Skip to main content
Top
Published in: BMC Cancer 1/2010

Open Access 01-12-2010 | Research article

Immunoscreening of the extracellular proteome of colorectal cancer cells

Authors: Susanne Klein-Scory, Salwa Kübler, Hanna Diehl, Christina Eilert-Micus, Anke Reinacher-Schick, Kai Stühler, Bettina Warscheid, Helmut E Meyer, Wolff Schmiegel, Irmgard Schwarte-Waldhoff

Published in: BMC Cancer | Issue 1/2010

Login to get access

Abstract

Background

The release of proteins from tumors can trigger an immune response in cancer patients involving T lymphocytes and B lymphocytes, which results in the generation of antibodies to tumor-derived proteins. Many studies aim to use humoral immune responses, namely autoantibody profiles, directly, as clinical biomarkers. Alternatively, the antibody immune response as an amplification system for tumor associated alterations may be used to indicate putative protein biomarkers with high sensitivity. Aiming at the latter approach we here have implemented an autoantibody profiling strategy which particularly focuses on proteins released by tumor cells in vitro: the so-called secretome.

Methods

For immunoscreening, the extracellular proteome of five colorectal cancer cell lines was resolved on 2D gels, immobilized on PVDF membranes and used for serological screening with individual sera from 21 colorectal cancer patients and 24 healthy controls. All of the signals from each blot were assigned to a master map, and autoantigen candidates were defined based of the pattern of immunoreactivities. The corresponding proteins were isolated from preparative gels, identified by MALDI-MS and/or by nano-HPLC/ESI-MS/MS and exemplarily confirmed by duplex Western blotting combining the human serum samples with antibodies directed against the protein(s) of interest.

Results

From 281 secretome proteins stained with autoantibodies in total we first defined the "background patterns" of frequently immunoreactive extracellular proteins in healthy and diseased people. An assignment of these proteins, among them many nominally intracellular proteins, to the subset of exosomal proteins within the secretomes revealed a large overlap. On this basis we defined and consequently confirmed novel biomarker candidates such as the extreme C-terminus of the extracellular matrix protein agrin within the set of cancer-enriched immunorectivities.

Conclusions

Our findings suggest, first, that autoantibody responses may be due, in large part, to cross-presentation of antigens to the immune system via exosomes, membrane vesicles released by tumor cells and constituting a significant fraction of the secretome. In addition, this immunosecretomics approach has revealed novel biomarker candidates, some of them secretome-specific, and thus serves as a promising complementary tool to the frequently reported immunoproteomic studies for biomarker discovery.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tjalsma H, RMJ S, Swinkels DW: Immunoproteomics: From biomarker discovery to diagnostic applications. Proteomics Clin Appl. 2008, 2: 167-180. 10.1002/prca.200780012.CrossRefPubMed Tjalsma H, RMJ S, Swinkels DW: Immunoproteomics: From biomarker discovery to diagnostic applications. Proteomics Clin Appl. 2008, 2: 167-180. 10.1002/prca.200780012.CrossRefPubMed
2.
go back to reference Rauch J, Gires O: SEREX, Proteomex, AMIDA, and beyond: Serologixal screening technologies for target identification. Proteomics Clin Appl. 2008, 2: 355-371. 10.1002/prca.200780064.CrossRefPubMed Rauch J, Gires O: SEREX, Proteomex, AMIDA, and beyond: Serologixal screening technologies for target identification. Proteomics Clin Appl. 2008, 2: 355-371. 10.1002/prca.200780064.CrossRefPubMed
3.
go back to reference Caron M, Choquet-Kastylevsky G, Joubert-Caron R: Cancer immunomics using autoantibody signatures for biomarker discovery. Mol Cell Proteomics. 2007, 6: 1115-1122. 10.1074/mcp.R600016-MCP200.CrossRefPubMed Caron M, Choquet-Kastylevsky G, Joubert-Caron R: Cancer immunomics using autoantibody signatures for biomarker discovery. Mol Cell Proteomics. 2007, 6: 1115-1122. 10.1074/mcp.R600016-MCP200.CrossRefPubMed
4.
5.
go back to reference Hardouin J, Lasserre JP, Sylvius L, Joubert-Caron R, Caron M: Cancer immunomics: from serological proteome analysis to multiple affinity protein profiling. Ann N Y Acad Sci. 2007, 1107: 223-230. 10.1196/annals.1381.024.CrossRefPubMed Hardouin J, Lasserre JP, Sylvius L, Joubert-Caron R, Caron M: Cancer immunomics: from serological proteome analysis to multiple affinity protein profiling. Ann N Y Acad Sci. 2007, 1107: 223-230. 10.1196/annals.1381.024.CrossRefPubMed
6.
go back to reference Gunawardana CG, Diamandis EP: High throughput proteomic strategies for identifying tumour-associated antigens. Cancer Lett. 2007, 249: 110-119. 10.1016/j.canlet.2007.01.002.CrossRefPubMed Gunawardana CG, Diamandis EP: High throughput proteomic strategies for identifying tumour-associated antigens. Cancer Lett. 2007, 249: 110-119. 10.1016/j.canlet.2007.01.002.CrossRefPubMed
7.
go back to reference Li WH, Zhao J, Li HY, Liu H, Li AL, Wang HX, Wang J, He K, Liang B, Yu M, Shen BF, Zhang XM: Proteomics-based identification of autoantibodies in the sera of healthy Chinese individuals from Beijing. Proteomics. 2006, 6: 4781-4789. 10.1002/pmic.200500909.CrossRefPubMed Li WH, Zhao J, Li HY, Liu H, Li AL, Wang HX, Wang J, He K, Liang B, Yu M, Shen BF, Zhang XM: Proteomics-based identification of autoantibodies in the sera of healthy Chinese individuals from Beijing. Proteomics. 2006, 6: 4781-4789. 10.1002/pmic.200500909.CrossRefPubMed
8.
go back to reference Diehl HC, Stühler K, Klein-Scory S, Volmer MW, Schöneck A, Bieling C, Schmiegel W, Meyer H, Schwarte-Waldhoff I: A catalogue of proteins released by colorectal cancer cells in vitro as an alternative source for biomarker discovery. Proteomics Clin Appl. 2007, 1: 47-61. 10.1002/prca.200600491.CrossRefPubMed Diehl HC, Stühler K, Klein-Scory S, Volmer MW, Schöneck A, Bieling C, Schmiegel W, Meyer H, Schwarte-Waldhoff I: A catalogue of proteins released by colorectal cancer cells in vitro as an alternative source for biomarker discovery. Proteomics Clin Appl. 2007, 1: 47-61. 10.1002/prca.200600491.CrossRefPubMed
9.
go back to reference Thery C, Zitvogel L, Amigorena S: Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002, 2: 569-579.PubMed Thery C, Zitvogel L, Amigorena S: Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002, 2: 569-579.PubMed
10.
go back to reference Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G: The biogenesis and functions of exosomes. Traffic. 2002, 3: 321-330. 10.1034/j.1600-0854.2002.30502.x.CrossRefPubMed Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G: The biogenesis and functions of exosomes. Traffic. 2002, 3: 321-330. 10.1034/j.1600-0854.2002.30502.x.CrossRefPubMed
11.
go back to reference Fevrier B, Raposo G: Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol. 2004, 16: 415-421. 10.1016/j.ceb.2004.06.003.CrossRefPubMed Fevrier B, Raposo G: Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol. 2004, 16: 415-421. 10.1016/j.ceb.2004.06.003.CrossRefPubMed
12.
go back to reference Keller S, Sanderson MP, Stoeck A, Altevogt P: Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006, 107: 102-108. 10.1016/j.imlet.2006.09.005.CrossRefPubMed Keller S, Sanderson MP, Stoeck A, Altevogt P: Exosomes: from biogenesis and secretion to biological function. Immunol Lett. 2006, 107: 102-108. 10.1016/j.imlet.2006.09.005.CrossRefPubMed
13.
go back to reference van Niel G, Porto-Carreiro I, Simoes S, Raposo G: Exosomes: a common pathway for a specialized function. J Biochem. 2006, 140: 13-21. 10.1093/jb/mvj128.CrossRefPubMed van Niel G, Porto-Carreiro I, Simoes S, Raposo G: Exosomes: a common pathway for a specialized function. J Biochem. 2006, 140: 13-21. 10.1093/jb/mvj128.CrossRefPubMed
14.
go back to reference Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, Rivoltini L: Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ. 2008, 15: 80-88. 10.1038/sj.cdd.4402237.CrossRefPubMed Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, Rivoltini L: Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ. 2008, 15: 80-88. 10.1038/sj.cdd.4402237.CrossRefPubMed
15.
go back to reference Mallegol J, van Niel G, Heyman M: Phenotypic and functional characterization of intestinal epithelial exosomes. Blood Cells Mol Dis. 2005, 35: 11-16. 10.1016/j.bcmd.2005.04.001.CrossRefPubMed Mallegol J, van Niel G, Heyman M: Phenotypic and functional characterization of intestinal epithelial exosomes. Blood Cells Mol Dis. 2005, 35: 11-16. 10.1016/j.bcmd.2005.04.001.CrossRefPubMed
16.
go back to reference Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L: Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001, 7: 297-303. 10.1038/85438.CrossRefPubMed Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L: Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001, 7: 297-303. 10.1038/85438.CrossRefPubMed
17.
go back to reference Volmer MW, Stuhler K, Zapatka M, Schoneck A, Klein-Scory S, Schmiegel W, Meyer HE, Schwarte-Waldhoff I: Differential proteome analysis of conditioned media to detect Smad4 regulated secreted biomarkers in colon cancer. Proteomics. 2005, 5: 2587-2601. 10.1002/pmic.200401188.CrossRefPubMed Volmer MW, Stuhler K, Zapatka M, Schoneck A, Klein-Scory S, Schmiegel W, Meyer HE, Schwarte-Waldhoff I: Differential proteome analysis of conditioned media to detect Smad4 regulated secreted biomarkers in colon cancer. Proteomics. 2005, 5: 2587-2601. 10.1002/pmic.200401188.CrossRefPubMed
18.
go back to reference Wu CC, Chien KY, Tsang NM, Chang KP, Hao SP, Tsao CH, Chang YS, Yu JS: Cancer cell-secreted proteomes as a basis for searching potential tumor markers: nasopharyngeal carcinoma as a model. Proteomics. 2005, 5: 3173-3182. 10.1002/pmic.200401133.CrossRefPubMed Wu CC, Chien KY, Tsang NM, Chang KP, Hao SP, Tsao CH, Chang YS, Yu JS: Cancer cell-secreted proteomes as a basis for searching potential tumor markers: nasopharyngeal carcinoma as a model. Proteomics. 2005, 5: 3173-3182. 10.1002/pmic.200401133.CrossRefPubMed
19.
