BMC Neurol 13:131. doi:10.​1186/​1471-2377-13-131 CrossRefPubMedPubMedCentral
go back to reference Mainberger F, Zenker M, Jung NH, Delvendahl I, Brandt A, Freudenberg L, Heinen F, Mall V (2013b) Impaired motor cortex plasticity in patients with Noonan syndrome. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 124(12):2439–2444. doi:10.1016/j.clinph.2013.04.343 CrossRef Mainberger F, Zenker M, Jung NH, Delvendahl I, Brandt A, Freudenberg L, Heinen F, Mall V (2013b) Impaired motor cortex plasticity in patients with Noonan syndrome. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 124(12):2439–2444. doi:10.​1016/​j.​clinph.​2013.​04.​343 CrossRef
go back to reference McDonnell MN, Orekhov Y, Ziemann U (2006) The role of GABAB receptors in intracortical inhibition in the human motor cortex. Exp Brain Res 173(1):86–93CrossRefPubMed McDonnell MN, Orekhov Y, Ziemann U (2006) The role of GABAB receptors in intracortical inhibition in the human motor cortex. Exp Brain Res 173(1):86–93CrossRefPubMed
go back to reference Oberman L, Ifert-Miller F, Najib U, Bashir S, Woollacott I, Gonzalez-Heydrich J, Picker J, Rotenberg A, Pascual-Leone A (2010) Transcranial magnetic stimulation provides means to assess cortical plasticity and excitability in humans with fragile × syndrome and autism spectrum disorder. Front Synaptic Neurosci 2:26. doi:10.3389/fnsyn.2010.00026 PubMedPubMedCentral Oberman L, Ifert-Miller F, Najib U, Bashir S, Woollacott I, Gonzalez-Heydrich J, Picker J, Rotenberg A, Pascual-Leone A (2010) Transcranial magnetic stimulation provides means to assess cortical plasticity and excitability in humans with fragile × syndrome and autism spectrum disorder. Front Synaptic Neurosci 2:26. doi:10.​3389/​fnsyn.​2010.​00026 PubMedPubMedCentral
go back to reference Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M (1994) Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117(Pt 4):847–858CrossRefPubMed Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M (1994) Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117(Pt 4):847–858CrossRefPubMed
go back to reference Quartarone A, Siebner HR, Rothwell JC (2006) Task-specific hand dystonia: can too much plasticity be bad for you? Trends Neurosci 29(4):192–199CrossRefPubMed Quartarone A, Siebner HR, Rothwell JC (2006) Task-specific hand dystonia: can too much plasticity be bad for you? Trends Neurosci 29(4):192–199CrossRefPubMed
go back to reference Quartarone A, Morgante F, Sant’angelo A, Rizzo V, Bagnato S, Terranova C, Siebner HR, Berardelli A, Girlanda P (2008) Abnormal plasticity of sensorimotor circuits extends beyond the affected body part in focal dystonia. J Neurol Neurosurg Psychiatry 79(9):985–990. doi:10.1136/jnnp.2007.121632 CrossRefPubMed Quartarone A, Morgante F, Sant’angelo A, Rizzo V, Bagnato S, Terranova C, Siebner HR, Berardelli A, Girlanda P (2008) Abnormal plasticity of sensorimotor circuits extends beyond the affected body part in focal dystonia. J Neurol Neurosurg Psychiatry 79(9):985–990. doi:10.​1136/​jnnp.​2007.​121632 CrossRefPubMed
go back to reference Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMSCG (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 120(12):2008–2039. doi:10.1016/j.clinph.2009.08.016 CrossRef Rossi S, Hallett M, Rossini PM, Pascual-Leone A, Safety of TMSCG (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 120(12):2008–2039. doi:10.​1016/​j.​clinph.​2009.​08.​016 CrossRef
go back to reference Shilyansky C, Karlsgodt KH, Cummings DM, Sidiropoulou K, Hardt M, James AS, Ehninger D, Bearden CE, Poirazi P, Jentsch JD, Cannon TD, Levine MS, Silva AJ (2010) Neurofibromin regulates corticostriatal inhibitory networks during working memory performance. Proc Natl Acad Sci USA 107(29):13141–13146CrossRefPubMedPubMedCentral Shilyansky C, Karlsgodt KH, Cummings DM, Sidiropoulou K, Hardt M, James AS, Ehninger D, Bearden CE, Poirazi P, Jentsch JD, Cannon TD, Levine MS, Silva AJ (2010) Neurofibromin regulates corticostriatal inhibitory networks during working memory performance. Proc Natl Acad Sci USA 107(29):13141–13146CrossRefPubMedPubMedCentral
go back to reference Silva AJ, Frankland PW, Marowitz Z, Friedman E, Laszlo GS, Cioffi D, Jacks T, Bourtchuladze R (1997) A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nat Genet 15(3):281–284CrossRefPubMed Silva AJ, Frankland PW, Marowitz Z, Friedman E, Laszlo GS, Cioffi D, Jacks T, Bourtchuladze R (1997) A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Nat Genet 15(3):281–284CrossRefPubMed
go back to reference Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123(Pt 3):572–584CrossRefPubMed Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123(Pt 3):572–584CrossRefPubMed
go back to reference Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J (2002) Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol 543(Pt 2):699–708CrossRefPubMedPubMedCentral Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J (2002) Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol 543(Pt 2):699–708CrossRefPubMedPubMedCentral
go back to reference Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5(3):173–183CrossRefPubMed Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5(3):173–183CrossRefPubMed
go back to reference van der Vaart T, Plasschaert E, Rietman AB, Renard M, Oostenbrink R, Vogels A, de Wit MC, Descheemaeker MJ, Vergouwe Y, Catsman-Berrevoets CE, Legius E, Elgersma Y, Moll HA (2013) Simvastatin for cognitive deficits and behavioural problems in patients with neurofibromatosis type 1 (NF1-SIMCODA): a randomised, placebo-controlled trial. Lancet Neurol 12(11):1076–1083. doi:10.1016/S1474-4422(13)70227-8 CrossRefPubMed van der Vaart T, Plasschaert E, Rietman AB, Renard M, Oostenbrink R, Vogels A, de Wit MC, Descheemaeker MJ, Vergouwe Y, Catsman-Berrevoets CE, Legius E, Elgersma Y, Moll HA (2013) Simvastatin for cognitive deficits and behavioural problems in patients with neurofibromatosis type 1 (NF1-SIMCODA): a randomised, placebo-controlled trial. Lancet Neurol 12(11):1076–1083. doi:10.​1016/​S1474-4422(13)70227-8 CrossRefPubMed
go back to reference Ziemann U, Ilic TV, Pauli C, Meintzschel F, Ruge D (2004) Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J Neurosci 24(7):1666–1672CrossRefPubMed Ziemann U, Ilic TV, Pauli C, Meintzschel F, Ruge D (2004) Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J Neurosci 24(7):1666–1672CrossRefPubMed
Metadata
Title
Impaired synaptic plasticity in RASopathies: a mini-review
Authors
Florian Mainberger
Susanne Langer
Volker Mall
Nikolai H. Jung
Publication date
01-10-2016
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 10/2016
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-016-1609-3

Other articles of this Issue 10/2016

Journal of Neural Transmission 10/2016 Go to the issue

Psychiatry and Preclinical Psychiatric Studies - Review article

An overview on clinical aspects in magnetic seizure therapy

Psychiatry and Preclinical Psychiatric Studies - Review Article

Transcranial direct current stimulation in children and adolescents: a comprehensive review