Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2021

Open Access 01-12-2021 | Review

Immunotherapies targeting stimulatory pathways and beyond

Authors: Julian A. Marin-Acevedo, ErinMarie O. Kimbrough, Rami Manochakian, Yujie Zhao, Yanyan Lou

Published in: Journal of Hematology & Oncology | Issue 1/2021

Login to get access

Abstract

Co-stimulatory and co-inhibitory molecules play a critical role in T cell function. Tumor cells escape immune surveillance by promoting immunosuppression. Immunotherapy targeting inhibitory molecules like anti-CTLA-4 and anti-PD-1/PD-L1 were developed to overcome these immunosuppressive effects. These agents have demonstrated remarkable, durable responses in a small subset of patients. The other mechanisms for enhancing anti-tumor activities are to target the stimulatory pathways that are expressed on T cells or other immune cells. In this review, we summarize current phase I/II clinical trials evaluating novel immunotherapies targeting stimulatory pathways and outline their advantages, limitations, and future directions.
Literature
3.
go back to reference Vinay DS, Ryan EP, Pawelec G, et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35(Suppl):S185–98.PubMedCrossRef Vinay DS, Ryan EP, Pawelec G, et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015;35(Suppl):S185–98.PubMedCrossRef
4.
go back to reference Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50(12):1–11.PubMedCrossRef Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers. Exp Mol Med. 2018;50(12):1–11.PubMedCrossRef
5.
go back to reference Granier C, De Guillebon E, Blanc C, et al. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. Esmo Open. 2017;2(2):e000213.PubMedPubMedCentralCrossRef Granier C, De Guillebon E, Blanc C, et al. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. Esmo Open. 2017;2(2):e000213.PubMedPubMedCentralCrossRef
6.
go back to reference Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018;11(1):39.PubMedPubMedCentralCrossRef Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018;11(1):39.PubMedPubMedCentralCrossRef
7.
go back to reference DeBerardinis RJ. Tumor microenvironment, metabolism, and immunotherapy. N Engl J Med. 2020;382(9):869–71.PubMedCrossRef DeBerardinis RJ. Tumor microenvironment, metabolism, and immunotherapy. N Engl J Med. 2020;382(9):869–71.PubMedCrossRef
8.
go back to reference Giraldo NA, Sanchez-Salas R, Peske JD, et al. The clinical role of the TME in solid cancer. Br J Cancer. 2019;120(1):45–53.PubMedCrossRef Giraldo NA, Sanchez-Salas R, Peske JD, et al. The clinical role of the TME in solid cancer. Br J Cancer. 2019;120(1):45–53.PubMedCrossRef
9.
10.
go back to reference Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol. 1989;7:445–80.PubMedCrossRef Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol. 1989;7:445–80.PubMedCrossRef
11.
go back to reference Buchan SL, Rogel A, Al-Shamkhani A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy. Blood. 2018;131(1):39–48.PubMedCrossRef Buchan SL, Rogel A, Al-Shamkhani A. The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy. Blood. 2018;131(1):39–48.PubMedCrossRef
12.
go back to reference van de Ven K, Borst J. Targeting the T-cell co-stimulatory CD27/CD70 pathway in cancer immunotherapy: rationale and potential. Immunotherapy. 2015;7(6):655–67.PubMedCrossRef van de Ven K, Borst J. Targeting the T-cell co-stimulatory CD27/CD70 pathway in cancer immunotherapy: rationale and potential. Immunotherapy. 2015;7(6):655–67.PubMedCrossRef
13.
go back to reference Aftimos P, Rolfo C, Rottey S, et al. Phase I dose-escalation study of the anti-CD70 antibody ARGX-110 in advanced malignancies. Clin Cancer Res. 2017;23(21):6411–20.PubMedCrossRef Aftimos P, Rolfo C, Rottey S, et al. Phase I dose-escalation study of the anti-CD70 antibody ARGX-110 in advanced malignancies. Clin Cancer Res. 2017;23(21):6411–20.PubMedCrossRef
14.
go back to reference Burris HA, Infante JR, Ansell SM, et al. Safety and activity of varlilumab, a novel and first-in-class agonist anti-CD27 antibody, in patients with advanced solid tumors. J Clin Oncol. 2017;35(18):2028–36.PubMedCrossRef Burris HA, Infante JR, Ansell SM, et al. Safety and activity of varlilumab, a novel and first-in-class agonist anti-CD27 antibody, in patients with advanced solid tumors. J Clin Oncol. 2017;35(18):2028–36.PubMedCrossRef
15.
go back to reference Sanborn RE, Pishvaian MJ, Callahan MK, et al. Anti-CD27 agonist antibody varlilumab (varli) with nivolumab (nivo) for colorectal (CRC) and ovarian (OVA) cancer: phase (Ph) 1/2 clinical trial results. J Clin Oncol. 2018;36(15_suppl):3001–3001.CrossRef Sanborn RE, Pishvaian MJ, Callahan MK, et al. Anti-CD27 agonist antibody varlilumab (varli) with nivolumab (nivo) for colorectal (CRC) and ovarian (OVA) cancer: phase (Ph) 1/2 clinical trial results. J Clin Oncol. 2018;36(15_suppl):3001–3001.CrossRef
16.
go back to reference Silence K, Dreier T, Moshir M, et al. ARGX-110, a highly potent antibody targeting CD70, eliminates tumors via both enhanced ADCC and immune checkpoint blockade. MAbs. 2014;6(2):523–32.PubMedCrossRef Silence K, Dreier T, Moshir M, et al. ARGX-110, a highly potent antibody targeting CD70, eliminates tumors via both enhanced ADCC and immune checkpoint blockade. MAbs. 2014;6(2):523–32.PubMedCrossRef
18.
go back to reference Costello RT, Gastaut JA, Olive D. What is the real role of CD40 in cancer immunotherapy? Immunol Today. 1999;20(11):488–93.PubMedCrossRef Costello RT, Gastaut JA, Olive D. What is the real role of CD40 in cancer immunotherapy? Immunol Today. 1999;20(11):488–93.PubMedCrossRef
19.
20.
go back to reference Beatty GL, Li Y, Long KB. Cancer immunotherapy: activating innate and adaptive immunity through CD40 agonists. Expert Rev Anticancer Ther. 2017;17(2):175–86.PubMedCrossRef Beatty GL, Li Y, Long KB. Cancer immunotherapy: activating innate and adaptive immunity through CD40 agonists. Expert Rev Anticancer Ther. 2017;17(2):175–86.PubMedCrossRef
21.
go back to reference Grilley-Olson JE, Curti BD, Smith DC, et al. SEA-CD40, a non-fucosylated CD40 agonist: Interim results from a phase 1 study in advanced solid tumors. J Clin Oncol. 2018;36(15_suppl):3093–3093.CrossRef Grilley-Olson JE, Curti BD, Smith DC, et al. SEA-CD40, a non-fucosylated CD40 agonist: Interim results from a phase 1 study in advanced solid tumors. J Clin Oncol. 2018;36(15_suppl):3093–3093.CrossRef
22.
go back to reference Bajor DL, Mick R, Riese MJ, et al. Long-term outcomes of a phase I study of agonist CD40 antibody and CTLA-4 blockade in patients with metastatic melanoma. Oncoimmunology. 2018;7(10):e1468956.PubMedPubMedCentralCrossRef Bajor DL, Mick R, Riese MJ, et al. Long-term outcomes of a phase I study of agonist CD40 antibody and CTLA-4 blockade in patients with metastatic melanoma. Oncoimmunology. 2018;7(10):e1468956.PubMedPubMedCentralCrossRef
23.
go back to reference Calvo E, Moreno V, Perets R, et al. A phase I study to assess safety, pharmacokinetics (PK), and pharmacodynamics (PD) of JNJ-64457107, a CD40 agonistic monoclonal antibody, in patients (pts) with advanced solid tumors. J Clin Oncol. 2019;37(15_suppl):2527–2527.CrossRef Calvo E, Moreno V, Perets R, et al. A phase I study to assess safety, pharmacokinetics (PK), and pharmacodynamics (PD) of JNJ-64457107, a CD40 agonistic monoclonal antibody, in patients (pts) with advanced solid tumors. J Clin Oncol. 2019;37(15_suppl):2527–2527.CrossRef
24.
go back to reference Kluger H, Weiss SA, Olszanski AJ, et al. Abstract CT089: phase Ib/II of CD40 agonistic antibody APX005M in combination with nivolumab (nivo) in subjects with metastatic melanoma (M) or non-small cell lung cancer (NSCLC). Cancer Res. 2019;79(13 Supplement):CT089.CrossRef Kluger H, Weiss SA, Olszanski AJ, et al. Abstract CT089: phase Ib/II of CD40 agonistic antibody APX005M in combination with nivolumab (nivo) in subjects with metastatic melanoma (M) or non-small cell lung cancer (NSCLC). Cancer Res. 2019;79(13 Supplement):CT089.CrossRef
25.
go back to reference Qi X, Li F, Wu Y, et al. Optimization of 4–1BB antibody for cancer immunotherapy by balancing agonistic strength with FcgammaR affinity. Nat Commun. 2019;10(1):2141.PubMedPubMedCentralCrossRef Qi X, Li F, Wu Y, et al. Optimization of 4–1BB antibody for cancer immunotherapy by balancing agonistic strength with FcgammaR affinity. Nat Commun. 2019;10(1):2141.PubMedPubMedCentralCrossRef
26.
go back to reference Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4–1BB: mechanistic rationale, clinical results, and future strategies. Blood. 2018;131(1):49–57.PubMedCrossRef Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4–1BB: mechanistic rationale, clinical results, and future strategies. Blood. 2018;131(1):49–57.PubMedCrossRef
27.
28.
go back to reference Sanmamed MF, Etxeberria I, Otano I, Melero I. Twists and turns to translating 4–1BB cancer immunotherapy. Sci Transl Med. 2019;11(496):eaax4738.PubMedCrossRef Sanmamed MF, Etxeberria I, Otano I, Melero I. Twists and turns to translating 4–1BB cancer immunotherapy. Sci Transl Med. 2019;11(496):eaax4738.PubMedCrossRef
29.
go back to reference Tolcher AW, Sznol M, Hu-Lieskovan S, et al. Phase Ib study of utomilumab (PF-05082566), a 4–1BB/CD137 agonist, in combination with pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin Cancer Res. 2017;23(18):5349–57.PubMedCrossRef Tolcher AW, Sznol M, Hu-Lieskovan S, et al. Phase Ib study of utomilumab (PF-05082566), a 4–1BB/CD137 agonist, in combination with pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin Cancer Res. 2017;23(18):5349–57.PubMedCrossRef
30.
go back to reference Zhang L, Zhao H, Ma Y, et al. A phase I, dose-escalation study of ADG106, a fully human anti-CD137 agonistic antibody, in subjects with advanced solid tumors or relapsed/refractory non-Hodgkin lymphoma. J Clin Oncol. 2020;38(15_suppl):3105–3105.CrossRef Zhang L, Zhao H, Ma Y, et al. A phase I, dose-escalation study of ADG106, a fully human anti-CD137 agonistic antibody, in subjects with advanced solid tumors or relapsed/refractory non-Hodgkin lymphoma. J Clin Oncol. 2020;38(15_suppl):3105–3105.CrossRef
31.
go back to reference Willoughby J, Griffiths J, Tews I, Cragg MS. OX40: structure and function—what questions remain? Mol Immunol. 2017;83:13–22.PubMedCrossRef Willoughby J, Griffiths J, Tews I, Cragg MS. OX40: structure and function—what questions remain? Mol Immunol. 2017;83:13–22.PubMedCrossRef
32.
33.
go back to reference Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A. Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer. 2016;52:50–66.PubMedCrossRef Aspeslagh S, Postel-Vinay S, Rusakiewicz S, Soria JC, Zitvogel L, Marabelle A. Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer. 2016;52:50–66.PubMedCrossRef
34.
go back to reference Goldman JW, Piha-Paul SA, Curti BD, et al. Safety and tolerability of MEDI0562 in combination with durvalumab or tremelimumab in patients with advanced solid tumors. J Clin Oncol. 2020;38(15_suppl):3003–3003.CrossRef Goldman JW, Piha-Paul SA, Curti BD, et al. Safety and tolerability of MEDI0562 in combination with durvalumab or tremelimumab in patients with advanced solid tumors. J Clin Oncol. 2020;38(15_suppl):3003–3003.CrossRef
35.
go back to reference Postel-Vinay S, Lam VK, Ros W, et al. Abstract CT150: a first-in-human phase I study of the OX40 agonist GSK3174998 (GSK998) +/− pembrolizumab in patients (Pts) with selected advanced solid tumors (ENGAGE-1). Cancer Res. 2020;80(16 Supplement):CT150.CrossRef Postel-Vinay S, Lam VK, Ros W, et al. Abstract CT150: a first-in-human phase I study of the OX40 agonist GSK3174998 (GSK998) +/− pembrolizumab in patients (Pts) with selected advanced solid tumors (ENGAGE-1). Cancer Res. 2020;80(16 Supplement):CT150.CrossRef
36.
go back to reference Kvarnhammar AM, Veitonmaki N, Hagerbrand K, et al. The CTLA-4 x OX40 bispecific antibody ATOR-1015 induces anti-tumor effects through tumor-directed immune activation. J Immunother Cancer. 2019;7(1):103.PubMedPubMedCentralCrossRef Kvarnhammar AM, Veitonmaki N, Hagerbrand K, et al. The CTLA-4 x OX40 bispecific antibody ATOR-1015 induces anti-tumor effects through tumor-directed immune activation. J Immunother Cancer. 2019;7(1):103.PubMedPubMedCentralCrossRef
37.
go back to reference Yachnin J, Ullenhag GJ, Carneiro A, et al. A first-in-human phase I study in patients with advanced and/or refractory solid malignancies to evaluate the safety of ATOR-1015, a CTLA-4 x OX40 bispecific antibody. J Clin Oncol. 2020;38(15_suppl):3061–3061.CrossRef Yachnin J, Ullenhag GJ, Carneiro A, et al. A first-in-human phase I study in patients with advanced and/or refractory solid malignancies to evaluate the safety of ATOR-1015, a CTLA-4 x OX40 bispecific antibody. J Clin Oncol. 2020;38(15_suppl):3061–3061.CrossRef
38.
go back to reference Yachnin J, Ullenhag GJ, Carneiro A, et al. Abstract CT145: a first-in-human phase 1 study in patients with advanced and/or refractory solid malignancies to evaluate the safety of ATOR-1015, a CTLA-4 x OX40 bispecific antibody. Cancer Res. 2020;80(16 Supplement):CT145.CrossRef Yachnin J, Ullenhag GJ, Carneiro A, et al. Abstract CT145: a first-in-human phase 1 study in patients with advanced and/or refractory solid malignancies to evaluate the safety of ATOR-1015, a CTLA-4 x OX40 bispecific antibody. Cancer Res. 2020;80(16 Supplement):CT145.CrossRef
39.
go back to reference Jimeno A, Gupta S, Sullivan R, et al. Abstract CT032: A phase 1/2, open-label, multicenter, dose escalation and efficacy study of mRNA-2416, a lipid nanoparticle encapsulated mRNA encoding human OX40L, for intratumoral injection alone or in combination with durvalumab for patients with advanced malignancies. In: AACR; 2020. Jimeno A, Gupta S, Sullivan R, et al. Abstract CT032: A phase 1/2, open-label, multicenter, dose escalation and efficacy study of mRNA-2416, a lipid nanoparticle encapsulated mRNA encoding human OX40L, for intratumoral injection alone or in combination with durvalumab for patients with advanced malignancies. In: AACR; 2020.