go back to reference Sardana G, Marshall J, Diamandis EP: Discovery of candidate tumor markers for prostate cancer via proteomic analysis of cell culture-conditioned medium. Clin Chem. 2007, 53: 429-437. 10.1373/clinchem.2006.077370.CrossRefPubMed Sardana G, Marshall J, Diamandis EP: Discovery of candidate tumor markers for prostate cancer via proteomic analysis of cell culture-conditioned medium. Clin Chem. 2007, 53: 429-437. 10.1373/clinchem.2006.077370.CrossRefPubMed
20.
go back to reference Lin CY, Tsui KH, Yu CC, Yeh CW, Chang PL, Yung BY: Searching cell-secreted proteomes for potential urinary bladder tumor markers. Proteomics. 2006, 6: 4381-4389. 10.1002/pmic.200600066.CrossRefPubMed Lin CY, Tsui KH, Yu CC, Yeh CW, Chang PL, Yung BY: Searching cell-secreted proteomes for potential urinary bladder tumor markers. Proteomics. 2006, 6: 4381-4389. 10.1002/pmic.200600066.CrossRefPubMed
21.
go back to reference Gronborg M, Kristiansen TZ, Iwahori A, Chang R, Reddy R, Sato N, Molina H, Jensen ON, Hruban RH, Goggins MG, Maitra A, Pandey A: Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol Cell Proteomics. 2006, 5: 157-171.CrossRefPubMed Gronborg M, Kristiansen TZ, Iwahori A, Chang R, Reddy R, Sato N, Molina H, Jensen ON, Hruban RH, Goggins MG, Maitra A, Pandey A: Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol Cell Proteomics. 2006, 5: 157-171.CrossRefPubMed
22.
go back to reference Kulasingam V, Diamandis EP: Proteomics analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets. Mol Cell Proteomics. 2007, 6: 1997-2011. 10.1074/mcp.M600465-MCP200.CrossRefPubMed Kulasingam V, Diamandis EP: Proteomics analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets. Mol Cell Proteomics. 2007, 6: 1997-2011. 10.1074/mcp.M600465-MCP200.CrossRefPubMed
23.
go back to reference Wu CCCH, Chen SJ, Liu HP, Hsieh YY, Yu CJ, Tang R, Hsieh LL, Yu JS, Chang YS: Identification of collapsin response mediator protein-2 as a potential marker of colorectal carcinoma by comparative analysis of cancer cell secretomes. Proteomics. 2008, 8: 316-332. 10.1002/pmic.200700819.CrossRefPubMed Wu CCCH, Chen SJ, Liu HP, Hsieh YY, Yu CJ, Tang R, Hsieh LL, Yu JS, Chang YS: Identification of collapsin response mediator protein-2 as a potential marker of colorectal carcinoma by comparative analysis of cancer cell secretomes. Proteomics. 2008, 8: 316-332. 10.1002/pmic.200700819.CrossRefPubMed
24.
go back to reference van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R, Cerf-Bensussan N, Heyman M: Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology. 2001, 121: 337-349. 10.1053/gast.2001.26263.CrossRefPubMed van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R, Cerf-Bensussan N, Heyman M: Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology. 2001, 121: 337-349. 10.1053/gast.2001.26263.CrossRefPubMed
25.
go back to reference Théry C, Ostrowski M, E S: Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009, 9: 581-593. 10.1038/nri2567.CrossRefPubMed Théry C, Ostrowski M, E S: Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009, 9: 581-593. 10.1038/nri2567.CrossRefPubMed
26.
go back to reference Klose J, Kobalz U: Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis. 1995, 16: 1034-1059. 10.1002/elps.11501601175.CrossRefPubMed Klose J, Kobalz U: Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis. 1995, 16: 1034-1059. 10.1002/elps.11501601175.CrossRefPubMed
27.
go back to reference Heukeshoven J, Dernick R: Improved silver staining procedure for fast staining in PhastSystem Development Unit. I. Staining of sodium dodecyl sulfate gels. Electrophoresis. 1988, 9: 28-32. 10.1002/elps.1150090106.CrossRefPubMed Heukeshoven J, Dernick R: Improved silver staining procedure for fast staining in PhastSystem Development Unit. I. Staining of sodium dodecyl sulfate gels. Electrophoresis. 1988, 9: 28-32. 10.1002/elps.1150090106.CrossRefPubMed
28.
