Skip to main content
Top
Published in: Current Treatment Options in Neurology 6/2013

01-12-2013 | DEMENTIA (E MCDADE, SECTION EDITOR)

Immunotherapeutics for Autoimmune Encephalopathies and Dementias

Author: Andrew McKeon, MD

Published in: Current Treatment Options in Neurology | Issue 6/2013

Login to get access

Opinion statement

The timely implementation of immunotherapy is key to successful treatment of autoimmune encephalopathies or dementias (from here on will be referred to as autoimmune encephalopathies). There are different levels of diagnostic certainty which should guide the immunological treatment of autoimmune encephalopathies. There is a high level of diagnostic certainty for patients who have classic limbic encephalitis and have a neural antibody detected in serum or CSF (such as potassium channel complex antibody). For these patients, initiating high-dose corticosteroids or IVIg is indicated, with plasma exchange, rituximab or cyclophosphamide used as second-line therapy if first-line therapy proves only partially beneficial. There is a lower level of diagnostic certainty in patients with non-limbic atypical phenotypes (though rapidly progressive) when no neural antibody is detected in serum and CSF. A trial of corticosteroids or IVIg (or both sequentially) may be undertaken in these patients, but if no objective improvements occur, further immunotherapy is unlikely to be beneficial. Antiepileptic treatment also plays a critical role in those who have seizures as well as cognitive symptoms. Evaluation for and treatment of any underlying cancer is another component for those patients with a paraneoplastic cause of encephalitis. An individualized maintenance regimen needs to be designed for patients who do improve with immunotherapy. Individual factors that need to be considered when formulating a program of maintenance treatment include disease severity, antibody specificity and proclivity for disease relapse. Azathioprine and mycophenolate mofetil are frequently used for the purpose of remission maintenance, and should permit gradual withdrawal of steroids, IVIg or more toxic immunosuppressants. The duration of maintenance therapy is uncertain, but this author typically recommends 3–5 years of relapse-free maintenance treatment before discontinuing immunotherapy altogether.
Literature
1.••
go back to reference Flanagan EP, McKeon A, Lennon VA, et al. Autoimmune dementia: clinical course and predictors of immunotherapy response. Mayo Clin Proc. 2010;85:881–97. This article describes the spectrum of autoimmune encephalopathies seen at Mayo Clinic. As well as clinical descriptions, serological findings, and predictors of immunotherapy response are discussed.PubMedCrossRef Flanagan EP, McKeon A, Lennon VA, et al. Autoimmune dementia: clinical course and predictors of immunotherapy response. Mayo Clin Proc. 2010;85:881–97. This article describes the spectrum of autoimmune encephalopathies seen at Mayo Clinic. As well as clinical descriptions, serological findings, and predictors of immunotherapy response are discussed.PubMedCrossRef
2.•
go back to reference McKeon A, Lennon VA, Pittock SJ. Immunotherapy-responsive dementias and encephalopathies. Continuum (Minneap Minn). 2010;16:80–101. This describes in detail the evaluation of patients with suspected autoimmune encephalopathy.CrossRef McKeon A, Lennon VA, Pittock SJ. Immunotherapy-responsive dementias and encephalopathies. Continuum (Minneap Minn). 2010;16:80–101. This describes in detail the evaluation of patients with suspected autoimmune encephalopathy.CrossRef
3.
go back to reference Geschwind MD, Tan KM, Lennon VA, et al. Voltage-gated potassium channel autoimmunity mimicking creutzfeldt-jakob disease. Arch Neurol. 2008;65:1341–6.PubMedCrossRef Geschwind MD, Tan KM, Lennon VA, et al. Voltage-gated potassium channel autoimmunity mimicking creutzfeldt-jakob disease. Arch Neurol. 2008;65:1341–6.PubMedCrossRef
4.
go back to reference Castillo P, Woodruff B, Caselli R, et al. Steroid-responsive encephalopathy associated with autoimmune thyroiditis. Arch Neurol. 2006;63:197–202.PubMedCrossRef Castillo P, Woodruff B, Caselli R, et al. Steroid-responsive encephalopathy associated with autoimmune thyroiditis. Arch Neurol. 2006;63:197–202.PubMedCrossRef
5.
go back to reference McKeon A, Pittock SJ, Lennon VA. CSF complements serum for evaluating paraneoplastic antibodies and NMO-IgG. Neurology. 2011;76:1108–10.PubMedCrossRef McKeon A, Pittock SJ, Lennon VA. CSF complements serum for evaluating paraneoplastic antibodies and NMO-IgG. Neurology. 2011;76:1108–10.PubMedCrossRef
6.
go back to reference Gultekin SH, Rosenfeld MR, Voltz R, et al. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain. 2000;123(Pt 7):1481–94.PubMedCrossRef Gultekin SH, Rosenfeld MR, Voltz R, et al. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain. 2000;123(Pt 7):1481–94.PubMedCrossRef
7.
go back to reference Vernino S, O'Neill BP, Marks RS, et al. Immunomodulatory treatment trial for paraneoplastic neurological disorders. Neuro Oncol. 2004;6:55–62.PubMedCrossRef Vernino S, O'Neill BP, Marks RS, et al. Immunomodulatory treatment trial for paraneoplastic neurological disorders. Neuro Oncol. 2004;6:55–62.PubMedCrossRef
8.
go back to reference Vincent A, Buckley C, Schott JM, et al. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain. 2004;127:701–12.PubMedCrossRef Vincent A, Buckley C, Schott JM, et al. Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain. 2004;127:701–12.PubMedCrossRef
9.
go back to reference Lai M, Huijbers MG, Lancaster E, et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol. 2010;9:776–85.PubMedCrossRef Lai M, Huijbers MG, Lancaster E, et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol. 2010;9:776–85.PubMedCrossRef
10.
go back to reference McKeon A, Lennon VA, Pittock SJ. Immunotherapy-responsive dementias and encephalopathies. Continuum Lifelong Learn Neurol. 2010;16:80–101.CrossRef McKeon A, Lennon VA, Pittock SJ. Immunotherapy-responsive dementias and encephalopathies. Continuum Lifelong Learn Neurol. 2010;16:80–101.CrossRef
11.•
go back to reference Titulaer MJ, McCracken L, Gabilondo I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol. 2013;12:157–65. This is an important detailed study of the benefits of immunotherapy for NMDA R encephalitis. The authors describe 1st ine and 2nd line therapy.PubMedCrossRef Titulaer MJ, McCracken L, Gabilondo I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol. 2013;12:157–65. This is an important detailed study of the benefits of immunotherapy for NMDA R encephalitis. The authors describe 1st ine and 2nd line therapy.PubMedCrossRef
12.
go back to reference Quek AM, Britton JW, McKeon A et al. Autoimmune Epilepsy: Clinical Characteristics and Response to Immunotherapy. Arch Neurol. 2012. Quek AM, Britton JW, McKeon A et al. Autoimmune Epilepsy: Clinical Characteristics and Response to Immunotherapy. Arch Neurol. 2012.
13.
go back to reference Oakley RH, Cidlowski JA. Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J Biol Chem. 2011;286:3177–84.PubMedCrossRef Oakley RH, Cidlowski JA. Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J Biol Chem. 2011;286:3177–84.PubMedCrossRef
15.
go back to reference Green H, Paul M, Vidal L, Leibovici L. Prophylaxis of Pneumocystis pneumonia in immunocompromised non-HIV-infected patients: systematic review and meta-analysis of randomized controlled trials. Mayo Clin Proc. 2007;82:1052–9.PubMedCrossRef Green H, Paul M, Vidal L, Leibovici L. Prophylaxis of Pneumocystis pneumonia in immunocompromised non-HIV-infected patients: systematic review and meta-analysis of randomized controlled trials. Mayo Clin Proc. 2007;82:1052–9.PubMedCrossRef
16.
go back to reference Sangiolo D, Storer B, Nash R, et al. Toxicity and efficacy of daily dapsone as Pneumocystis jiroveci prophylaxis after hematopoietic stem cell transplantation: a case-control study. Biol Blood Marrow Transplant. 2005;11:521–9.PubMedCrossRef Sangiolo D, Storer B, Nash R, et al. Toxicity and efficacy of daily dapsone as Pneumocystis jiroveci prophylaxis after hematopoietic stem cell transplantation: a case-control study. Biol Blood Marrow Transplant. 2005;11:521–9.PubMedCrossRef
17.
go back to reference Tomonari A, Takahashi S, Ooi J, et al. No occurrence of Pneumocystis jiroveci (carinii) pneumonia in 120 adults undergoing myeloablative unrelated cord blood transplantation. Transpl Infect Dis. 2008;10:303–7.PubMedCrossRef Tomonari A, Takahashi S, Ooi J, et al. No occurrence of Pneumocystis jiroveci (carinii) pneumonia in 120 adults undergoing myeloablative unrelated cord blood transplantation. Transpl Infect Dis. 2008;10:303–7.PubMedCrossRef
18.
go back to reference Grossman JM, Gordon R, Ranganath VK, et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res. 2010;62:1515–26.CrossRef Grossman JM, Gordon R, Ranganath VK, et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res. 2010;62:1515–26.CrossRef
19.
go back to reference Richards RN. Short-term corticosteroids and avascular necrosis: medical and legal realities. Cutis. 2007;80:343–8.PubMed Richards RN. Short-term corticosteroids and avascular necrosis: medical and legal realities. Cutis. 2007;80:343–8.PubMed
20.
go back to reference Dubovsky AN, Arvikar S, Stern TA, Axelrod L. The neuropsychiatric complications of glucocorticoid use: steroid psychosis revisited. Psychosomatics. 2012;53:103–15.PubMedCrossRef Dubovsky AN, Arvikar S, Stern TA, Axelrod L. The neuropsychiatric complications of glucocorticoid use: steroid psychosis revisited. Psychosomatics. 2012;53:103–15.PubMedCrossRef
21.
go back to reference Abu-Shakra M. Safety of vaccination of patients with systemic lupus erythematosus. Lupus. 2009;18:1205–8.PubMedCrossRef Abu-Shakra M. Safety of vaccination of patients with systemic lupus erythematosus. Lupus. 2009;18:1205–8.PubMedCrossRef
22.
go back to reference Gelfand EW. Intravenous immune globulin in autoimmune and inflammatory diseases. N Engl J Med. 2012;367:2015–25.PubMedCrossRef Gelfand EW. Intravenous immune globulin in autoimmune and inflammatory diseases. N Engl J Med. 2012;367:2015–25.PubMedCrossRef
23.
go back to reference Burks AW, Sampson HA, Buckley RH. Anaphylactic reactions after gamma globulin administration in patients with hypogammaglobulinemia. Detection of IgE antibodies to IgA. N Engl J Med. 1986;314:560–4.PubMedCrossRef Burks AW, Sampson HA, Buckley RH. Anaphylactic reactions after gamma globulin administration in patients with hypogammaglobulinemia. Detection of IgE antibodies to IgA. N Engl J Med. 1986;314:560–4.PubMedCrossRef
24.
go back to reference Ford LT, Berg JD. Thiopurine S-methyltransferase (TPMT) assessment prior to starting thiopurine drug treatment; a pharmacogenomic test whose time has come. J Clin Pathol. 2010;63:288–95.PubMedCrossRef Ford LT, Berg JD. Thiopurine S-methyltransferase (TPMT) assessment prior to starting thiopurine drug treatment; a pharmacogenomic test whose time has come. J Clin Pathol. 2010;63:288–95.PubMedCrossRef
25.
go back to reference Costanzi C, Matiello M, Lucchinetti CF, et al. Azathioprine: tolerability, efficacy, and predictors of benefit in neuromyelitis optica. Neurology. 2011;77:659–66.PubMedCrossRef Costanzi C, Matiello M, Lucchinetti CF, et al. Azathioprine: tolerability, efficacy, and predictors of benefit in neuromyelitis optica. Neurology. 2011;77:659–66.PubMedCrossRef
26.
go back to reference Sanderson J, Ansari A, Marinaki T, Duley J. Thiopurine methyltransferase: should it be measured before commencing thiopurine drug therapy? Ann Clin Biochem. 2004;41:294–302.PubMedCrossRef Sanderson J, Ansari A, Marinaki T, Duley J. Thiopurine methyltransferase: should it be measured before commencing thiopurine drug therapy? Ann Clin Biochem. 2004;41:294–302.PubMedCrossRef
27.
go back to reference Kandiel A, Fraser AG, Korelitz BI, et al. Increased risk of lymphoma among inflammatory bowel disease patients treated with azathioprine and 6-mercaptopurine. Gut. 2005;54:1121–5.PubMedCrossRef Kandiel A, Fraser AG, Korelitz BI, et al. Increased risk of lymphoma among inflammatory bowel disease patients treated with azathioprine and 6-mercaptopurine. Gut. 2005;54:1121–5.PubMedCrossRef
28.
go back to reference Witte AS, Cornblath DR, Schatz NJ, Lisak RP. Monitoring azathioprine therapy in myasthenia gravis. Neurology. 1986;36:1533–4.PubMedCrossRef Witte AS, Cornblath DR, Schatz NJ, Lisak RP. Monitoring azathioprine therapy in myasthenia gravis. Neurology. 1986;36:1533–4.PubMedCrossRef
29.
go back to reference Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000;47:85–118.PubMedCrossRef Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000;47:85–118.PubMedCrossRef
30.
go back to reference Jacob A, Matiello M, Weinshenker BG, et al. Treatment of neuromyelitis optica with mycophenolate mofetil: retrospective analysis of 24 patients. Arch Neurol. 2009;66:1128–33.PubMedCrossRef Jacob A, Matiello M, Weinshenker BG, et al. Treatment of neuromyelitis optica with mycophenolate mofetil: retrospective analysis of 24 patients. Arch Neurol. 2009;66:1128–33.PubMedCrossRef
31.
go back to reference Jacob A, Weinshenker BG, Violich I, et al. Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Arch Neurol. 2008;65:1443–8.PubMedCrossRef Jacob A, Weinshenker BG, Violich I, et al. Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Arch Neurol. 2008;65:1443–8.PubMedCrossRef
32.
go back to reference Molloy ES, Calabrese LH. Progressive multifocal leukoencephalopathy associated with immunosuppressive therapy in rheumatic diseases: evolving role of biologic therapies. Arthritis Rheum. 2012;64:3043–51.PubMedCrossRef Molloy ES, Calabrese LH. Progressive multifocal leukoencephalopathy associated with immunosuppressive therapy in rheumatic diseases: evolving role of biologic therapies. Arthritis Rheum. 2012;64:3043–51.PubMedCrossRef
33.
go back to reference McKeon A, Pittock, SJ. Individualized Rituximab Treatment for Neuromyelitis Optica Spectrum Disorders JAMA Neurol. 2013 McKeon A, Pittock, SJ. Individualized Rituximab Treatment for Neuromyelitis Optica Spectrum Disorders JAMA Neurol. 2013
34.
go back to reference Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:235–42.PubMedCrossRef Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:235–42.PubMedCrossRef
35.
go back to reference Gourley MF, Austin 3rd HA, Scott D, et al. Methylprednisolone and cyclophosphamide, alone or in combination, in patients with lupus nephritis. A randomized, controlled trial. Ann Intern Med. 1996;125:549–57.PubMedCrossRef Gourley MF, Austin 3rd HA, Scott D, et al. Methylprednisolone and cyclophosphamide, alone or in combination, in patients with lupus nephritis. A randomized, controlled trial. Ann Intern Med. 1996;125:549–57.PubMedCrossRef
36.
go back to reference Jayne D, Rasmussen N, Andrassy K, et al. A randomized trial of maintenance therapy for vasculitis associated with antineutrophil cytoplasmic autoantibodies. N Engl J Med. 2003;349:36–44.PubMedCrossRef Jayne D, Rasmussen N, Andrassy K, et al. A randomized trial of maintenance therapy for vasculitis associated with antineutrophil cytoplasmic autoantibodies. N Engl J Med. 2003;349:36–44.PubMedCrossRef
37.
go back to reference Allopurinol and cytotoxic drugs. Interaction in relation to bone marrow depression. Boston Collaborative Drug Surveillance Program. JAMA. 1974;227:1036–1040 Allopurinol and cytotoxic drugs. Interaction in relation to bone marrow depression. Boston Collaborative Drug Surveillance Program. JAMA. 1974;227:1036–1040
38.
go back to reference Park MC, Park YB, Jung SY, et al. Risk of ovarian failure and pregnancy outcome in patients with lupus nephritis treated with intravenous cyclophosphamide pulse therapy. Lupus. 2004;13:569–74.PubMedCrossRef Park MC, Park YB, Jung SY, et al. Risk of ovarian failure and pregnancy outcome in patients with lupus nephritis treated with intravenous cyclophosphamide pulse therapy. Lupus. 2004;13:569–74.PubMedCrossRef
39.
go back to reference Lucchinetti CF, Kimmel DW, Lennon VA. Paraneoplastic and oncologic profiles of patients seropositive for type 1 antineuronal nuclear autoantibodies. Neurology. 1998;50:652–7.PubMedCrossRef Lucchinetti CF, Kimmel DW, Lennon VA. Paraneoplastic and oncologic profiles of patients seropositive for type 1 antineuronal nuclear autoantibodies. Neurology. 1998;50:652–7.PubMedCrossRef
40.
go back to reference Pittock SJ, Lucchinetti CF, Lennon VA. Anti-neuronal nuclear autoantibody type 2: paraneoplastic accompaniments. Ann Neurol. 2003;53:580–7.PubMedCrossRef Pittock SJ, Lucchinetti CF, Lennon VA. Anti-neuronal nuclear autoantibody type 2: paraneoplastic accompaniments. Ann Neurol. 2003;53:580–7.PubMedCrossRef
41.
go back to reference Luque FA, Furneaux HM, Ferziger R, et al. Anti-Ri: an antibody associated with paraneoplastic opsoclonus and breast cancer. Ann Neurol. 1991;29:241–51.PubMedCrossRef Luque FA, Furneaux HM, Ferziger R, et al. Anti-Ri: an antibody associated with paraneoplastic opsoclonus and breast cancer. Ann Neurol. 1991;29:241–51.PubMedCrossRef
42.
go back to reference Chan KH, Vernino S, Lennon VA. ANNA-3 anti-neuronal nuclear antibody: marker of lung cancer-related autoimmunity. Ann Neurol. 2001;50:301–11.PubMedCrossRef Chan KH, Vernino S, Lennon VA. ANNA-3 anti-neuronal nuclear antibody: marker of lung cancer-related autoimmunity. Ann Neurol. 2001;50:301–11.PubMedCrossRef
43.
go back to reference Vernino S, Lennon VA. New Purkinje cell antibody (PCA-2): marker of lung cancer-related neurological autoimmunity. Ann Neurol. 2000;47:297–305.PubMedCrossRef Vernino S, Lennon VA. New Purkinje cell antibody (PCA-2): marker of lung cancer-related neurological autoimmunity. Ann Neurol. 2000;47:297–305.PubMedCrossRef
44.
go back to reference Pittock SJ, Lucchinetti CF, Parisi JE, et al. Amphiphysin autoimmunity: paraneoplastic accompaniments. Ann Neurol. 2005;58:96–107.PubMedCrossRef Pittock SJ, Lucchinetti CF, Parisi JE, et al. Amphiphysin autoimmunity: paraneoplastic accompaniments. Ann Neurol. 2005;58:96–107.PubMedCrossRef
45.
go back to reference Yu Z, Kryzer TJ, Griesmann GE, et al. CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann Neurol. 2001;49:146–54.PubMedCrossRef Yu Z, Kryzer TJ, Griesmann GE, et al. CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann Neurol. 2001;49:146–54.PubMedCrossRef
46.
go back to reference Dalmau J, Graus F, Villarejo A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain. 2004;127:1831–44.PubMedCrossRef Dalmau J, Graus F, Villarejo A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain. 2004;127:1831–44.PubMedCrossRef
47.
go back to reference Dalmau J, Gultekin SH, Voltz R, et al. Ma1, a novel neuron- and testis-specific protein, is recognized by the serum of patients with paraneoplastic neurological disorders. Brain. 1999;122(Pt 1):27–39.PubMedCrossRef Dalmau J, Gultekin SH, Voltz R, et al. Ma1, a novel neuron- and testis-specific protein, is recognized by the serum of patients with paraneoplastic neurological disorders. Brain. 1999;122(Pt 1):27–39.PubMedCrossRef
48.
go back to reference Graus F, Vincent A, Pozo-Rosich P, et al. Anti-glial nuclear antibody: marker of lung cancer-related paraneoplastic neurological syndromes. J Neuroimmunol. 2005;165:166–71.PubMedCrossRef Graus F, Vincent A, Pozo-Rosich P, et al. Anti-glial nuclear antibody: marker of lung cancer-related paraneoplastic neurological syndromes. J Neuroimmunol. 2005;165:166–71.PubMedCrossRef
49.
go back to reference Klein CJ, Lennon VA, Aston PA, et al. Insights from LGI1 and CASPR2 potassium channel complex autoantibody subtyping. JAMA Neurol. 2013;70:229–34.PubMedCrossRef Klein CJ, Lennon VA, Aston PA, et al. Insights from LGI1 and CASPR2 potassium channel complex autoantibody subtyping. JAMA Neurol. 2013;70:229–34.PubMedCrossRef
50.
go back to reference Dalmau J, Tuzun E, Wu HY, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol. 2007;61:25–36.PubMedCrossRef Dalmau J, Tuzun E, Wu HY, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol. 2007;61:25–36.PubMedCrossRef
51.
go back to reference Lancaster E, Lai M, Peng X, et al. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol. 2010;9:67–76.PubMedCrossRef Lancaster E, Lai M, Peng X, et al. Antibodies to the GABA(B) receptor in limbic encephalitis with seizures: case series and characterisation of the antigen. Lancet Neurol. 2010;9:67–76.PubMedCrossRef
52.
go back to reference Boronat A, Sabater L, Saiz A, et al. GABA(B) receptor antibodies in limbic encephalitis and anti-GAD-associated neurologic disorders. Neurology. 2011;76:795–800.PubMedCrossRef Boronat A, Sabater L, Saiz A, et al. GABA(B) receptor antibodies in limbic encephalitis and anti-GAD-associated neurologic disorders. Neurology. 2011;76:795–800.PubMedCrossRef
53.
go back to reference Lai M, Hughes EG, Peng X, et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol. 2009;65:424–34.PubMedCrossRef Lai M, Hughes EG, Peng X, et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann Neurol. 2009;65:424–34.PubMedCrossRef
54.
go back to reference McKeon A, Lennon VA, Lachance DH, et al. Ganglionic acetylcholine receptor autoantibody: oncological, neurological, and serological accompaniments. Arch Neurol. 2009;66:735–41.PubMedCrossRef McKeon A, Lennon VA, Lachance DH, et al. Ganglionic acetylcholine receptor autoantibody: oncological, neurological, and serological accompaniments. Arch Neurol. 2009;66:735–41.PubMedCrossRef
55.
go back to reference Lancaster E, Martinez-Hernandez E, Titulaer MJ, et al. Antibodies to metabotropic glutamate receptor 5 in the Ophelia syndrome. Neurology. 2011;77:1698–701.PubMedCrossRef Lancaster E, Martinez-Hernandez E, Titulaer MJ, et al. Antibodies to metabotropic glutamate receptor 5 in the Ophelia syndrome. Neurology. 2011;77:1698–701.PubMedCrossRef
Metadata
Title
Immunotherapeutics for Autoimmune Encephalopathies and Dementias
Author
Andrew McKeon, MD
Publication date
01-12-2013
Publisher
Springer US
Published in
Current Treatment Options in Neurology / Issue 6/2013
Print ISSN: 1092-8480
Electronic ISSN: 1534-3138
DOI
https://doi.org/10.1007/s11940-013-0251-8

Other articles of this Issue 6/2013

Current Treatment Options in Neurology 6/2013 Go to the issue

SLEEP DISORDERS (S CHOKROVERTY, SECTION EDITOR)

Sleep-Related Headache and its Management

SLEEP DISORDERS (S CHOKROVERTY, SECTION EDITOR)

Complex Sleep Apnea

SLEEP DISORDERS (S CHOKROVERTY, SECTION EDITOR)

Comorbid Insomnia and Sleep Disordered Breathing

DEMENTIA (E MCDADE, SECTION EDITOR)

Treatment of Dementia With Lewy Bodies