40.
go back to reference Knee DA, Hewes B, Brogdon JL. Rationale for anti-GITR cancer immunotherapy. Eur J Cancer. 2016;67:1–10.PubMedCrossRef Knee DA, Hewes B, Brogdon JL. Rationale for anti-GITR cancer immunotherapy. Eur J Cancer. 2016;67:1–10.PubMedCrossRef
42.
go back to reference Geva R, Voskoboynik M, Dobrenkov K, et al. First-in-human phase 1 study of MK-1248, an anti-glucocorticoid-induced tumor necrosis factor receptor agonist monoclonal antibody, as monotherapy or with pembrolizumab in patients with advanced solid tumors. Cancer. 2020;126(22):4926–35.PubMedCrossRef Geva R, Voskoboynik M, Dobrenkov K, et al. First-in-human phase 1 study of MK-1248, an anti-glucocorticoid-induced tumor necrosis factor receptor agonist monoclonal antibody, as monotherapy or with pembrolizumab in patients with advanced solid tumors. Cancer. 2020;126(22):4926–35.PubMedCrossRef
43.
go back to reference Geva R, Voskoboynik M, Beebe AM, et al. First-in-human phase 1 study of MK-1248, an anti-human glucocorticoid-induced tumor necrosis factor receptor (GITR) monoclonal antibody, as monotherapy or in combination with pembrolizumab in patients with advanced solid tumors. J Clin Oncol. 2018;36(15_suppl):3029–3029.CrossRef Geva R, Voskoboynik M, Beebe AM, et al. First-in-human phase 1 study of MK-1248, an anti-human glucocorticoid-induced tumor necrosis factor receptor (GITR) monoclonal antibody, as monotherapy or in combination with pembrolizumab in patients with advanced solid tumors. J Clin Oncol. 2018;36(15_suppl):3029–3029.CrossRef
44.
go back to reference Tran B, Carvajal RD, Marabelle A, et al. Dose escalation results from a first-in-human, phase 1 study of glucocorticoid-induced TNF receptor-related protein agonist AMG 228 in patients with advanced solid tumors. J Immunother Cancer. 2018;6(1):93.PubMedPubMedCentralCrossRef Tran B, Carvajal RD, Marabelle A, et al. Dose escalation results from a first-in-human, phase 1 study of glucocorticoid-induced TNF receptor-related protein agonist AMG 228 in patients with advanced solid tumors. J Immunother Cancer. 2018;6(1):93.PubMedPubMedCentralCrossRef
45.
go back to reference Heinhuis KM, Carlino M, Joerger M, et al. Safety, tolerability, and potential clinical activity of a glucocorticoid-induced TNF receptor-related protein agonist alone or in combination with nivolumab for patients with advanced solid tumors: a phase 1/2a dose-escalation and cohort-expansion clinical trial. JAMA Oncol. 2020;6(1):100–7.PubMedCrossRef Heinhuis KM, Carlino M, Joerger M, et al. Safety, tolerability, and potential clinical activity of a glucocorticoid-induced TNF receptor-related protein agonist alone or in combination with nivolumab for patients with advanced solid tumors: a phase 1/2a dose-escalation and cohort-expansion clinical trial. JAMA Oncol. 2020;6(1):100–7.PubMedCrossRef
46.
go back to reference Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov. 2014;13(6):433–44.PubMedCrossRef Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov. 2014;13(6):433–44.PubMedCrossRef
48.
go back to reference Ju X, Huang P, Chen M, Wang Q. Liver X receptors as potential targets for cancer therapeutics. Oncol Lett. 2017;14(6):7676–80.PubMedPubMedCentral Ju X, Huang P, Chen M, Wang Q. Liver X receptors as potential targets for cancer therapeutics. Oncol Lett. 2017;14(6):7676–80.PubMedPubMedCentral
49.
go back to reference Killock D. Immunotherapy: targeting MDSCs with LXR agonists. Nat Rev Clin Oncol. 2018;15(4):200–1.PubMed Killock D. Immunotherapy: targeting MDSCs with LXR agonists. Nat Rev Clin Oncol. 2018;15(4):200–1.PubMed
50.
go back to reference Komati R, Spadoni D, Zheng S, Sridhar J, Riley KE, Wang G. Ligands of therapeutic utility for the liver X receptors. Molecules (Basel, Switzerland). 2017;22(1):88.CrossRef Komati R, Spadoni D, Zheng S, Sridhar J, Riley KE, Wang G. Ligands of therapeutic utility for the liver X receptors. Molecules (Basel, Switzerland). 2017;22(1):88.CrossRef
51.
go back to reference Lim E, Hamilton EP, Redman R, et al. Abstract CT146: RGX-104, a first-in-class immunotherapy targeting the liver-X receptor (LXR): initial results from the phase 1b RGX-104 plus docetaxel combination dose escalation cohorts. Cancer Res. 2020;80(16 Supplement):CT146.CrossRef Lim E, Hamilton EP, Redman R, et al. Abstract CT146: RGX-104, a first-in-class immunotherapy targeting the liver-X receptor (LXR): initial results from the phase 1b RGX-104 plus docetaxel combination dose escalation cohorts. Cancer Res. 2020;80(16 Supplement):CT146.CrossRef
52.
go back to reference Mita MM, Mita AC, Chmielowski B, et al. Pharmacodynamic and clinical activity of RGX-104, a first-in-class immunotherapy targeting the liver-X nuclear hormone receptor (LXR), in patients with refractory malignancies. J Clin Oncol. 2018;36(15_suppl):3095–3095.CrossRef Mita MM, Mita AC, Chmielowski B, et al. Pharmacodynamic and clinical activity of RGX-104, a first-in-class immunotherapy targeting the liver-X nuclear hormone receptor (LXR), in patients with refractory malignancies. J Clin Oncol. 2018;36(15_suppl):3095–3095.CrossRef
53.
go back to reference Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451–8.PubMedCrossRef Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192(12):5451–8.PubMedCrossRef
54.
go back to reference Hofer T, Krichevsky O, Altan-Bonnet G. Competition for IL-2 between regulatory and effector T cells to chisel immune responses. Front Immunol. 2012;3:268.PubMedPubMedCentralCrossRef Hofer T, Krichevsky O, Altan-Bonnet G. Competition for IL-2 between regulatory and effector T cells to chisel immune responses. Front Immunol. 2012;3:268.PubMedPubMedCentralCrossRef
57.
go back to reference Brennen WN, Isaacs JT, Denmeade SR. Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol Cancer Ther. 2012;11(2):257–66.PubMedPubMedCentralCrossRef Brennen WN, Isaacs JT, Denmeade SR. Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol Cancer Ther. 2012;11(2):257–66.PubMedPubMedCentralCrossRef
58.
go back to reference Soerensen MM, Ros W, Rodriguez-Ruiz ME, et al. Safety, PK/PD, and anti-tumor activity of RO6874281, an engineered variant of interleukin-2 (IL-2v) targeted to tumor-associated fibroblasts via binding to fibroblast activation protein (FAP). J Clin Oncol. 2018;36(15_suppl):e15155–e15155.CrossRef Soerensen MM, Ros W, Rodriguez-Ruiz ME, et al. Safety, PK/PD, and anti-tumor activity of RO6874281, an engineered variant of interleukin-2 (IL-2v) targeted to tumor-associated fibroblasts via binding to fibroblast activation protein (FAP). J Clin Oncol. 2018;36(15_suppl):e15155–e15155.CrossRef
59.
go back to reference Shusterman S, London WB, Gillies SD, et al. Antitumor activity of hu14.18-IL2 in patients with relapsed/refractory neuroblastoma: a Children’s Oncology Group (COG) phase II study. J Clin Oncol. 2010;28(33):4969–75.PubMedPubMedCentralCrossRef Shusterman S, London WB, Gillies SD, et al. Antitumor activity of hu14.18-IL2 in patients with relapsed/refractory neuroblastoma: a Children’s Oncology Group (COG) phase II study. J Clin Oncol. 2010;28(33):4969–75.PubMedPubMedCentralCrossRef
60.
go back to reference Albertini MR, Yang RK, Ranheim EA, et al. Pilot trial of the hu14.18-IL2 immunocytokine in patients with completely resectable recurrent stage III or stage IV melanoma. Cancer Immunol Immunother. 2018;67(10):1647–58.PubMedPubMedCentralCrossRef Albertini MR, Yang RK, Ranheim EA, et al. Pilot trial of the hu14.18-IL2 immunocytokine in patients with completely resectable recurrent stage III or stage IV melanoma. Cancer Immunol Immunother. 2018;67(10):1647–58.PubMedPubMedCentralCrossRef
61.
go back to reference Vaishampayan UN, Fishman MN, Cho DC, et al. Intravenous administration of ALKS 4230 as monotherapy and in combination with pembrolizumab in a phase I study of patients with advanced solid tumors. J Clin Oncol. 2019;37(15_suppl):TPS2649–TPS2649.CrossRef Vaishampayan UN, Fishman MN, Cho DC, et al. Intravenous administration of ALKS 4230 as monotherapy and in combination with pembrolizumab in a phase I study of patients with advanced solid tumors. J Clin Oncol. 2019;37(15_suppl):TPS2649–TPS2649.CrossRef
62.
go back to reference Vaishampayan UN, Muzaffar J, Velcheti V, et al. Abstract P447: ALKS 4230, an engineered IL-2 fusion protein, in monotherapy dose-escalation and combination therapy with pembrolizumab in patients with solid tumors: ARTISTRY-1 trial. Journal for ImmunoTherapy of Cancer, 34th Annual Meeting & Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2019): part 1. 2019;7(1):282. Vaishampayan UN, Muzaffar J, Velcheti V, et al. Abstract P447: ALKS 4230, an engineered IL-2 fusion protein, in monotherapy dose-escalation and combination therapy with pembrolizumab in patients with solid tumors: ARTISTRY-1 trial. Journal for ImmunoTherapy of Cancer, 34th Annual Meeting & Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2019): part 1. 2019;7(1):282.
63.
go back to reference Siefker-Radtke AO, Fishman MN, Balar AV, et al. NKTR-214 + nivolumab in first-line advanced/metastatic urothelial carcinoma (mUC): Updated results from PIVOT-02. J Clin Oncol. 2019;37(7_suppl):388–388.CrossRef Siefker-Radtke AO, Fishman MN, Balar AV, et al. NKTR-214 + nivolumab in first-line advanced/metastatic urothelial carcinoma (mUC): Updated results from PIVOT-02. J Clin Oncol. 2019;37(7_suppl):388–388.CrossRef
64.
go back to reference Diab A, Puzanov I, Maio M, et al. Clinical activity of BEMPEG plus NIVO in previously untreated patients with metastatic melanoma: updated results from the phase 1/2 PIVOT-02 study. Journal for ImmunoTherapy of Cancer, 34th Annual Meeting & Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2019): part 2. 2019;7(1):283. Diab A, Puzanov I, Maio M, et al. Clinical activity of BEMPEG plus NIVO in previously untreated patients with metastatic melanoma: updated results from the phase 1/2 PIVOT-02 study. Journal for ImmunoTherapy of Cancer, 34th Annual Meeting & Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2019): part 2. 2019;7(1):283.
65.
go back to reference Steel JC, Waldmann TA, Morris JC. Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol Sci. 2012;33(1):35–41.PubMedCrossRef Steel JC, Waldmann TA, Morris JC. Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol Sci. 2012;33(1):35–41.PubMedCrossRef
66.
go back to reference Patidar M, Yadav N, Dalai SK. Interleukin 15: a key cytokine for immunotherapy. Cytokine Growth Factor Rev. 2016;31:49–59.PubMedCrossRef Patidar M, Yadav N, Dalai SK. Interleukin 15: a key cytokine for immunotherapy. Cytokine Growth Factor Rev. 2016;31:49–59.PubMedCrossRef
68.
go back to reference Wrangle JM, Velcheti V, Patel MR, et al. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 2018;19(5):694–704.PubMedPubMedCentralCrossRef Wrangle JM, Velcheti V, Patel MR, et al. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 2018;19(5):694–704.PubMedPubMedCentralCrossRef
69.
go back to reference Romee R, Cooley S, Berrien-Elliott MM, et al. First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood. 2018;131(23):2515–27.PubMedPubMedCentralCrossRef Romee R, Cooley S, Berrien-Elliott MM, et al. First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood. 2018;131(23):2515–27.PubMedPubMedCentralCrossRef
70.
go back to reference Van der Meer JMR, Maas RJA, Guldevall K, et al. IL-15 superagonist N-803 improves IFNgamma production and killing of leukemia and ovarian cancer cells by CD34(+) progenitor-derived NK cells. Cancer Immunol Immunother. 2020. Van der Meer JMR, Maas RJA, Guldevall K, et al. IL-15 superagonist N-803 improves IFNgamma production and killing of leukemia and ovarian cancer cells by CD34(+) progenitor-derived NK cells. Cancer Immunol Immunother. 2020.
71.
go back to reference Wrangle JM, Rubinstein MP, Mart C, et al. Phase I trial characterizing the pharmacokinetic profile and NK and CD8+ t cell expansion with n-803, a chimeric IL-15 superagonist, in healthy volunteers. J Clin Oncol. 2020;38(15_suppl):e15008–e15008.CrossRef Wrangle JM, Rubinstein MP, Mart C, et al. Phase I trial characterizing the pharmacokinetic profile and NK and CD8+ t cell expansion with n-803, a chimeric IL-15 superagonist, in healthy volunteers. J Clin Oncol. 2020;38(15_suppl):e15008–e15008.CrossRef
72.
73.
go back to reference Sek K, Molck C, Stewart GD, Kats L, Darcy PK, Beavis PA. Targeting adenosine receptor signaling in cancer immunotherapy. Int J Mol Sci. 2018;19(12):3837.PubMedCentralCrossRef Sek K, Molck C, Stewart GD, Kats L, Darcy PK, Beavis PA. Targeting adenosine receptor signaling in cancer immunotherapy. Int J Mol Sci. 2018;19(12):3837.PubMedCentralCrossRef
74.
go back to reference Jacobson KA, Merighi S, Varani K, et al. A3 adenosine receptors as modulators of inflammation: from medicinal chemistry to therapy. Med Res Rev. 2018;38(4):1031–72.PubMedCrossRef Jacobson KA, Merighi S, Varani K, et al. A3 adenosine receptors as modulators of inflammation: from medicinal chemistry to therapy. Med Res Rev. 2018;38(4):1031–72.PubMedCrossRef
75.
go back to reference Gessi S, Varani K, Merighi S, et al. Expression of A3 adenosine receptors in human lymphocytes: up-regulation in T cell activation. Mol Pharmacol. 2004;65(3):711–9.PubMedCrossRef Gessi S, Varani K, Merighi S, et al. Expression of A3 adenosine receptors in human lymphocytes: up-regulation in T cell activation. Mol Pharmacol. 2004;65(3):711–9.PubMedCrossRef
76.
go back to reference Antonioli L, Blandizzi C, Pacher P, Hasko G. Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer. 2013;13(12):842–57.PubMedCrossRef Antonioli L, Blandizzi C, Pacher P, Hasko G. Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer. 2013;13(12):842–57.PubMedCrossRef
77.
go back to reference Bar-Yehuda S, Stemmer SM, Madi L, et al. The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappaB signal transduction pathways. Int J Oncol. 2008;33(2):287–95.PubMed Bar-Yehuda S, Stemmer SM, Madi L, et al. The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappaB signal transduction pathways. Int J Oncol. 2008;33(2):287–95.PubMed
78.
go back to reference Stemmer SM, Manojlovic NS, Marinca MV, et al. A phase II, randomized, double-blind, placebo-controlled trial evaluating efficacy and safety of namodenoson (CF102), an A3 adenosine receptor agonist (A3AR), as a second-line treatment in patients with Child-Pugh B (CPB) advanced hepatocellular carcinoma (HCC). J Clin Oncol. 2019;37(15_suppl):2503–2503.CrossRef Stemmer SM, Manojlovic NS, Marinca MV, et al. A phase II, randomized, double-blind, placebo-controlled trial evaluating efficacy and safety of namodenoson (CF102), an A3 adenosine receptor agonist (A3AR), as a second-line treatment in patients with Child-Pugh B (CPB) advanced hepatocellular carcinoma (HCC). J Clin Oncol. 2019;37(15_suppl):2503–2503.CrossRef
79.
go back to reference Zhou H, Liao J, Aloor J, et al. CD11b/CD18 (Mac-1) is a novel surface receptor for extracellular double-stranded RNA to mediate cellular inflammatory responses. J Immunol. 2013;190(1):115–25.PubMedCrossRef Zhou H, Liao J, Aloor J, et al. CD11b/CD18 (Mac-1) is a novel surface receptor for extracellular double-stranded RNA to mediate cellular inflammatory responses. J Immunol. 2013;190(1):115–25.PubMedCrossRef
80.
go back to reference Mitchem JB, Brennan DJ, Knolhoff BL, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013;73(3):1128–41.PubMedCrossRef Mitchem JB, Brennan DJ, Knolhoff BL, et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013;73(3):1128–41.PubMedCrossRef
81.
go back to reference Panni RZ, Herndon JM, Zuo C, et al. Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Sci Transl Med. 2019;11(499):eaau9240.PubMedPubMedCentralCrossRef Panni RZ, Herndon JM, Zuo C, et al. Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Sci Transl Med. 2019;11(499):eaau9240.PubMedPubMedCentralCrossRef
82.
go back to reference Rasco DW, Bendell JC, Wang-Gillam A, et al. A phase I/II study of GB1275, a first-in-class oral CD11b modulator, alone, and combined with pembrolizumab in specified advanced solid tumors or with chemotherapy in metastatic pancreatic cancer (KEYNOTE-A36). J Clin Oncol. 2020;38(15_suppl):3085–3085.CrossRef Rasco DW, Bendell JC, Wang-Gillam A, et al. A phase I/II study of GB1275, a first-in-class oral CD11b modulator, alone, and combined with pembrolizumab in specified advanced solid tumors or with chemotherapy in metastatic pancreatic cancer (KEYNOTE-A36). J Clin Oncol. 2020;38(15_suppl):3085–3085.CrossRef
85.
go back to reference Berger G, Marloye M, Lawler SE. Pharmacological modulation of the STING pathway for cancer immunotherapy. Trends Mol Med. 2019;25(5):412–27.PubMedCrossRef Berger G, Marloye M, Lawler SE. Pharmacological modulation of the STING pathway for cancer immunotherapy. Trends Mol Med. 2019;25(5):412–27.PubMedCrossRef
86.
go back to reference Sokolowska O, Nowis D. STING signaling in cancer cells: important or not? Arch Immunol Ther Exp (Warsz). 2018;66(2):125–32.CrossRef Sokolowska O, Nowis D. STING signaling in cancer cells: important or not? Arch Immunol Ther Exp (Warsz). 2018;66(2):125–32.CrossRef
87.
go back to reference Corrales L, Glickman LH, McWhirter SM, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015;11(7):1018–30.PubMedPubMedCentralCrossRef Corrales L, Glickman LH, McWhirter SM, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015;11(7):1018–30.PubMedPubMedCentralCrossRef
88.
go back to reference Meric-Bernstam F, Sandhu SK, Hamid O, et al. Phase Ib study of MIW815 (ADU-S100) in combination with spartalizumab (PDR001) in patients (pts) with advanced/metastatic solid tumors or lymphomas. J Clin Oncol. 2019;37(15_suppl):2507–2507.CrossRef Meric-Bernstam F, Sandhu SK, Hamid O, et al. Phase Ib study of MIW815 (ADU-S100) in combination with spartalizumab (PDR001) in patients (pts) with advanced/metastatic solid tumors or lymphomas. J Clin Oncol. 2019;37(15_suppl):2507–2507.CrossRef
89.
go back to reference Shi M, Chen X, Ye K, Yao Y, Li Y. Application potential of toll-like receptors in cancer immunotherapy: systematic review. Medicine. 2016;95(25):e3951.PubMedPubMedCentralCrossRef Shi M, Chen X, Ye K, Yao Y, Li Y. Application potential of toll-like receptors in cancer immunotherapy: systematic review. Medicine. 2016;95(25):e3951.PubMedPubMedCentralCrossRef
91.
go back to reference Bhatia S, Miller NJ, Lu H, et al. Intratumoral G100, a TLR4 agonist, induces antitumor immune responses and tumor regression in patients with merkel cell carcinoma. Clin Cancer Res. 2019;25(4):1185–95.PubMedCrossRef Bhatia S, Miller NJ, Lu H, et al. Intratumoral G100, a TLR4 agonist, induces antitumor immune responses and tumor regression in patients with merkel cell carcinoma. Clin Cancer Res. 2019;25(4):1185–95.PubMedCrossRef
93.
go back to reference Dowling JK, Mansell A. Toll-like receptors: the swiss army knife of immunity and vaccine development. Clin Transl Immunol. 2016;5:e85.CrossRef Dowling JK, Mansell A. Toll-like receptors: the swiss army knife of immunity and vaccine development. Clin Transl Immunol. 2016;5:e85.CrossRef
94.
go back to reference Garcia-Manero G, Jabbour EJ, Konopleva MY, et al. A clinical study of tomaralimab (OPN-305), a toll-like receptor 2 (TLR-2) antibody, in heavily pre-treated transfusion dependent patients with lower risk myelodysplastic syndromes (MDS) that have received and failed on prior hypomethylating agent (HMA) therapy. Blood. 2018;132(Supplement 1):798–798.CrossRef Garcia-Manero G, Jabbour EJ, Konopleva MY, et al. A clinical study of tomaralimab (OPN-305), a toll-like receptor 2 (TLR-2) antibody, in heavily pre-treated transfusion dependent patients with lower risk myelodysplastic syndromes (MDS) that have received and failed on prior hypomethylating agent (HMA) therapy. Blood. 2018;132(Supplement 1):798–798.CrossRef
95.
go back to reference Seo YD, Zhou J, Morse K, et al. Effect of intratumoral (IT) injection of the toll-like receptor 4 (TLR4) agonist G100 on a clinical response and CD4 T-cell response locally and systemically. J Clin Oncol. 2018;36(5_suppl):71.CrossRef Seo YD, Zhou J, Morse K, et al. Effect of intratumoral (IT) injection of the toll-like receptor 4 (TLR4) agonist G100 on a clinical response and CD4 T-cell response locally and systemically. J Clin Oncol. 2018;36(5_suppl):71.CrossRef
96.
go back to reference Janku F, Han S-W, Doi T, et al. 378 A first in-human, multicenter, open-label, dose-finding phase 1 study of the immune stimulator antibody conjugate NJH395 in patients with nonbreast HER2+ advanced malignancies. J ImmunoTherapy Cancer. 2020;8(Suppl 3):A230. Janku F, Han S-W, Doi T, et al. 378 A first in-human, multicenter, open-label, dose-finding phase 1 study of the immune stimulator antibody conjugate NJH395 in patients with nonbreast HER2+ advanced malignancies. J ImmunoTherapy Cancer. 2020;8(Suppl 3):A230.
97.
go back to reference Shayan G, Kansy BA, Gibson SP, et al. Phase Ib study of immune biomarker modulation with neoadjuvant cetuximab and TLR8 stimulation in head and neck cancer to overcome suppressive myeloid signals. Clin Cancer Res. 2018;24(1):62–72.PubMedCrossRef Shayan G, Kansy BA, Gibson SP, et al. Phase Ib study of immune biomarker modulation with neoadjuvant cetuximab and TLR8 stimulation in head and neck cancer to overcome suppressive myeloid signals. Clin Cancer Res. 2018;24(1):62–72.PubMedCrossRef
98.
go back to reference Ferris RL, Saba NF, Gitlitz BJ, et al. Effect of adding motolimod to standard combination chemotherapy and cetuximab treatment of patients with squamous cell carcinoma of the head and neck: the active8 randomized clinical trial. JAMA Oncol. 2018;4(11):1583–8.PubMedPubMedCentralCrossRef Ferris RL, Saba NF, Gitlitz BJ, et al. Effect of adding motolimod to standard combination chemotherapy and cetuximab treatment of patients with squamous cell carcinoma of the head and neck: the active8 randomized clinical trial. JAMA Oncol. 2018;4(11):1583–8.PubMedPubMedCentralCrossRef
99.
go back to reference Mullins SR, Vasilakos JP, Deschler K, et al. Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies. J Immunother Cancer. 2019;7(1):244.PubMedPubMedCentralCrossRef Mullins SR, Vasilakos JP, Deschler K, et al. Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies. J Immunother Cancer. 2019;7(1):244.PubMedPubMedCentralCrossRef
100.
go back to reference Siu L, Brody J, Gupta S, et al. Safety and clinical activity of intratumoral MEDI9197 alone and in combination with durvalumab and/or palliative radiation therapy in patients with advanced solid tumors. J Immunother Cancer. 2020;8(2):e001095.PubMedPubMedCentralCrossRef Siu L, Brody J, Gupta S, et al. Safety and clinical activity of intratumoral MEDI9197 alone and in combination with durvalumab and/or palliative radiation therapy in patients with advanced solid tumors. J Immunother Cancer. 2020;8(2):e001095.PubMedPubMedCentralCrossRef
101.
go back to reference Diab A, Curti B, Bilen M, et al. 368 REVEAL: phase 1 dose-escalation study of NKTR-262, a novel TLR7/8 agonist, plus bempegaldesleukin: local innate immune activation and systemic adaptive immune expansion for treating solid tumors. J Immunother Cancer. 2020;8(Suppl 3):A224–5. Diab A, Curti B, Bilen M, et al. 368 REVEAL: phase 1 dose-escalation study of NKTR-262, a novel TLR7/8 agonist, plus bempegaldesleukin: local innate immune activation and systemic adaptive immune expansion for treating solid tumors. J Immunother Cancer. 2020;8(Suppl 3):A224–5.
102.
go back to reference Babiker HM, Subbiah V, Ali A, et al. Abstract CT134: tilsotolimod engages the TLR9 pathway to promote antigen presentation and Type-I IFN signaling in solid tumors. Cancer Res. 2020;80(16 Supplement):CT134.CrossRef Babiker HM, Subbiah V, Ali A, et al. Abstract CT134: tilsotolimod engages the TLR9 pathway to promote antigen presentation and Type-I IFN signaling in solid tumors. Cancer Res. 2020;80(16 Supplement):CT134.CrossRef
103.
go back to reference Babiker HM, Borazanci EH, Subbiah V, et al. Preliminary safety of deep/visceral (D/V) image guided (IG) intratumoral injection (ITI) of IMO-2125. J Clin Oncol. 2018;36(15_suppl):e15150–e15150.CrossRef Babiker HM, Borazanci EH, Subbiah V, et al. Preliminary safety of deep/visceral (D/V) image guided (IG) intratumoral injection (ITI) of IMO-2125. J Clin Oncol. 2018;36(15_suppl):e15150–e15150.CrossRef
104.
go back to reference Thomas M, Ponce-Aix S, Navarro A, et al. Immunotherapeutic maintenance treatment with toll-like receptor 9 agonist lefitolimod in patients with extensive-stage small-cell lung cancer: results from the exploratory, controlled, randomized, international phase II IMPULSE study. Ann Oncol. 2018;29(10):2076–84.PubMedPubMedCentralCrossRef Thomas M, Ponce-Aix S, Navarro A, et al. Immunotherapeutic maintenance treatment with toll-like receptor 9 agonist lefitolimod in patients with extensive-stage small-cell lung cancer: results from the exploratory, controlled, randomized, international phase II IMPULSE study. Ann Oncol. 2018;29(10):2076–84.PubMedPubMedCentralCrossRef
105.
106.
107.
go back to reference Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov. 2012;11(2):109–24.PubMedCrossRef Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov. 2012;11(2):109–24.PubMedCrossRef
108.
go back to reference Beug ST, Beauregard CE, Healy C, et al. Smac mimetics synergize with immune checkpoint inhibitors to promote tumour immunity against glioblastoma. Nat Commun. 2017;8:14278.PubMedCentralCrossRef Beug ST, Beauregard CE, Healy C, et al. Smac mimetics synergize with immune checkpoint inhibitors to promote tumour immunity against glioblastoma. Nat Commun. 2017;8:14278.PubMedCentralCrossRef
109.
go back to reference Schilder RJ, Albertella M, Strauss JF, et al. Determination of the recommended phase II dose of birinapant in combination with pembrolizumab: results from the dose-escalation phase of BPT-201. J Clin Oncol. 2019;37(15_suppl):2506–2506.CrossRef Schilder RJ, Albertella M, Strauss JF, et al. Determination of the recommended phase II dose of birinapant in combination with pembrolizumab: results from the dose-escalation phase of BPT-201. J Clin Oncol. 2019;37(15_suppl):2506–2506.CrossRef
110.
go back to reference Dewan MZ, Ahmed S, Iwasaki Y, Ohba K, Toi M, Yamamoto N. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother. 2006;60(6):273–6.PubMedCrossRef Dewan MZ, Ahmed S, Iwasaki Y, Ohba K, Toi M, Yamamoto N. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother. 2006;60(6):273–6.PubMedCrossRef
111.
go back to reference Zboralski D, Hoehlig K, Eulberg D, Fromming A, Vater A. Increasing tumor-infiltrating T cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade. Cancer Immunol Res. 2017;5(11):950–6.PubMedCrossRef Zboralski D, Hoehlig K, Eulberg D, Fromming A, Vater A. Increasing tumor-infiltrating T cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade. Cancer Immunol Res. 2017;5(11):950–6.PubMedCrossRef
113.
go back to reference Liehn EA, Tuchscheerer N, Kanzler I, et al. Double-edged role of the CXCL12/CXCR4 axis in experimental myocardial infarction. J Am Coll Cardiol. 2011;58(23):2415–23.PubMedCrossRef Liehn EA, Tuchscheerer N, Kanzler I, et al. Double-edged role of the CXCL12/CXCR4 axis in experimental myocardial infarction. J Am Coll Cardiol. 2011;58(23):2415–23.PubMedCrossRef
114.
go back to reference Xue LJ, Mao XB, Ren LL, Chu XY. Inhibition of CXCL12/CXCR4 axis as a potential targeted therapy of advanced gastric carcinoma. Cancer Med. 2017;6(6):1424–36.PubMedPubMedCentralCrossRef Xue LJ, Mao XB, Ren LL, Chu XY. Inhibition of CXCL12/CXCR4 axis as a potential targeted therapy of advanced gastric carcinoma. Cancer Med. 2017;6(6):1424–36.PubMedPubMedCentralCrossRef
115.
go back to reference Halama N, Williams A, Prüfer U, et al. Abstract CT117: phase 1/2 study with CXCL12 inhibitor NOX-A12 and pembrolizumab in patients with microsatellite-stable, metastatic colorectal or pancreatic cancer. Cancer Res. 2020;80(16 Supplement):CT117.CrossRef Halama N, Williams A, Prüfer U, et al. Abstract CT117: phase 1/2 study with CXCL12 inhibitor NOX-A12 and pembrolizumab in patients with microsatellite-stable, metastatic colorectal or pancreatic cancer. Cancer Res. 2020;80(16 Supplement):CT117.CrossRef
116.
go back to reference Halama N, Pruefer U, Frömming A, et al. Experience with CXCL12 inhibitor NOX-A12 plus pembrolizumab in patients with microsatellite-stable, metastatic colorectal or pancreatic cancer. J Clin Oncol. 2019;37(15):e14143–e14143.CrossRef Halama N, Pruefer U, Frömming A, et al. Experience with CXCL12 inhibitor NOX-A12 plus pembrolizumab in patients with microsatellite-stable, metastatic colorectal or pancreatic cancer. J Clin Oncol. 2019;37(15):e14143–e14143.CrossRef
117.
go back to reference Halama N, Williams A, Suarez-Carmona M, et al. 1537P Phase I/II study with CXCL12 inhibitor NOX-A12 and pembrolizumab in patients with microsatellite-stable, metastatic colorectal or pancreatic cancer. Ann Oncol. 2020;31:S944.CrossRef Halama N, Williams A, Suarez-Carmona M, et al. 1537P Phase I/II study with CXCL12 inhibitor NOX-A12 and pembrolizumab in patients with microsatellite-stable, metastatic colorectal or pancreatic cancer. Ann Oncol. 2020;31:S944.CrossRef
118.
go back to reference Kaufman PA, Pernas Simon S, Martin M, et al. Balixafortide (a CXCR4 antagonist) plus eribulin in HER2 negative metastatic breast cancer: dose-response analysis of efficacy from phase I single-arm trial. J Clin Oncol. 2020;38(15_suppl):e15209–e15209.CrossRef Kaufman PA, Pernas Simon S, Martin M, et al. Balixafortide (a CXCR4 antagonist) plus eribulin in HER2 negative metastatic breast cancer: dose-response analysis of efficacy from phase I single-arm trial. J Clin Oncol. 2020;38(15_suppl):e15209–e15209.CrossRef
119.
go back to reference Pernas S, Martin M, Kaufman PA, et al. Balixafortide plus eribulin in HER2-negative metastatic breast cancer: a phase 1, single-arm, dose-escalation trial. Lancet Oncol. 2018;19(6):812–24.PubMedCrossRef Pernas S, Martin M, Kaufman PA, et al. Balixafortide plus eribulin in HER2-negative metastatic breast cancer: a phase 1, single-arm, dose-escalation trial. Lancet Oncol. 2018;19(6):812–24.PubMedCrossRef
120.
go back to reference Kaufman PA, Pernas Simon S, Martin M, et al. Balixafortide (a CXCR4 antagonist) + eribulin in HER2-negative metastatic breast cancer (MBC): Survival outcomes of the phase I trial. J Clin Oncol. 2019;37(15_suppl):2606.CrossRef Kaufman PA, Pernas Simon S, Martin M, et al. Balixafortide (a CXCR4 antagonist) + eribulin in HER2-negative metastatic breast cancer (MBC): Survival outcomes of the phase I trial. J Clin Oncol. 2019;37(15_suppl):2606.CrossRef
121.
go back to reference Okkenhaug K, Graupera M, Vanhaesebroeck B. Targeting PI3K in cancer: impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discov. 2016;6(10):1090–105.PubMedPubMedCentralCrossRef Okkenhaug K, Graupera M, Vanhaesebroeck B. Targeting PI3K in cancer: impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discov. 2016;6(10):1090–105.PubMedPubMedCentralCrossRef
122.
go back to reference Sullivan RJ, Hong DS, Tolcher AW, et al. Initial results from first-in-human study of IPI-549, a tumor macrophage-targeting agent, combined with nivolumab in advanced solid tumors. J Clin Oncol. 2018;36(15_suppl):3013–3013.CrossRef Sullivan RJ, Hong DS, Tolcher AW, et al. Initial results from first-in-human study of IPI-549, a tumor macrophage-targeting agent, combined with nivolumab in advanced solid tumors. J Clin Oncol. 2018;36(15_suppl):3013–3013.CrossRef
123.
go back to reference Virone-Oddos A, Bonnevaux H, Lemaitre O, et al. Abstract 3258: Discovery and characterization of SAR260301, a novel PI3Kβ-selective inhibitor in clinical development for the treatment of PTEN-deficient tumors. Can Res. 2013;73(8 Supplement):3258–3258.CrossRef Virone-Oddos A, Bonnevaux H, Lemaitre O, et al. Abstract 3258: Discovery and characterization of SAR260301, a novel PI3Kβ-selective inhibitor in clinical development for the treatment of PTEN-deficient tumors. Can Res. 2013;73(8 Supplement):3258–3258.CrossRef
124.
go back to reference Bedard PL, Davies MA, Kopetz S, et al. First-in-human trial of the PI3Kbeta-selective inhibitor SAR260301 in patients with advanced solid tumors. Cancer. 2018;124(2):315–24.PubMedCrossRef Bedard PL, Davies MA, Kopetz S, et al. First-in-human trial of the PI3Kbeta-selective inhibitor SAR260301 in patients with advanced solid tumors. Cancer. 2018;124(2):315–24.PubMedCrossRef
126.
127.
go back to reference Yu Y, Suryo Rahmanto Y, Lee M-H, et al. Inhibition of ovarian tumor cell invasiveness by targeting SYK in the tyrosine kinase signaling pathway. Oncogene. 2018;37(28):3778–89.PubMedPubMedCentralCrossRef Yu Y, Suryo Rahmanto Y, Lee M-H, et al. Inhibition of ovarian tumor cell invasiveness by targeting SYK in the tyrosine kinase signaling pathway. Oncogene. 2018;37(28):3778–89.PubMedPubMedCentralCrossRef
128.
go back to reference Krisenko MO, Geahlen RL. Calling in SYK: SYK’s dual role as a tumor promoter and tumor suppressor in cancer. Biochem Biophys Acta. 2015;1853(1):254–63.PubMedCrossRef Krisenko MO, Geahlen RL. Calling in SYK: SYK’s dual role as a tumor promoter and tumor suppressor in cancer. Biochem Biophys Acta. 2015;1853(1):254–63.PubMedCrossRef
129.
go back to reference Fueyo J, Alonso MM, Parker Kerrigan BC, Gomez-Manzano C. Linking inflammation and cancer: the unexpected SYK world. Neuro Oncol. 2018;20(5):582–3.PubMedPubMedCentral Fueyo J, Alonso MM, Parker Kerrigan BC, Gomez-Manzano C. Linking inflammation and cancer: the unexpected SYK world. Neuro Oncol. 2018;20(5):582–3.PubMedPubMedCentral
130.
go back to reference Krisenko MO, Geahlen RL. Calling in SYK: SYK’s dual role as a tumor promoter and tumor suppressor in cancer. Biochim Biophys Acta. 2015;1853(1):254–63.PubMedCrossRef Krisenko MO, Geahlen RL. Calling in SYK: SYK’s dual role as a tumor promoter and tumor suppressor in cancer. Biochim Biophys Acta. 2015;1853(1):254–63.PubMedCrossRef
131.
go back to reference Juric D, Olszanski AJ, Vaishampayan UN, et al. Phase 1b study of TAK-659 + nivolumab (nivo) in patients (pts) with advanced solid tumors. J Clin Oncol. 2018;36(15_suppl):e15124.CrossRef Juric D, Olszanski AJ, Vaishampayan UN, et al. Phase 1b study of TAK-659 + nivolumab (nivo) in patients (pts) with advanced solid tumors. J Clin Oncol. 2018;36(15_suppl):e15124.CrossRef
132.
go back to reference Diab S, Kumarasiri M, Yu M, et al. MAP kinase-interacting kinases–emerging targets against cancer. Chem Biol. 2014;21(4):441–52.PubMedCrossRef Diab S, Kumarasiri M, Yu M, et al. MAP kinase-interacting kinases–emerging targets against cancer. Chem Biol. 2014;21(4):441–52.PubMedCrossRef
133.
go back to reference Dreas A, Mikulski M, Milik M, Fabritius CH, Brzozka K, Rzymski T. Mitogen-activated protein kinase (MAPK) interacting kinases 1 and 2 (MNK1 and MNK2) as targets for cancer therapy: recent progress in the development of MNK inhibitors. Curr Med Chem. 2017;24(28):3025–53.PubMedCrossRef Dreas A, Mikulski M, Milik M, Fabritius CH, Brzozka K, Rzymski T. Mitogen-activated protein kinase (MAPK) interacting kinases 1 and 2 (MNK1 and MNK2) as targets for cancer therapy: recent progress in the development of MNK inhibitors. Curr Med Chem. 2017;24(28):3025–53.PubMedCrossRef
134.
135.
go back to reference Cerezo M, Guemiri R, Druillennec S, et al. Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma. Nat Med. 2018;24(12):1877–86.PubMedCrossRef Cerezo M, Guemiri R, Druillennec S, et al. Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma. Nat Med. 2018;24(12):1877–86.PubMedCrossRef
137.
go back to reference El-Khoueiry AB, Tchekmedyian N, Sanborn RE, et al. A phase II, open-label study of tomivosertib (eFT508) added on to continued checkpoint inhibitor therapy in patients (pts) with insufficient response to single-agent treatment. J Clin Oncol. 2020;38(15_suppl):3112.CrossRef El-Khoueiry AB, Tchekmedyian N, Sanborn RE, et al. A phase II, open-label study of tomivosertib (eFT508) added on to continued checkpoint inhibitor therapy in patients (pts) with insufficient response to single-agent treatment. J Clin Oncol. 2020;38(15_suppl):3112.CrossRef
138.
go back to reference Conte M, De Palma R, Altucci L. HDAC inhibitors as epigenetic regulators for cancer immunotherapy. Int J Biochem Cell Biol. 2018;98:65–74.PubMedCrossRef Conte M, De Palma R, Altucci L. HDAC inhibitors as epigenetic regulators for cancer immunotherapy. Int J Biochem Cell Biol. 2018;98:65–74.PubMedCrossRef
139.
go back to reference Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 2017;18(7):1414.PubMedCentralCrossRef Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 2017;18(7):1414.PubMedCentralCrossRef
140.
go back to reference Tang J, Yan H, Zhuang S. Histone deacetylases as targets for treatment of multiple diseases. Clin Sci (Lond). 2013;124(11):651–62.CrossRef Tang J, Yan H, Zhuang S. Histone deacetylases as targets for treatment of multiple diseases. Clin Sci (Lond). 2013;124(11):651–62.CrossRef
142.
go back to reference Alhazzazi TY, Kamarajan P, Verdin E, Kapila YL. SIRT3 and cancer: tumor promoter or suppressor? Biochim Biophys Acta. 2011;1816(1):80–8.PubMedPubMedCentral Alhazzazi TY, Kamarajan P, Verdin E, Kapila YL. SIRT3 and cancer: tumor promoter or suppressor? Biochim Biophys Acta. 2011;1816(1):80–8.PubMedPubMedCentral
143.
go back to reference Sando R 3rd, Gounko N, Pieraut S, Liao L, Yates J III, Maximov A. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell. 2012;151(4):821–34.PubMedPubMedCentralCrossRef Sando R 3rd, Gounko N, Pieraut S, Liao L, Yates J III, Maximov A. HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell. 2012;151(4):821–34.PubMedPubMedCentralCrossRef
144.