go back to reference Nesterenko MV, Tilley M, Upton SJ: A simple modification of Blum's silver stain method allows for 30 minute detection of proteins in polyacrylamide gels. J Biochem Biophys Methods. 1994, 28: 239-242. 10.1016/0165-022X(94)90020-5.CrossRefPubMed Nesterenko MV, Tilley M, Upton SJ: A simple modification of Blum's silver stain method allows for 30 minute detection of proteins in polyacrylamide gels. J Biochem Biophys Methods. 1994, 28: 239-242. 10.1016/0165-022X(94)90020-5.CrossRefPubMed
29.
go back to reference Volmer MW, Radacz Y, Hahn SA, Klein-Scory S, Stuhler K, Zapatka M, Schmiegel W, Meyer HE, Schwarte-Waldhoff I: Tumor suppressor Smad4 mediates downregulation of the anti-adhesive invasion-promoting matricellular protein SPARC: Landscaping activity of Smad4 as revealed by a "secretome" analysis. Proteomics. 2004, 4: 1324-1334. 10.1002/pmic.200300703.CrossRefPubMed Volmer MW, Radacz Y, Hahn SA, Klein-Scory S, Stuhler K, Zapatka M, Schmiegel W, Meyer HE, Schwarte-Waldhoff I: Tumor suppressor Smad4 mediates downregulation of the anti-adhesive invasion-promoting matricellular protein SPARC: Landscaping activity of Smad4 as revealed by a "secretome" analysis. Proteomics. 2004, 4: 1324-1334. 10.1002/pmic.200300703.CrossRefPubMed
30.
go back to reference Zhang W, Chait BT: ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal Chem. 2000, 72: 2482-2489. 10.1021/ac991363o.CrossRefPubMed Zhang W, Chait BT: ProFound: an expert system for protein identification using mass spectrometric peptide mapping information. Anal Chem. 2000, 72: 2482-2489. 10.1021/ac991363o.CrossRefPubMed
31.
go back to reference Yates JR, Eng JK, McCormack AL, Schieltz D: Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem. 1995, 67: 1426-1436. 10.1021/ac00104a020.CrossRefPubMed Yates JR, Eng JK, McCormack AL, Schieltz D: Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem. 1995, 67: 1426-1436. 10.1021/ac00104a020.CrossRefPubMed
32.
go back to reference Schaefer H, Chervet JP, Bunse C, Joppich C, Meyer HE, Marcus K: A peptide preconcentration approach for nano-high-performance liquid chromatography to diminish memory effects. Proteomics. 2004, 4: 2541-2544. 10.1002/pmic.200300801.CrossRefPubMed Schaefer H, Chervet JP, Bunse C, Joppich C, Meyer HE, Marcus K: A peptide preconcentration approach for nano-high-performance liquid chromatography to diminish memory effects. Proteomics. 2004, 4: 2541-2544. 10.1002/pmic.200300801.CrossRefPubMed
33.
go back to reference Perkins DN, Pappin DJ, Creasy DM, Cottrell JS: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999, 20: 3551-3567. 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2.CrossRefPubMed Perkins DN, Pappin DJ, Creasy DM, Cottrell JS: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999, 20: 3551-3567. 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2.CrossRefPubMed
34.
go back to reference Stephan C, Reidegeld KA, Hamacher M, van Hall A, Marcus K, Taylor C, Jones P, Muller M, Apweiler R, Martens L, Korting G, Chamrad DC, Thiele H, Bluggel M, Parkinson D, Binz PA, Lyall A, Meyer HE: Automated reprocessing pipeline for searching heterogeneous mass spectrometric data of the HUPO Brain Proteome Project pilot phase. Proteomics. 2006, 6: 5015-5029. 10.1002/pmic.200600294.CrossRefPubMed Stephan C, Reidegeld KA, Hamacher M, van Hall A, Marcus K, Taylor C, Jones P, Muller M, Apweiler R, Martens L, Korting G, Chamrad DC, Thiele H, Bluggel M, Parkinson D, Binz PA, Lyall A, Meyer HE: Automated reprocessing pipeline for searching heterogeneous mass spectrometric data of the HUPO Brain Proteome Project pilot phase. Proteomics. 2006, 6: 5015-5029. 10.1002/pmic.200600294.CrossRefPubMed
35.
go back to reference Olver C, Vidal M: Proteomic analysis of secreted exosomes. Subcell Biochem. 2007, 43: 99-131. full_text.CrossRefPubMed Olver C, Vidal M: Proteomic analysis of secreted exosomes. Subcell Biochem. 2007, 43: 99-131. full_text.CrossRefPubMed
36.
go back to reference Yu S, Liu C, Su K, Wang J, Liu Y, Zhang L, Li C, Cong Y, Kimberly R, Grizzle WE, Falkson C, Zhang HG: Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol. 2007, 178: 6867-6875.CrossRefPubMed Yu S, Liu C, Su K, Wang J, Liu Y, Zhang L, Li C, Cong Y, Kimberly R, Grizzle WE, Falkson C, Zhang HG: Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J Immunol. 2007, 178: 6867-6875.CrossRefPubMed
37.
go back to reference Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, Corbelli A, Fais S, Parmiani G, Rivoltini L: Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res. 2006, 66: 9290-9298. 10.1158/0008-5472.CAN-06-1819.CrossRefPubMed Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A, Corbelli A, Fais S, Parmiani G, Rivoltini L: Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-beta-mediated suppressive activity on T lymphocytes. Cancer Res. 2006, 66: 9290-9298. 10.1158/0008-5472.CAN-06-1819.CrossRefPubMed
38.
go back to reference Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G, Rivoltini L: Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res. 2007, 67: 2912-2915. 10.1158/0008-5472.CAN-07-0520.CrossRefPubMed Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G, Rivoltini L: Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res. 2007, 67: 2912-2915. 10.1158/0008-5472.CAN-07-0520.CrossRefPubMed
39.
go back to reference Sabates-Bellver J, Flier Van der LG, de Palo M, Cattaneo E, Maake C, Rehrauer H, Laczko E, Kurowski MA, Bujnicki JM, Menigatti M, Luz J, Ranalli TV, Gomes V, Pastorelli A, Faggiani R, Anti M, Jiricny J, Clevers H, Marra G: Transcriptome profile of human colorectal adenomas. Mol Cancer Res. 2007, 5: 1263-1275. 10.1158/1541-7786.MCR-07-0267.CrossRefPubMed Sabates-Bellver J, Flier Van der LG, de Palo M, Cattaneo E, Maake C, Rehrauer H, Laczko E, Kurowski MA, Bujnicki JM, Menigatti M, Luz J, Ranalli TV, Gomes V, Pastorelli A, Faggiani R, Anti M, Jiricny J, Clevers H, Marra G: Transcriptome profile of human colorectal adenomas. Mol Cancer Res. 2007, 5: 1263-1275. 10.1158/1541-7786.MCR-07-0267.CrossRefPubMed
40.
go back to reference Takashima M, Kuramitsu Y, Yokoyama Y, Iizuka N, Harada T, Fujimoto M, Sakaida I, Okita K, Oka M, Nakamura K: Proteomic analysis of autoantibodies in patients with hepatocellular carcinoma. Proteomics. 2006, 6: 3894-3900. 10.1002/pmic.200500346.CrossRefPubMed Takashima M, Kuramitsu Y, Yokoyama Y, Iizuka N, Harada T, Fujimoto M, Sakaida I, Okita K, Oka M, Nakamura K: Proteomic analysis of autoantibodies in patients with hepatocellular carcinoma. Proteomics. 2006, 6: 3894-3900. 10.1002/pmic.200500346.CrossRefPubMed
41.
go back to reference Fujita Y, Nakanishi T, Hiramatsu M, Mabuchi H, Miyamoto Y, Miyamoto A, Shimizu A, Tanigawa N: Proteomics-based approach identifying autoantibody against peroxiredoxin VI as a novel serum marker in esophageal squamous cell carcinoma. Clin Cancer Res. 2006, 12: 6415-6420. 10.1158/1078-0432.CCR-06-1315.CrossRefPubMed Fujita Y, Nakanishi T, Hiramatsu M, Mabuchi H, Miyamoto Y, Miyamoto A, Shimizu A, Tanigawa N: Proteomics-based approach identifying autoantibody against peroxiredoxin VI as a novel serum marker in esophageal squamous cell carcinoma. Clin Cancer Res. 2006, 12: 6415-6420. 10.1158/1078-0432.CCR-06-1315.CrossRefPubMed
42.
go back to reference De Monte L, Sanvito F, Olivieri S, Vigano F, Doglioni C, Frasson M, Braga M, Bachi A, Dellabona P, Protti MP, Alessio M: Serological immunoreactivity against colon cancer proteome varies upon disease progression. J Proteome Res. 2008, 7: 504-514. 10.1021/pr070360m.CrossRefPubMed De Monte L, Sanvito F, Olivieri S, Vigano F, Doglioni C, Frasson M, Braga M, Bachi A, Dellabona P, Protti MP, Alessio M: Serological immunoreactivity against colon cancer proteome varies upon disease progression. J Proteome Res. 2008, 7: 504-514. 10.1021/pr070360m.CrossRefPubMed
43.
go back to reference Fiedler K, Parton RG, Kellner R, Etzold T, Simons K: VIP36, a novel component of glycolipid rafts and exocytic carrier vesicles in epithelial cells. Embo J. 1994, 13: 1729-1740.PubMedPubMedCentral Fiedler K, Parton RG, Kellner R, Etzold T, Simons K: VIP36, a novel component of glycolipid rafts and exocytic carrier vesicles in epithelial cells. Embo J. 1994, 13: 1729-1740.PubMedPubMedCentral
44.
go back to reference Fullekrug J, Scheiffele P, Simons K: VIP36 localisation to the early secretory pathway. J Cell Sci. 1999, 112 (Pt 17): 2813-2821.PubMed Fullekrug J, Scheiffele P, Simons K: VIP36 localisation to the early secretory pathway. J Cell Sci. 1999, 112 (Pt 17): 2813-2821.PubMed
45.
go back to reference Campanelli JT, Ferns M, Hoch W, Rupp F, von Zastrow M, Hall Z, Scheller RH: Agrin: a synaptic basal lamina protein that regulates development of the neuromuscular junction. Cold Spring Harb Symp Quant Biol. 1992, 57: 461-472.CrossRefPubMed Campanelli JT, Ferns M, Hoch W, Rupp F, von Zastrow M, Hall Z, Scheller RH: Agrin: a synaptic basal lamina protein that regulates development of the neuromuscular junction. Cold Spring Harb Symp Quant Biol. 1992, 57: 461-472.CrossRefPubMed
46.
go back to reference Hoch W, Campanelli JT, Harrison S, Scheller RH: Structural domains of agrin required for clustering of nicotinic acetylcholine receptors. Embo J. 1994, 13: 2814-2821.PubMedPubMedCentral Hoch W, Campanelli JT, Harrison S, Scheller RH: Structural domains of agrin required for clustering of nicotinic acetylcholine receptors. Embo J. 1994, 13: 2814-2821.PubMedPubMedCentral
47.
go back to reference Bezakova G, Ruegg MA: New insights into the roles of agrin. Nat Rev Mol Cell Biol. 2003, 4: 295-308. 10.1038/nrm1074.CrossRefPubMed Bezakova G, Ruegg MA: New insights into the roles of agrin. Nat Rev Mol Cell Biol. 2003, 4: 295-308. 10.1038/nrm1074.CrossRefPubMed
48.
go back to reference VanSaun M, Werle MJ: Matrix metalloproteinase-3 removes agrin from synaptic basal lamina. J Neurobiol. 2000, 43: 140-149. 10.1002/(SICI)1097-4695(200005)43:2<140::AID-NEU4>3.0.CO;2-K.CrossRefPubMed VanSaun M, Werle MJ: Matrix metalloproteinase-3 removes agrin from synaptic basal lamina. J Neurobiol. 2000, 43: 140-149. 10.1002/(SICI)1097-4695(200005)43:2<140::AID-NEU4>3.0.CO;2-K.CrossRefPubMed
49.
go back to reference Reif R, Sales S, Hettwer S, Dreier B, Gisler C, Wolfel J, Luscher D, Zurlinden A, Stephan A, Ahmed S, Baici A, Ledermann B, Kunz B, Sonderegger P: Specific cleavage of agrin by neurotrypsin, a synaptic protease linked to mental retardation. Faseb J. 2007, 21: 3468-3478. 10.1096/fj.07-8800com.CrossRefPubMed Reif R, Sales S, Hettwer S, Dreier B, Gisler C, Wolfel J, Luscher D, Zurlinden A, Stephan A, Ahmed S, Baici A, Ledermann B, Kunz B, Sonderegger P: Specific cleavage of agrin by neurotrypsin, a synaptic protease linked to mental retardation. Faseb J. 2007, 21: 3468-3478. 10.1096/fj.07-8800com.CrossRefPubMed
50.
go back to reference Qin WX, Wan F, Sun FY, Zhang PP, Han LW, Huang Y, Jiang HQ, Zhao XT, He M, Ye Y, Cong WM, Wu MC, Zhang LS, Yang NW, Gu JR: Cloning and characterization of a novel gene (C17orf25) from the deletion region on chromosome 17p13.3 in hepatocelular carcinoma. Cell Res. 2001, 11: 209-216. 10.1038/sj.cr.7290088.CrossRefPubMed Qin WX, Wan F, Sun FY, Zhang PP, Han LW, Huang Y, Jiang HQ, Zhao XT, He M, Ye Y, Cong WM, Wu MC, Zhang LS, Yang NW, Gu JR: Cloning and characterization of a novel gene (C17orf25) from the deletion region on chromosome 17p13.3 in hepatocelular carcinoma. Cell Res. 2001, 11: 209-216. 10.1038/sj.cr.7290088.CrossRefPubMed
51.
go back to reference Molina H, Bunkenborg J, Reddy GH, Muthusamy B, Scheel PJ, Pandey A: A proteomic analysis of human hemodialysis fluid. Mol Cell Proteomics. 2005, 4: 637-650. 10.1074/mcp.M500042-MCP200.CrossRefPubMed Molina H, Bunkenborg J, Reddy GH, Muthusamy B, Scheel PJ, Pandey A: A proteomic analysis of human hemodialysis fluid. Mol Cell Proteomics. 2005, 4: 637-650. 10.1074/mcp.M500042-MCP200.CrossRefPubMed
52.
go back to reference Chen R, Brentnall TA, Pan S, Cooke K, Moyes KW, Lane Z, Crispin DA, Goodlett DR, Aebersold R, Bronner MP: Quantitative proteomics analysis reveals that proteins differentially expressed in chronic pancreatitis are also frequently involved in pancreatic cancer. Mol Cell Proteomics. 2007, 6: 1331-1342. 10.1074/mcp.M700072-MCP200.CrossRefPubMed Chen R, Brentnall TA, Pan S, Cooke K, Moyes KW, Lane Z, Crispin DA, Goodlett DR, Aebersold R, Bronner MP: Quantitative proteomics analysis reveals that proteins differentially expressed in chronic pancreatitis are also frequently involved in pancreatic cancer. Mol Cell Proteomics. 2007, 6: 1331-1342. 10.1074/mcp.M700072-MCP200.CrossRefPubMed
53.
go back to reference Dantuma NPHC, Hoogstraten D: The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation. DNA Repair. 2009, 8: 449-460. 10.1016/j.dnarep.2009.01.005.CrossRefPubMed Dantuma NPHC, Hoogstraten D: The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation. DNA Repair. 2009, 8: 449-460. 10.1016/j.dnarep.2009.01.005.CrossRefPubMed
54.
go back to reference García-Closas MMN, Real FX, Welch R, Kogevinas M, Chatterjee N, Pfeiffer RSD, Dosemeci M, Tardón A, Serra C, Carrato A, García-Closas , R C-VG, Chanock S, Yeager M, Rothman N: Genetic variation in thenucleotide excision repair pathway and bladder cancer risk. Cancer Epidemiol Biomarkers Prev. 2006, 15: 536-542. 10.1158/1055-9965.EPI-05-0749.CrossRefPubMed García-Closas MMN, Real FX, Welch R, Kogevinas M, Chatterjee N, Pfeiffer RSD, Dosemeci M, Tardón A, Serra C, Carrato A, García-Closas , R C-VG, Chanock S, Yeager M, Rothman N: Genetic variation in thenucleotide excision repair pathway and bladder cancer risk. Cancer Epidemiol Biomarkers Prev. 2006, 15: 536-542. 10.1158/1055-9965.EPI-05-0749.CrossRefPubMed
55.
go back to reference de Angelis PMFB, Kravik KL, Haug T, Tunheim SH, Reichelt W, Beigi M, Clausen OPGE, Stokke T: Molecular characterizations of derivatives of HCT116 colorectal cancer cells that are resistant to the chemotherapeutic agent 5-fluorouracil. Int J Oncol. 2004, 24: 1279-1288.PubMed de Angelis PMFB, Kravik KL, Haug T, Tunheim SH, Reichelt W, Beigi M, Clausen OPGE, Stokke T: Molecular characterizations of derivatives of HCT116 colorectal cancer cells that are resistant to the chemotherapeutic agent 5-fluorouracil. Int J Oncol. 2004, 24: 1279-1288.PubMed
56.
go back to reference Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ: Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 2006, 20: 1487-1495. 10.1038/sj.leu.2404296.CrossRefPubMed Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ: Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia. 2006, 20: 1487-1495. 10.1038/sj.leu.2404296.CrossRefPubMed
57.
go back to reference Ranganathan S, Tew KD: Analysis of glyoxalase-I from normal and tumor tissue from human colon. Biochim Biophys Acta. 1993, 1182: 311-316.CrossRefPubMed Ranganathan S, Tew KD: Analysis of glyoxalase-I from normal and tumor tissue from human colon. Biochim Biophys Acta. 1993, 1182: 311-316.CrossRefPubMed
58.
go back to reference Batmunkh E, Tatrai P, Szabo E, Lodi C, Holczbauer A, Paska C, Kupcsulik P, Kiss A, Schaff Z, Kovalszky I: Comparison of the expression of agrin, a basement membrane heparan sulfate proteoglycan, in cholangiocarcinoma and hepatocellular carcinoma. Hum Pathol. 2007, 38: 1508-1515. 10.1016/j.humpath.2007.02.017.CrossRefPubMed Batmunkh E, Tatrai P, Szabo E, Lodi C, Holczbauer A, Paska C, Kupcsulik P, Kiss A, Schaff Z, Kovalszky I: Comparison of the expression of agrin, a basement membrane heparan sulfate proteoglycan, in cholangiocarcinoma and hepatocellular carcinoma. Hum Pathol. 2007, 38: 1508-1515. 10.1016/j.humpath.2007.02.017.CrossRefPubMed
Metadata
Title
Immunoscreening of the extracellular proteome of colorectal cancer cells
Authors
Susanne Klein-Scory
Salwa Kübler
Hanna Diehl
Christina Eilert-Micus
Anke Reinacher-Schick
Kai Stühler
Bettina Warscheid
Helmut E Meyer
Wolff Schmiegel
Irmgard Schwarte-Waldhoff
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2010
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-10-70

Other articles of this Issue 1/2010

BMC Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine