Skip to main content
Top
Published in: BMC Cancer 1/2008

Open Access 01-12-2008 | Research article

Immunological tolerance and tumor rejection in embryo-aggregated chimeric mice – Lessons for tumor immunity

Authors: Alexander Y Wagner, Eric Holle, Lori Holle, Xianzhong Yu, Günter Schwamberger

Published in: BMC Cancer | Issue 1/2008

Login to get access

Abstract

Background

Rejection of transplanted tumors by the immune system is a rare event in syngeneic hosts, and is considered to be dependent on the local interaction of defensive immune reactions and tumor tolerance mechanisms. Here, we have enlisted the aid of a unique set of embryo-aggregated lineage chimeric mice derived from C57/BL6 and FVB donors to study the interplay between local and systemic tumor immunity and tolerance in rejection of mouse B16 melanoma cells, syngeneic to the C57/BL6 donor strain.

Methods

Two variants of embryo-aggregated chimeric mice with either variable or no contribution of C57-derived cells to their skin were generated by the fusion of different ratios of morula stage blastomers. Chimeric mice were analyzed for s.c. growth of B16 tumors in comparison to their respective donor strains as well as normal F1 hybrids, and the relative frequencies of cellular components of the immune system by FACS analysis of peripheral blood or lymph node cells.

Results

B16 tumors grew significantly faster in mice with full chimerism in their skin as compared to syngeneic C57 or semi-syngeneic C57 × FVB F1 hosts. In contrast, s.c. tumor growth was either absent or significantly reduced in chimeric mice lacking C57-derived cells in their skin, but tolerant to C57 tissue in other organs. Comparison of the relative frequencies of various immune cells in the periphery via FACS-analysis did not reveal any significant differences between the two types of chimeric mice with respect to their donor strains.

Conclusion

Our data suggest a complex interplay between mechanisms of local peripheral tolerance and innate antitumor mechanisms possibly involving NK cell allorecognition as a basis for the differential growth or rejection of B16 tumors in these unique chimeric mice, which we suggest to constitute a valuable new model system for the study of immune-mediated tumor rejection.
Appendix
Available only for authorised users
Literature
1.
go back to reference Boon T, Cerottini JC, Eynde Van den B, Bruggen van der P, Van Pel A: Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994, 12: 337-365.CrossRefPubMed Boon T, Cerottini JC, Eynde Van den B, Bruggen van der P, Van Pel A: Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994, 12: 337-365.CrossRefPubMed
2.
go back to reference North RJ: The murine antitumor immune response and its therapeutic manipulation. Adv Immunol. 1984, 35: 89-155.CrossRefPubMed North RJ: The murine antitumor immune response and its therapeutic manipulation. Adv Immunol. 1984, 35: 89-155.CrossRefPubMed
3.
go back to reference Berendt M, North R: T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. J Exp Med. 1980, 151: 69-80.CrossRefPubMed Berendt M, North R: T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. J Exp Med. 1980, 151: 69-80.CrossRefPubMed
4.
go back to reference Mills CD, North RJ: Expression of passively transferred immunity against an established tumor depends on generation of cytolytic T cells in recipient. Inhibition by suppressor T cells. J Exp Med. 1983, 157: 1448-1460.CrossRefPubMed Mills CD, North RJ: Expression of passively transferred immunity against an established tumor depends on generation of cytolytic T cells in recipient. Inhibition by suppressor T cells. J Exp Med. 1983, 157: 1448-1460.CrossRefPubMed
5.
go back to reference Sakaguchi S, Yamaguchi T, Nomura T, Ono M: Regulatory T cells and immune tolerance. Cell. 2008, 133: 775-787.CrossRefPubMed Sakaguchi S, Yamaguchi T, Nomura T, Ono M: Regulatory T cells and immune tolerance. Cell. 2008, 133: 775-787.CrossRefPubMed
9.
go back to reference Mintz B, Silvers WK: "Intrinsic" immunological tolerance in allophenic mice. Science. 1967, 158: 1484-1486.CrossRefPubMed Mintz B, Silvers WK: "Intrinsic" immunological tolerance in allophenic mice. Science. 1967, 158: 1484-1486.CrossRefPubMed
10.
go back to reference Tarkowski AK: Mouse chimaeras revisited: recollections and reflections. Int J Dev Biol. 1998, 42: 903-908.PubMed Tarkowski AK: Mouse chimaeras revisited: recollections and reflections. Int J Dev Biol. 1998, 42: 903-908.PubMed
11.
go back to reference Nagy A, Gertsenstein M, Vintersten K, Behringer R, Eds: Manipulating the Mouse Embryo. 2002, A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor Press, Cold Spring Harbor Nagy A, Gertsenstein M, Vintersten K, Behringer R, Eds: Manipulating the Mouse Embryo. 2002, A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor Press, Cold Spring Harbor
12.
go back to reference Gordon J, Wilson VA, Blair NF, Sheridan J, Farley A, Wilson L, Manley NR, Blackburn CC: Functional evidence for a single endodermal origin for the thymic epithelium. Nat Immunol. 2004, 5: 546-553.CrossRefPubMed Gordon J, Wilson VA, Blair NF, Sheridan J, Farley A, Wilson L, Manley NR, Blackburn CC: Functional evidence for a single endodermal origin for the thymic epithelium. Nat Immunol. 2004, 5: 546-553.CrossRefPubMed
13.
go back to reference Barnes RD: Tumour immunity in tetraparental mouse chimaeras – a review. Eur J Cancer. 1976, 12: 283-290.CrossRefPubMed Barnes RD: Tumour immunity in tetraparental mouse chimaeras – a review. Eur J Cancer. 1976, 12: 283-290.CrossRefPubMed
14.
go back to reference Mintz B, Palm J: Gene control of hematopoiesis. I. Erythrocyte mosaicism and permanent immunological tolerance in allophenic mice. J Exp Med. 1969, 129: 1013-1027.CrossRefPubMedPubMedCentral Mintz B, Palm J: Gene control of hematopoiesis. I. Erythrocyte mosaicism and permanent immunological tolerance in allophenic mice. J Exp Med. 1969, 129: 1013-1027.CrossRefPubMedPubMedCentral
15.
go back to reference Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG: Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature. 2005, 435: 590-597.CrossRefPubMed Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG: Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature. 2005, 435: 590-597.CrossRefPubMed
16.
go back to reference Snell GD: T cells, T cells recognition structures, and the major histocompatibility complex. Immunol Rev. 1978, 38: 3-69.CrossRefPubMed Snell GD: T cells, T cells recognition structures, and the major histocompatibility complex. Immunol Rev. 1978, 38: 3-69.CrossRefPubMed
17.
go back to reference Hogquist KA, Baldwin TA, Jameson SC: Central tolerance: learning self-control in the thymus. Nat Rev Immunol. 2005, 5: 772-782.CrossRefPubMed Hogquist KA, Baldwin TA, Jameson SC: Central tolerance: learning self-control in the thymus. Nat Rev Immunol. 2005, 5: 772-782.CrossRefPubMed
18.
19.
go back to reference Palmer E: Negative selection – clearing out the bad apples from the T-cell repertoire. Nat Rev Immunol. 2003, 3: 383-391.CrossRefPubMed Palmer E: Negative selection – clearing out the bad apples from the T-cell repertoire. Nat Rev Immunol. 2003, 3: 383-391.CrossRefPubMed
20.
go back to reference Gallegos AM, Bevan MJ: Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J Exp Med. 2004, 200: 1039-1049.CrossRefPubMedPubMedCentral Gallegos AM, Bevan MJ: Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J Exp Med. 2004, 200: 1039-1049.CrossRefPubMedPubMedCentral
21.
go back to reference Kyewski B, Derbinski J: Self-representation in the thymus: an extended view. Nat Rev Immunol. 2004, 4: 688-698.CrossRefPubMed Kyewski B, Derbinski J: Self-representation in the thymus: an extended view. Nat Rev Immunol. 2004, 4: 688-698.CrossRefPubMed
23.
go back to reference Walker LS, Abbas AK: The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol. 2002, 2: 11-19.CrossRefPubMed Walker LS, Abbas AK: The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol. 2002, 2: 11-19.CrossRefPubMed
24.
go back to reference Shevach EM: From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity. 2006, 25: 195-201.CrossRefPubMed Shevach EM: From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity. 2006, 25: 195-201.CrossRefPubMed
25.
go back to reference Steinman RM, Nussenzweig MC: Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci USA. 2002, 99: 351-358.CrossRefPubMedPubMedCentral Steinman RM, Nussenzweig MC: Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci USA. 2002, 99: 351-358.CrossRefPubMedPubMedCentral
27.
go back to reference Savill J, Dransfield I, Gregory C, Haslett C: A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol. 2002, 2: 965-975.CrossRefPubMed Savill J, Dransfield I, Gregory C, Haslett C: A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol. 2002, 2: 965-975.CrossRefPubMed
29.
go back to reference Zinkernagel RM, Doherty PC: Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature. 1974, 248: 701-702.CrossRefPubMed Zinkernagel RM, Doherty PC: Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature. 1974, 248: 701-702.CrossRefPubMed
30.
go back to reference Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K: Immunobiology of dendritic cells. Annu Rev Immunol. 2000, 18: 767-811.CrossRefPubMed Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K: Immunobiology of dendritic cells. Annu Rev Immunol. 2000, 18: 767-811.CrossRefPubMed
31.
go back to reference Heath WR, Carbone FR: Cross-presentation in viral immunity and self-tolerance. Nat Rev Immunol. 2001, 1: 126-134.CrossRefPubMed Heath WR, Carbone FR: Cross-presentation in viral immunity and self-tolerance. Nat Rev Immunol. 2001, 1: 126-134.CrossRefPubMed
33.
go back to reference Heath WR, Kurts C, Miller JF, Carbone FR: Cross-tolerance: a pathway for inducing tolerance to peripheral tissue antigens. J Exp Med. 1998, 187: 1549-1553.CrossRefPubMedPubMedCentral Heath WR, Kurts C, Miller JF, Carbone FR: Cross-tolerance: a pathway for inducing tolerance to peripheral tissue antigens. J Exp Med. 1998, 187: 1549-1553.CrossRefPubMedPubMedCentral
34.
go back to reference Wegmann TG, Hellstrom I, Hellstrom KE: Immunological tolerance: "forbidden clones" allowed in tetraparental mice. Proc Natl Acad Sci USA. 1971, 68: 1644-1647.CrossRefPubMedPubMedCentral Wegmann TG, Hellstrom I, Hellstrom KE: Immunological tolerance: "forbidden clones" allowed in tetraparental mice. Proc Natl Acad Sci USA. 1971, 68: 1644-1647.CrossRefPubMedPubMedCentral
36.
go back to reference Heeger PS: T-cell allorecognition and transplant rejection: a summary and update. Am J Transplant. 2003, 3: 525-533.CrossRefPubMed Heeger PS: T-cell allorecognition and transplant rejection: a summary and update. Am J Transplant. 2003, 3: 525-533.CrossRefPubMed
37.
go back to reference Kreutz M, Fritsche J, Andreesen R: Macrophages in tumor biology. The Macrophage. Edited by: Burke B, Lewis CE. 2002, New York, Oxford University Press, 457-489. Kreutz M, Fritsche J, Andreesen R: Macrophages in tumor biology. The Macrophage. Edited by: Burke B, Lewis CE. 2002, New York, Oxford University Press, 457-489.
38.
go back to reference Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S: Functions of natural killer cells. Nat Immunol. 2008, 9: 503-510.CrossRefPubMed Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S: Functions of natural killer cells. Nat Immunol. 2008, 9: 503-510.CrossRefPubMed
39.
go back to reference Fidler IJ, Schroit AJ: Recognition and destruction of neoplastic cells by activated macrophages: discrimination of altered self. Biochim Biophys Acta. 1988, 948: 151-173.PubMed Fidler IJ, Schroit AJ: Recognition and destruction of neoplastic cells by activated macrophages: discrimination of altered self. Biochim Biophys Acta. 1988, 948: 151-173.PubMed
41.
go back to reference Raulet DH: Missing self recognition and self tolerance of natural killer (NK) cells. Semin Immunol. 2006, 18: 145-150.CrossRefPubMed Raulet DH: Missing self recognition and self tolerance of natural killer (NK) cells. Semin Immunol. 2006, 18: 145-150.CrossRefPubMed
42.
43.
go back to reference Clark EA, Holly RD: Activation of natural killer (NK) cells in vivo with H-2 and non-H-2 alloantigens. Immunogenetics. 1981, 12: 221-235.CrossRefPubMed Clark EA, Holly RD: Activation of natural killer (NK) cells in vivo with H-2 and non-H-2 alloantigens. Immunogenetics. 1981, 12: 221-235.CrossRefPubMed
44.
go back to reference Moretta L, Ciccone E, Moretta A, Hoglund P, Ohlen C, Karre K: Allorecognition by NK cells: nonself or no self?. Immunol Today. 1992, 13: 300-306.CrossRefPubMed Moretta L, Ciccone E, Moretta A, Hoglund P, Ohlen C, Karre K: Allorecognition by NK cells: nonself or no self?. Immunol Today. 1992, 13: 300-306.CrossRefPubMed
45.
go back to reference Bix M, Liao NS, Zijlstra M, Loring J, Jaenisch R, Raulet D: Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature. 1991, 349: 329-331.CrossRefPubMed Bix M, Liao NS, Zijlstra M, Loring J, Jaenisch R, Raulet D: Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature. 1991, 349: 329-331.CrossRefPubMed
46.
go back to reference Karre K, Ljunggren HG, Piontek G, Kiessling R: Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986, 319 (6055): 675-678.CrossRefPubMed Karre K, Ljunggren HG, Piontek G, Kiessling R: Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986, 319 (6055): 675-678.CrossRefPubMed
47.
go back to reference Nishi Y, Hosokawa T, Aoike A, Han D, Takehara H, Kawai K, Kamahora T: Characterization of effector cells against B16 melanoma in mice inoculated with allogeneic spleen cells. Microbiol Immunol. 1994, 38: 217-223.CrossRefPubMed Nishi Y, Hosokawa T, Aoike A, Han D, Takehara H, Kawai K, Kamahora T: Characterization of effector cells against B16 melanoma in mice inoculated with allogeneic spleen cells. Microbiol Immunol. 1994, 38: 217-223.CrossRefPubMed
48.
go back to reference Glas R, Waldenstrom M, Hoglund P, Klein G, Karre K, Ljunggren HG: Rejection of tumors in mice with severe combined immunodeficiency syndrome determined by the major histocompatibility complex. Class I expression on the graft. Cancer Res. 1995, 55: 1911-1916.PubMed Glas R, Waldenstrom M, Hoglund P, Klein G, Karre K, Ljunggren HG: Rejection of tumors in mice with severe combined immunodeficiency syndrome determined by the major histocompatibility complex. Class I expression on the graft. Cancer Res. 1995, 55: 1911-1916.PubMed
49.
go back to reference Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A: Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002, 295: 2097-2100.CrossRefPubMed Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A: Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002, 295: 2097-2100.CrossRefPubMed
51.
go back to reference Ljunggren HG, Malmberg KJ: Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol. 2007, 7: 329-339.CrossRefPubMed Ljunggren HG, Malmberg KJ: Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol. 2007, 7: 329-339.CrossRefPubMed
52.
go back to reference Terme M, Ullrich E, Delahaye NF, Chaput N, Zitvogel L: Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nat Immunol. 2008, 9: 486-494.CrossRefPubMed Terme M, Ullrich E, Delahaye NF, Chaput N, Zitvogel L: Natural killer cell-directed therapies: moving from unexpected results to successful strategies. Nat Immunol. 2008, 9: 486-494.CrossRefPubMed
53.
go back to reference Ryan JC, Naper C, Hayashi S, Daws MR: Physiologic functions of activating natural killer (NK) complex-encoded receptors on NK cells. Immunol Rev. 2001, 181: 126-137.CrossRefPubMed Ryan JC, Naper C, Hayashi S, Daws MR: Physiologic functions of activating natural killer (NK) complex-encoded receptors on NK cells. Immunol Rev. 2001, 181: 126-137.CrossRefPubMed
54.
55.
go back to reference Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH: Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol. 2000, 1: 119-126.CrossRefPubMed Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH: Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol. 2000, 1: 119-126.CrossRefPubMed
56.
go back to reference Cerwenka A, Lanier LL: Ligands for natural killer cell receptors: redundancy or specificity. Immunol Rev. 2001, 181: 158-169.CrossRefPubMed Cerwenka A, Lanier LL: Ligands for natural killer cell receptors: redundancy or specificity. Immunol Rev. 2001, 181: 158-169.CrossRefPubMed
57.
go back to reference Johansson MH, Bieberich C, Jay G, Karre K, Hoglund P: Natural killer cell tolerance in mice with mosaic expression of major histocompatibility complex class I transgene. J Exp Med. 1997, 186: 353-364.CrossRefPubMedPubMedCentral Johansson MH, Bieberich C, Jay G, Karre K, Hoglund P: Natural killer cell tolerance in mice with mosaic expression of major histocompatibility complex class I transgene. J Exp Med. 1997, 186: 353-364.CrossRefPubMedPubMedCentral
58.
go back to reference Horwitz DA, Zheng SG, Gray JD: The role of the combination of IL-2 and TGF-{beta} or IL-10 in the generation and function of CD4+ CD25+ and CD8+regulatory T cell subsets. J Leukoc Biol. 2003, 74: 471-478.CrossRefPubMed Horwitz DA, Zheng SG, Gray JD: The role of the combination of IL-2 and TGF-{beta} or IL-10 in the generation and function of CD4+ CD25+ and CD8+regulatory T cell subsets. J Leukoc Biol. 2003, 74: 471-478.CrossRefPubMed
59.
go back to reference Jarnicki AG, Lysaght J, Todryk S, Mills KH: Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells. J Immunol. 2006, 177: 896-904.CrossRefPubMed Jarnicki AG, Lysaght J, Todryk S, Mills KH: Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells. J Immunol. 2006, 177: 896-904.CrossRefPubMed
60.
go back to reference Ghiringhelli F, Menard C, Martin F, Zitvogel L: The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunol Rev. 2006, 214: 229-238.CrossRefPubMed Ghiringhelli F, Menard C, Martin F, Zitvogel L: The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunol Rev. 2006, 214: 229-238.CrossRefPubMed
Metadata
Title
Immunological tolerance and tumor rejection in embryo-aggregated chimeric mice – Lessons for tumor immunity
Authors
Alexander Y Wagner
Eric Holle
Lori Holle
Xianzhong Yu
Günter Schwamberger
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2008
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-8-370

Other articles of this Issue 1/2008

BMC Cancer 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine