Skip to main content
Top
Published in: BMC Cancer 1/2009

Open Access 01-12-2009 | Research article

Impact of sex, MHC, and age of recipients on the therapeutic effect of transferred leukocytes from cancer-resistant SR/CR mice

Authors: John R Stehle Jr, Michael J Blanks, Gregory Riedlinger, Jung W Kim-Shapiro, Anne M Sanders, Jonathan M Adams, Mark C Willingham, Zheng Cui

Published in: BMC Cancer | Issue 1/2009

Login to get access

Abstract

Background

Spontaneous Regression/Complete Resistant (SR/CR) mice are resistant to cancer through a mechanism that is mediated entirely by leukocytes of innate immunity. Transfer of leukocytes from SR/CR mice can confer cancer resistance in wild-type (WT) recipients in both preventative and therapeutic settings. In the current studies, we investigated factors that may impact the efficacy and functionality of SR/CR donor leukocytes in recipients.

Results

In sex-mismatched transfers, functionality of female donor leukocytes was not affected in male recipients. In contrast, male donor leukocytes were greatly affected in the female recipients. In MHC-mismatches, recipients of different MHC backgrounds, or mice of different strains, showed a greater negative impact on donor leukocytes than sex-mismatches. The negative effects of sex-mismatch and MHC-mismatch on donor leukocytes were additive. Old donor leukocytes performed worse than young donor leukocytes in all settings including in young recipients. Young recipients were not able to revive the declining function of old donor leukocytes. However, the function of young donor leukocytes declined gradually in old recipients, suggesting that an aged environment may contain factors that are deleterious to cellular functions. The irradiation of donor leukocytes prior to transfers had a profound suppressive effect on donor leukocyte functions, possibly as a result of impaired transcription. The cryopreserving of donor leukocytes in liquid nitrogen had no apparent effect on donor leukocyte functions, except for a small loss of cell number after revival from freezing.

Conclusion

Despite the functional suppression of donor leukocytes in sex- and MHC-mismatched recipients, as well as old recipients, there was a therapeutic time period during the initial few weeks during which donor leukocytes were functional before their eventual rejection or functional decline. The eventual rejection of donor leukocytes will likely prevent donor leukocyte engraftment which would help minimize the risk of transfusion-associated graft-versus-host disease. Therefore, using leukocytes from healthy donors with high anti-cancer activity may be a feasible therapeutic concept for treating malignant diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cui Z, Willingham MC, Hicks AM, Alexander-Miller MA, Howard TD, Hawkins GA, Miller MS, Weir HM, Du W, DeLong CJ: Spontaneous regression of advanced cancer: identification of a unique genetically determined, age-dependent trait in mice. Proc Natl Acad Sci USA. 2003, 100 (11): 6682-6687. 10.1073/pnas.1031601100.CrossRefPubMedPubMedCentral Cui Z, Willingham MC, Hicks AM, Alexander-Miller MA, Howard TD, Hawkins GA, Miller MS, Weir HM, Du W, DeLong CJ: Spontaneous regression of advanced cancer: identification of a unique genetically determined, age-dependent trait in mice. Proc Natl Acad Sci USA. 2003, 100 (11): 6682-6687. 10.1073/pnas.1031601100.CrossRefPubMedPubMedCentral
2.
go back to reference Hicks AM, Riedlinger G, Willingham MC, Alexander-Miller MA, Von Kap-Herr C, Pettenati MJ, Sanders AM, Weir HM, Du W, Kim J, et al: Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proc Natl Acad Sci USA. 2006, 103 (20): 7753-7758. 10.1073/pnas.0602382103.CrossRefPubMedPubMedCentral Hicks AM, Riedlinger G, Willingham MC, Alexander-Miller MA, Von Kap-Herr C, Pettenati MJ, Sanders AM, Weir HM, Du W, Kim J, et al: Transferable anticancer innate immunity in spontaneous regression/complete resistance mice. Proc Natl Acad Sci USA. 2006, 103 (20): 7753-7758. 10.1073/pnas.0602382103.CrossRefPubMedPubMedCentral
3.
go back to reference Koch J, Boschian A, Hau J, Rieneck K: Frequency of the cancer-resistant phenotype in SR/CR mice and the effect of litter seriation. In Vivo. 2008, 22 (5): 565-569.PubMed Koch J, Boschian A, Hau J, Rieneck K: Frequency of the cancer-resistant phenotype in SR/CR mice and the effect of litter seriation. In Vivo. 2008, 22 (5): 565-569.PubMed
4.
go back to reference Miklos DB, Kim HT, Miller KH, Guo L, Zorn E, Lee SJ, Hochberg EP, Wu CJ, Alyea EP, Cutler C, et al: Antibody responses to H-Y minor histocompatibility antigens correlate with chronic graft-versus-host disease and disease remission. Blood. 2005, 105 (7): 2973-2978. 10.1182/blood-2004-09-3660.CrossRefPubMed Miklos DB, Kim HT, Miller KH, Guo L, Zorn E, Lee SJ, Hochberg EP, Wu CJ, Alyea EP, Cutler C, et al: Antibody responses to H-Y minor histocompatibility antigens correlate with chronic graft-versus-host disease and disease remission. Blood. 2005, 105 (7): 2973-2978. 10.1182/blood-2004-09-3660.CrossRefPubMed
5.
go back to reference Dwyre DM, Holland PV: Transfusion-associated graft-versus-host disease. Vox Sang. 2008, 95 (2): 85-93. 10.1111/j.1423-0410.2008.01073.x.CrossRefPubMed Dwyre DM, Holland PV: Transfusion-associated graft-versus-host disease. Vox Sang. 2008, 95 (2): 85-93. 10.1111/j.1423-0410.2008.01073.x.CrossRefPubMed
6.
go back to reference Agbaht K, Altintas ND, Topeli A, Gokoz O, Ozcebe O: Transfusion-associated graft-versus-host disease in immunocompetent patients: case series and review of the literature. Transfusion. 2007, 47 (8): 1405-1411. 10.1111/j.1537-2995.2007.01282.x.CrossRefPubMed Agbaht K, Altintas ND, Topeli A, Gokoz O, Ozcebe O: Transfusion-associated graft-versus-host disease in immunocompetent patients: case series and review of the literature. Transfusion. 2007, 47 (8): 1405-1411. 10.1111/j.1537-2995.2007.01282.x.CrossRefPubMed
7.
go back to reference Thaler M, Shamiss A, Orgad S, Huszar M, Nussinovitch N, Meisel S, Gazit E, Lavee J, Smolinsky A: The role of blood from HLA-homozygous donors in fatal transfusion-associated graft-versus-host disease after open-heart surgery. N Engl J Med. 1989, 321 (1): 25-28.CrossRefPubMed Thaler M, Shamiss A, Orgad S, Huszar M, Nussinovitch N, Meisel S, Gazit E, Lavee J, Smolinsky A: The role of blood from HLA-homozygous donors in fatal transfusion-associated graft-versus-host disease after open-heart surgery. N Engl J Med. 1989, 321 (1): 25-28.CrossRefPubMed
9.
go back to reference Pawelec G, Larbi A: Immunity and ageing in man: Annual Review 2006/2007. Exp Gerontol. 2008, 43 (1): 34-38.PubMed Pawelec G, Larbi A: Immunity and ageing in man: Annual Review 2006/2007. Exp Gerontol. 2008, 43 (1): 34-38.PubMed
10.
go back to reference Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ: Cancer statistics, 2008. CA: a cancer journal for clinicians. 2008, 58 (2): 71-96. 10.3322/CA.2007.0010. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ: Cancer statistics, 2008. CA: a cancer journal for clinicians. 2008, 58 (2): 71-96. 10.3322/CA.2007.0010.
11.
go back to reference Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA: Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005, 433 (7027): 760-764. 10.1038/nature03260.CrossRefPubMed Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA: Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005, 433 (7027): 760-764. 10.1038/nature03260.CrossRefPubMed
12.
go back to reference Guidelines on gamma irradiation of blood components for the prevention of transfusion-associated graft-versus-host disease. BCSH Blood Transfusion Task Force. Transfus Med. 1996, 6 (3): 261-271. 10.1111/j.1365-3148.1996.tb00078.x. Guidelines on gamma irradiation of blood components for the prevention of transfusion-associated graft-versus-host disease. BCSH Blood Transfusion Task Force. Transfus Med. 1996, 6 (3): 261-271. 10.1111/j.1365-3148.1996.tb00078.x.
13.
go back to reference Bakken AM: Cryopreserving human peripheral blood progenitor cells. Current stem cell research & therapy. 2006, 1 (1): 47-54.CrossRef Bakken AM: Cryopreserving human peripheral blood progenitor cells. Current stem cell research & therapy. 2006, 1 (1): 47-54.CrossRef
14.
go back to reference Watt SM, Austin E, Armitage S: Cryopreservation of hematopoietic stem/progenitor cells for therapeutic use. Methods in molecular biology (Clifton, NJ). 2007, 368: 237-259.CrossRef Watt SM, Austin E, Armitage S: Cryopreservation of hematopoietic stem/progenitor cells for therapeutic use. Methods in molecular biology (Clifton, NJ). 2007, 368: 237-259.CrossRef
15.
go back to reference Dunn GP, Old LJ, Schreiber RD: The three Es of cancer immunoediting. Annual review of immunology. 2004, 22: 329-360.CrossRefPubMed Dunn GP, Old LJ, Schreiber RD: The three Es of cancer immunoediting. Annual review of immunology. 2004, 22: 329-360.CrossRefPubMed
16.
go back to reference Charron D: Autologous white blood cell transfusion: toward a younger immunity. Human immunology. 2007, 68 (10): 805-812.CrossRefPubMed Charron D: Autologous white blood cell transfusion: toward a younger immunity. Human immunology. 2007, 68 (10): 805-812.CrossRefPubMed
17.
go back to reference Dewey WC, Ling CC, Meyn RE: Radiation-induced apoptosis: relevance to radiotherapy. Int J Radiat Oncol Biol Phys. 1995, 33 (4): 781-796.CrossRefPubMed Dewey WC, Ling CC, Meyn RE: Radiation-induced apoptosis: relevance to radiotherapy. Int J Radiat Oncol Biol Phys. 1995, 33 (4): 781-796.CrossRefPubMed
Metadata
Title
Impact of sex, MHC, and age of recipients on the therapeutic effect of transferred leukocytes from cancer-resistant SR/CR mice
Authors
John R Stehle Jr
Michael J Blanks
Gregory Riedlinger
Jung W Kim-Shapiro
Anne M Sanders
Jonathan M Adams
Mark C Willingham
Zheng Cui
Publication date
01-12-2009
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2009
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-9-328

Other articles of this Issue 1/2009

BMC Cancer 1/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine