Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 12/2014

01-12-2014 | Original Article

Impact of 11C-choline PET/CT on clinical decision making in recurrent prostate cancer: results from a retrospective two-centre trial

Authors: Francesco Ceci, Ken Herrmann, Paolo Castellucci, Tiziano Graziani, Christina Bluemel, Riccardo Schiavina, Christian Vollmer, Sabine Droll, Eugenio Brunocilla, Renzo Mazzarotto, Andreas K. Buck, Stefano Fanti

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 12/2014

Login to get access

Abstract

Purpose

The aim of this retrospective two-centre study was to investigate the clinical impact of 11C-choline PET/CT on treatment management decisions in patients with recurrent prostate cancer (rPCa) after radical therapy.

Methods

Enrolled in this retrospective study were 150 patients (95 from Bologna, 55 from Würzburg) with rPCa and biochemical relapse (PSA mean ± SD 4.3 ± 5.5 ng/mL, range 0.2–39.4 ng/mL) after radical therapy. The intended treatment before PET/CT was salvage radiotherapy of the prostatic bed in 95 patients and palliative androgen deprivation therapy (ADT) in 55 patients. The effective clinical impact of 11C-choline PET/CT was rated as major (change in therapeutic approach), minor (same treatment, but modified therapeutic strategy) or none. Multivariate binary logistic regression analysis included PSA level, PSA kinetics, ongoing ADT, Gleason score, TNM, age and time to relapse.

Results

Changes in therapy after 11C-choline PET/CT were implemented in 70 of the 150 patients (46.7 %). A major clinical impact was observed in 27 patients (18 %) and a minor clinical impact in 43 (28.7 %). 11C-choline PET/CT was positive in 109 patients (72.7 %) detecting local relapse (prostate bed and/or iliac lymph nodes and/or pararectal lymph nodes) in 64 patients (42.7 %). Distant relapse (paraaortic and/or retroperitoneal lymph nodes and/or bone lesions) was seen in 31 patients (20.7 %), and both local and distant relapse in 14 (9.3 %). A significant difference was observed in PSA level and PSA kinetics between PET-positive and PET-negative patients (p < 0.05). In multivariate analysis, PSA level, PSA doubling time and ongoing ADT were significant predictors of a positive scan (p < 0.05). In statistical analysis no significant differences were observed between the Bologna and Würzburg patients (p > 0.05). In both centres the same criteria to validate PET-positive findings were used: in 17.3 % of patients by histology and in 82.7 % of patients by correlative imaging and/or clinical follow-up (follow-up mean 20.5 months, median 18.3 months, range 6.2–60 months).

Conclusion

11C-Choline PET/CT had a significant impact on therapeutic management in rPCa patients. It led to an overall change in 46.7 % of patients, with a major clinical change implemented in 18 % of patients. Further prospective studies are needed to evaluate the effect of such treatment changes on patient survival.
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.PubMedCrossRef Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.PubMedCrossRef
2.
go back to reference Kataja VV, Bergh J. ESMO minimum clinical recommendations for diagnosis, treatment and follow-up of prostate cancer. Ann Oncol. 2005;16 Suppl 1:i34–6.PubMedCrossRef Kataja VV, Bergh J. ESMO minimum clinical recommendations for diagnosis, treatment and follow-up of prostate cancer. Ann Oncol. 2005;16 Suppl 1:i34–6.PubMedCrossRef
3.
go back to reference Mottet N, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, et al. EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2011;59(4):572–83.PubMedCrossRef Mottet N, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, et al. EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2011;59(4):572–83.PubMedCrossRef
4.
go back to reference Thompson IM, Valicenti RK, Albertsen P, Davis BJ, Goldenberg SL, Hahn C, et al. Adjuvant and salvage radiotherapy after prostectomy: AUA/ASTRO guidelines. J Urol Aug. 2013;190(2):441–9.CrossRef Thompson IM, Valicenti RK, Albertsen P, Davis BJ, Goldenberg SL, Hahn C, et al. Adjuvant and salvage radiotherapy after prostectomy: AUA/ASTRO guidelines. J Urol Aug. 2013;190(2):441–9.CrossRef
5.
go back to reference Bolla M, Van Tienhoven G, Warde P, Dubois JB, Mirimanoff RO, Storme G, et al. External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol. 2010;11:1066–73.PubMedCrossRef Bolla M, Van Tienhoven G, Warde P, Dubois JB, Mirimanoff RO, Storme G, et al. External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol. 2010;11:1066–73.PubMedCrossRef
6.
go back to reference Freedland SJ, Presti Jr JC, Amling CL, Kane CJ, Aronson WJ, Dorey F, et al. Time trends in biochemical recurrence after radical prostatectomy: results of the SEARCH database. Urology. 2003;61:736–41.PubMedCrossRef Freedland SJ, Presti Jr JC, Amling CL, Kane CJ, Aronson WJ, Dorey F, et al. Time trends in biochemical recurrence after radical prostatectomy: results of the SEARCH database. Urology. 2003;61:736–41.PubMedCrossRef
7.
go back to reference Khuntia D, Reddy CA, Mahadevan A, Klein EA, Kupelian PA. Recurrence-free survival rates after external-beam radiotherapy for patients with clinical T1-T3 prostate carcinoma in the prostate specific antigen era: what should we expect? Cancer. 2004;100:1283–92.PubMedCrossRef Khuntia D, Reddy CA, Mahadevan A, Klein EA, Kupelian PA. Recurrence-free survival rates after external-beam radiotherapy for patients with clinical T1-T3 prostate carcinoma in the prostate specific antigen era: what should we expect? Cancer. 2004;100:1283–92.PubMedCrossRef
8.
go back to reference Stephenson AJ, Scardino PT, Kattan MW, Pisansky TM, Slawin KM, Klein EA, et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J Clin Oncol. 2007;25(15):2035–41.PubMedCentralPubMedCrossRef Stephenson AJ, Scardino PT, Kattan MW, Pisansky TM, Slawin KM, Klein EA, et al. Predicting the outcome of salvage radiation therapy for recurrent prostate cancer after radical prostatectomy. J Clin Oncol. 2007;25(15):2035–41.PubMedCentralPubMedCrossRef
9.
go back to reference Walsh PC, De Weese TL, Eisenberger MA. A structured debate: immediate versus deferred androgen suppression in prostate cancer – evidence for deferred treatment. J Urol. 2001;166:508–56.PubMedCrossRef Walsh PC, De Weese TL, Eisenberger MA. A structured debate: immediate versus deferred androgen suppression in prostate cancer – evidence for deferred treatment. J Urol. 2001;166:508–56.PubMedCrossRef
10.
go back to reference Mohler J, Bahnson RR, Boston B, Busby JE, D'Amico A, Eastham JA, et al. NCCN clinical practice guidelines in oncology: prostate cancer. J Natl Compr Canc Netw. 2010;8(2):162–200.PubMed Mohler J, Bahnson RR, Boston B, Busby JE, D'Amico A, Eastham JA, et al. NCCN clinical practice guidelines in oncology: prostate cancer. J Natl Compr Canc Netw. 2010;8(2):162–200.PubMed
11.
go back to reference Kattan MW, Wheeler TM, Scardino PT. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J Clin Oncol. 1999;17(5):1499–507.PubMed Kattan MW, Wheeler TM, Scardino PT. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J Clin Oncol. 1999;17(5):1499–507.PubMed
12.
go back to reference Fuccio C, Rubello D, Castellucci P, Marzola MC, Fanti S. Choline PET/CT for prostate cancer: main clinical applications. Eur J Radiol. 2011;80(2):e50–6.PubMedCrossRef Fuccio C, Rubello D, Castellucci P, Marzola MC, Fanti S. Choline PET/CT for prostate cancer: main clinical applications. Eur J Radiol. 2011;80(2):e50–6.PubMedCrossRef
13.
go back to reference Choueiri TK, Dreicer R, Paciorek A, Carroll PR, Konety B. A model that predicts the probability of positive imaging in prostate cancer cases with biochemical failure after initial definitive local therapy. J Urol. 2008;179(3):906–10. discussion 910.PubMedCrossRef Choueiri TK, Dreicer R, Paciorek A, Carroll PR, Konety B. A model that predicts the probability of positive imaging in prostate cancer cases with biochemical failure after initial definitive local therapy. J Urol. 2008;179(3):906–10. discussion 910.PubMedCrossRef
14.
go back to reference Castellucci P, Fuccio C, Nanni C, Santi I, Rizzello A, Lodi F, et al. Influence of trigger PSA and PSA kinetics on 11C-choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med. 2009;50:1394–400.PubMedCrossRef Castellucci P, Fuccio C, Nanni C, Santi I, Rizzello A, Lodi F, et al. Influence of trigger PSA and PSA kinetics on 11C-choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med. 2009;50:1394–400.PubMedCrossRef
15.
go back to reference Krause BJ, Souvatzoglou M, Tuncel M, Herrmann K, Buck AK, Praus C, et al. The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35(1):18–23.PubMedCrossRef Krause BJ, Souvatzoglou M, Tuncel M, Herrmann K, Buck AK, Praus C, et al. The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35(1):18–23.PubMedCrossRef
16.
go back to reference Pascali C, Bogni A, Iwata R, Cambie M, Bombardieri E. [11C]Methylation on a C18 Sep-Pak cartridge: a convenient way to produce [N-methyl-11C]choline. J Labelled Compds Radiopharm. 2000;43:195–203.CrossRef Pascali C, Bogni A, Iwata R, Cambie M, Bombardieri E. [11C]Methylation on a C18 Sep-Pak cartridge: a convenient way to produce [N-methyl-11C]choline. J Labelled Compds Radiopharm. 2000;43:195–203.CrossRef
17.
go back to reference Khan MA, Carter HB, Epstein JI, Miller MC, Landis P, Walsh PW, et al. Can prostate specific antigen derivatives and pathological parameters predict significant change in expectant management criteria for prostate cancer? J Urol. 2003;170:2274–8.PubMedCrossRef Khan MA, Carter HB, Epstein JI, Miller MC, Landis P, Walsh PW, et al. Can prostate specific antigen derivatives and pathological parameters predict significant change in expectant management criteria for prostate cancer? J Urol. 2003;170:2274–8.PubMedCrossRef
18.
go back to reference Soyka JD, Muster MA, Schmid DT, Seifert B, Schick U, Miralbell R, et al. Clinical impact of 18F-choline PET/CT in patients with recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2012;39(6):936–43.PubMedCrossRef Soyka JD, Muster MA, Schmid DT, Seifert B, Schick U, Miralbell R, et al. Clinical impact of 18F-choline PET/CT in patients with recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2012;39(6):936–43.PubMedCrossRef
19.
go back to reference Stephenson AJ, Bolla M, Briganti A, Cozzarini C, Moul JW, Roach 3rd M, et al. Postoperative radiation therapy for pathologically advanced prostate cancer after radical prostatectomy. Eur Urol. 2012;61(3):443–51.PubMedCrossRef Stephenson AJ, Bolla M, Briganti A, Cozzarini C, Moul JW, Roach 3rd M, et al. Postoperative radiation therapy for pathologically advanced prostate cancer after radical prostatectomy. Eur Urol. 2012;61(3):443–51.PubMedCrossRef
20.
go back to reference Zilli T, Jorcano S, Peguret N, Caparrotti F, Hidalgo A, Khan HG, et al. Dose-adapted salvage radiotherapy after radical prostatectomy based on eMRI target definition model: toxicity analysis. Acta Oncol. 2014;53(1):96–102.PubMedCrossRef Zilli T, Jorcano S, Peguret N, Caparrotti F, Hidalgo A, Khan HG, et al. Dose-adapted salvage radiotherapy after radical prostatectomy based on eMRI target definition model: toxicity analysis. Acta Oncol. 2014;53(1):96–102.PubMedCrossRef
21.
go back to reference Giovacchini G, Picchio M, Scattoni V, Garcia Parra R, Briganti A, Gianolli L, et al. PSA doubling time for prediction of [(11)C]choline PET/CT findings in prostate cancer patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2010;37(6):1106–16.PubMedCrossRef Giovacchini G, Picchio M, Scattoni V, Garcia Parra R, Briganti A, Gianolli L, et al. PSA doubling time for prediction of [(11)C]choline PET/CT findings in prostate cancer patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2010;37(6):1106–16.PubMedCrossRef
22.
go back to reference Giovacchini G, Picchio M, Garcia-Parra R, Briganti A, Abdollah F, Gianolli L, et al. 11C-choline PET/CT predicts prostate cancer-specific survival in patients with biochemical failure during androgen-deprivation therapy. J Nucl Med. 2014;55(2):233–41.PubMedCrossRef Giovacchini G, Picchio M, Garcia-Parra R, Briganti A, Abdollah F, Gianolli L, et al. 11C-choline PET/CT predicts prostate cancer-specific survival in patients with biochemical failure during androgen-deprivation therapy. J Nucl Med. 2014;55(2):233–41.PubMedCrossRef
23.
go back to reference Souvatzoglou M, Krause BJ, Pürschel A, Thamm R, Schuster T, Buck AK, et al. Influence of (11)C-choline PET/CT on the treatment planning for salvage radiation therapy in patients with biochemical recurrence of prostate cancer. Radiother Oncol. 2011;99(2):193–200.PubMedCrossRef Souvatzoglou M, Krause BJ, Pürschel A, Thamm R, Schuster T, Buck AK, et al. Influence of (11)C-choline PET/CT on the treatment planning for salvage radiation therapy in patients with biochemical recurrence of prostate cancer. Radiother Oncol. 2011;99(2):193–200.PubMedCrossRef
24.
go back to reference Würschmidt F, Petersen C, Wahl A, Dahle J, Kretschmer M. [18F]fluoroethylcholine-PET/CT imaging for radiation treatment planning of recurrent and primary prostate cancer with dose escalation to PET/CT-positive lymph nodes. Radiat Oncol. 2011;1(6):44.CrossRef Würschmidt F, Petersen C, Wahl A, Dahle J, Kretschmer M. [18F]fluoroethylcholine-PET/CT imaging for radiation treatment planning of recurrent and primary prostate cancer with dose escalation to PET/CT-positive lymph nodes. Radiat Oncol. 2011;1(6):44.CrossRef
25.
go back to reference Rigatti P, Suardi N, Briganti A, Da Pozzo LF, Tutolo M, Villa L, et al. Pelvic/retroperitoneal salvage lymph node dissection for patients treated with radical prostatectomy with biochemical recurrence and nodal recurrence detected by [11C]choline positron emission tomography/computed tomography. Eur Urol. 2011;60(5):935–43.PubMedCrossRef Rigatti P, Suardi N, Briganti A, Da Pozzo LF, Tutolo M, Villa L, et al. Pelvic/retroperitoneal salvage lymph node dissection for patients treated with radical prostatectomy with biochemical recurrence and nodal recurrence detected by [11C]choline positron emission tomography/computed tomography. Eur Urol. 2011;60(5):935–43.PubMedCrossRef
26.
go back to reference Tilki D, Reich O, Graser A, Hacker M, Silchinger J, Becker AJ, et al. 18F-Fluoroethylcholine PET/CT identifies lymph node metastasis in patients with prostate-specific antigen failure after radical prostatectomy but underestimates its extent. Eur Urol. 2013;63(5):792–6.PubMedCrossRef Tilki D, Reich O, Graser A, Hacker M, Silchinger J, Becker AJ, et al. 18F-Fluoroethylcholine PET/CT identifies lymph node metastasis in patients with prostate-specific antigen failure after radical prostatectomy but underestimates its extent. Eur Urol. 2013;63(5):792–6.PubMedCrossRef
27.
go back to reference Berkovic P, De Meerleer G, Delrue L, Lambert B, Fonteyne V, Lumen N, et al. Salvage stereotactic body radiotherapy for patients with limited prostate cancer metastases: deferring androgen deprivation therapy. Clin Genitourin Cancer. 2013;11(1):27–32.PubMedCrossRef Berkovic P, De Meerleer G, Delrue L, Lambert B, Fonteyne V, Lumen N, et al. Salvage stereotactic body radiotherapy for patients with limited prostate cancer metastases: deferring androgen deprivation therapy. Clin Genitourin Cancer. 2013;11(1):27–32.PubMedCrossRef
28.
go back to reference Ceci F, Castellucci P, Mamede M. (11)C-Choline PET/CT in patients with hormone-resistant prostate cancer showing biochemical relapse after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2013;40(2):149–55.PubMedCrossRef Ceci F, Castellucci P, Mamede M. (11)C-Choline PET/CT in patients with hormone-resistant prostate cancer showing biochemical relapse after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2013;40(2):149–55.PubMedCrossRef
29.
go back to reference Ceci F, Castellucci P, Graziani T, Schiavina R, Brunocilla E, Mazzarotto R, et al. 11C-Choline PET/CT detects the site of relapse in the majority of prostate cancer patients showing biochemical relapse after EBRT. Eur J Nucl Med Mol Imaging. 2014;41(5):878–86.PubMedCrossRef Ceci F, Castellucci P, Graziani T, Schiavina R, Brunocilla E, Mazzarotto R, et al. 11C-Choline PET/CT detects the site of relapse in the majority of prostate cancer patients showing biochemical relapse after EBRT. Eur J Nucl Med Mol Imaging. 2014;41(5):878–86.PubMedCrossRef
Metadata
Title
Impact of 11C-choline PET/CT on clinical decision making in recurrent prostate cancer: results from a retrospective two-centre trial
Authors
Francesco Ceci
Ken Herrmann
Paolo Castellucci
Tiziano Graziani
Christina Bluemel
Riccardo Schiavina
Christian Vollmer
Sabine Droll
Eugenio Brunocilla
Renzo Mazzarotto
Andreas K. Buck
Stefano Fanti
Publication date
01-12-2014
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 12/2014
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-014-2872-x

Other articles of this Issue 12/2014

European Journal of Nuclear Medicine and Molecular Imaging 12/2014 Go to the issue