145.
go back to reference Park SY, Jun JA, Jeong KJ, et al. Histone deacetylases 1, 6 and 8 are critical for invasion in breast cancer. Oncol Rep. 2011;25(6):1677–81.PubMed Park SY, Jun JA, Jeong KJ, et al. Histone deacetylases 1, 6 and 8 are critical for invasion in breast cancer. Oncol Rep. 2011;25(6):1677–81.PubMed
146.
go back to reference Triplett TA, Holay N, Kottapalli S, VanDenBerg C, Capasso A. Elucidating the role of HDACs in T cell biology and comparing distinct HDAC inhibitors in augmenting responses to cancer immunotherapy. J Immunol. 2020;204(1 Supplement):165.123. Triplett TA, Holay N, Kottapalli S, VanDenBerg C, Capasso A. Elucidating the role of HDACs in T cell biology and comparing distinct HDAC inhibitors in augmenting responses to cancer immunotherapy. J Immunol. 2020;204(1 Supplement):165.123.
148.
go back to reference Knox T, Sahakian E, Banik D, et al. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep. 2019;9(1):6136.PubMedPubMedCentralCrossRef Knox T, Sahakian E, Banik D, et al. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep. 2019;9(1):6136.PubMedPubMedCentralCrossRef
149.
go back to reference Richon VM. Cancer biology: mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor. Brit J Cancer. 2006;95(Suppl 1):S2–6.CrossRefPubMedCentral Richon VM. Cancer biology: mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor. Brit J Cancer. 2006;95(Suppl 1):S2–6.CrossRefPubMedCentral
150.
go back to reference Pili R, Quinn DI, Albany C, et al. Immunomodulation by HDAC inhibition: Results from a phase Ib study with vorinostat and pembrolizumab in metastatic urothelial, renal, and prostate carcinoma patients. J Clin Oncol. 2019;37(15_suppl):2572.CrossRef Pili R, Quinn DI, Albany C, et al. Immunomodulation by HDAC inhibition: Results from a phase Ib study with vorinostat and pembrolizumab in metastatic urothelial, renal, and prostate carcinoma patients. J Clin Oncol. 2019;37(15_suppl):2572.CrossRef
151.
go back to reference Tsimberidou AM, Beer P, Bendall J, et al. Abstract CT151: phase I study of KA2507, a selective HDAC6 inhibitor, in patients with relapsed or refractory solid tumors. Cancer Res. 2020;80(16_suppl):CT151.CrossRef Tsimberidou AM, Beer P, Bendall J, et al. Abstract CT151: phase I study of KA2507, a selective HDAC6 inhibitor, in patients with relapsed or refractory solid tumors. Cancer Res. 2020;80(16_suppl):CT151.CrossRef
152.
153.
go back to reference Proia DA, Kaufmann GF. Targeting heat-shock protein 90 (HSP90) as a complementary strategy to immune checkpoint blockade for cancer therapy. Cancer Immunol Res. 2015;3(6):583–9.PubMedCrossRef Proia DA, Kaufmann GF. Targeting heat-shock protein 90 (HSP90) as a complementary strategy to immune checkpoint blockade for cancer therapy. Cancer Immunol Res. 2015;3(6):583–9.PubMedCrossRef
154.
go back to reference Mbofung RM, McKenzie JA, Malu S, et al. HSP90 inhibition enhances cancer immunotherapy by upregulating interferon response genes. Nat Commun. 2017;8(1):451.PubMedPubMedCentralCrossRef Mbofung RM, McKenzie JA, Malu S, et al. HSP90 inhibition enhances cancer immunotherapy by upregulating interferon response genes. Nat Commun. 2017;8(1):451.PubMedPubMedCentralCrossRef
156.
go back to reference Do KT, Hays JL, Liu SV, et al. Phase I trial of the combination of the heat shock protein-90 inhibitor onalespib (AT13387) and the cyclin-dependent kinase inhibitor AT7519M in patients with advanced solid tumors. J Clin Oncol. 2019;37(15_suppl):2619.CrossRef Do KT, Hays JL, Liu SV, et al. Phase I trial of the combination of the heat shock protein-90 inhibitor onalespib (AT13387) and the cyclin-dependent kinase inhibitor AT7519M in patients with advanced solid tumors. J Clin Oncol. 2019;37(15_suppl):2619.CrossRef
157.
go back to reference Matheson CJ, Backos DS, Reigan P. Targeting WEE1 kinase in cancer. Trends Pharmacol Sci. 2016;37(10):872–81.PubMedCrossRef Matheson CJ, Backos DS, Reigan P. Targeting WEE1 kinase in cancer. Trends Pharmacol Sci. 2016;37(10):872–81.PubMedCrossRef
158.
go back to reference Sun L, Moore E, Berman R, et al. WEE1 kinase inhibition reverses G2/M cell cycle checkpoint activation to sensitize cancer cells to immunotherapy. Oncoimmunology. 2018;7(10):e1488359.PubMedPubMedCentralCrossRef Sun L, Moore E, Berman R, et al. WEE1 kinase inhibition reverses G2/M cell cycle checkpoint activation to sensitize cancer cells to immunotherapy. Oncoimmunology. 2018;7(10):e1488359.PubMedPubMedCentralCrossRef
159.
go back to reference Friedman J, Morisada M, Sun L, et al. Inhibition of WEE1 kinase and cell cycle checkpoint activation sensitizes head and neck cancers to natural killer cell therapies. J Immunother Cancer. 2018;6(1):59.PubMedPubMedCentralCrossRef Friedman J, Morisada M, Sun L, et al. Inhibition of WEE1 kinase and cell cycle checkpoint activation sensitizes head and neck cancers to natural killer cell therapies. J Immunother Cancer. 2018;6(1):59.PubMedPubMedCentralCrossRef
160.
go back to reference Zhou L, Zhang Y, Chen S, et al. A regimen combining the Wee1 inhibitor AZD1775 with HDAC inhibitors targets human acute myeloid leukemia cells harboring various genetic mutations. Leukemia. 2015;29(4):807–18.PubMedCrossRef Zhou L, Zhang Y, Chen S, et al. A regimen combining the Wee1 inhibitor AZD1775 with HDAC inhibitors targets human acute myeloid leukemia cells harboring various genetic mutations. Leukemia. 2015;29(4):807–18.PubMedCrossRef
161.
go back to reference Patel MR, Falchook GS, Wang JS-Z, et al. Open-label, multicenter, phase I study to assess safety and tolerability of adavosertib plus durvalumab in patients with advanced solid tumors. J Clin Oncol. 2019;37(15_suppl):2562.CrossRef Patel MR, Falchook GS, Wang JS-Z, et al. Open-label, multicenter, phase I study to assess safety and tolerability of adavosertib plus durvalumab in patients with advanced solid tumors. J Clin Oncol. 2019;37(15_suppl):2562.CrossRef
Metadata
Title
Immunotherapies targeting stimulatory pathways and beyond
Authors
Julian A. Marin-Acevedo
ErinMarie O. Kimbrough
Rami Manochakian
Yujie Zhao
Yanyan Lou
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2021
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-021-01085-3

Other articles of this Issue 1/2021

Journal of Hematology & Oncology 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine