Skip to main content
Top
Published in: BMC Cancer 1/2020

Open Access 01-12-2020 | Research article

IMMUNEPOTENT CRP induces DAMPS release and ROS-dependent autophagosome formation in HeLa and MCF-7 cells

Authors: Ana Carolina Martínez-Torres, Alejandra Reyes-Ruiz, Kenny Misael Calvillo-Rodriguez, Karla Maria Alvarez-Valadez, Ashanti C. Uscanga-Palomeque, Reyes S. Tamez-Guerra, Cristina Rodríguez-Padilla

Published in: BMC Cancer | Issue 1/2020

Login to get access

Abstract

Background

IMMUNEPOTENT CRP (ICRP) can be cytotoxic to cancer cell lines. However, its widespread use in cancer patients has been limited by the absence of conclusive data on the molecular mechanism of its action. Here, we evaluated the mechanism of cell death induced by ICRP in HeLa and MCF-7 cells.

Methods

Cell death, cell cycle, mitochondrial membrane potential and ROS production were evaluated in HeLa and MCF-7 cell lines after ICRP treatment. Caspase-dependence and ROS-dependence were evaluated using QVD.oph and NAC pre-treatment in cell death analysis. DAMPs release, ER stress (eIF2-α phosphorylation) and autophagosome formation were analyzed as well. Additionally, the role of autophagosomes in cell death induced by ICRP was evaluated using SP-1 pre-treatment in cell death in HeLa and MCF-7 cells.

Results

ICRP induces cell death, reaching CC50 at 1.25 U/mL and 1.5 U/mL in HeLa and MCF-7 cells, respectively. Loss of mitochondrial membrane potential, ROS production and cell cycle arrest were observed after ICRP CC50 treatment in both cell lines, inducing the same mechanism, a type of cell death independent of caspases, relying on ROS production. Additionally, ICRP-induced cell death involves features of immunogenic cell death such as P-eIF2α and CRT exposure, as well as, ATP and HMGB1 release. Furthermore, ICRP induces ROS-dependent autophagosome formation that acts as a pro-survival mechanism.

Conclusions

ICRP induces a non-apoptotic cell death that requires an oxidative stress to take place, involving mitochondrial damage, ROS-dependent autophagosome formation, ER stress and DAMPs’ release. These data indicate that ICRP could work together with classic apoptotic inductors to attack cancer cells from different mechanisms, and that ICRP-induced cell death might activate an immune response against cancer cells.
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. Jan. 2019;69(1):7–34.PubMed Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. Jan. 2019;69(1):7–34.PubMed
2.
go back to reference Martinez-Torres AC, Gomez-Morales L, Martinez-Loria AB, Uscanga-Palomeque AC, Vazquez-Guillen JM, Rodriguez-Padilla C. Cytotoxic activity of IMMUNEPOTENT CRP against non-small cell lung cancer cell lines. PeerJ. 2019;2019(9)e7759:1-18. Martinez-Torres AC, Gomez-Morales L, Martinez-Loria AB, Uscanga-Palomeque AC, Vazquez-Guillen JM, Rodriguez-Padilla C. Cytotoxic activity of IMMUNEPOTENT CRP against non-small cell lung cancer cell lines. PeerJ. 2019;2019(9)e7759:1-18.
3.
go back to reference Martínez-Torres AC, Reyes-Ruiz A, Benítez-Londoño M, Franco-Molina MA, Rodríguez-Padilla C. IMMUNEPOTENT CRP induces cell cycle arrest and caspase-independent regulated cell death in HeLa cells through reactive oxygen species production. BMC Cancer. 2018;18:13.PubMedPubMedCentral Martínez-Torres AC, Reyes-Ruiz A, Benítez-Londoño M, Franco-Molina MA, Rodríguez-Padilla C. IMMUNEPOTENT CRP induces cell cycle arrest and caspase-independent regulated cell death in HeLa cells through reactive oxygen species production. BMC Cancer. 2018;18:13.PubMedPubMedCentral
4.
go back to reference Franco-Molina MA, et al. In vitro effects of bovine dialyzable leukocyte extract (bDLE) in cancer cells. Cytotherapy. 2006;8(4):408–14.PubMed Franco-Molina MA, et al. In vitro effects of bovine dialyzable leukocyte extract (bDLE) in cancer cells. Cytotherapy. 2006;8(4):408–14.PubMed
5.
go back to reference Mendoza-Gamboa E, et al. Bovine dialyzable leukocyte extract modulates AP-1 DNA-binding activity and nuclear transcription factor expression in MCF-7 breast cancer cells. Cytotherapy. 2008;10(2):212–9.PubMed Mendoza-Gamboa E, et al. Bovine dialyzable leukocyte extract modulates AP-1 DNA-binding activity and nuclear transcription factor expression in MCF-7 breast cancer cells. Cytotherapy. 2008;10(2):212–9.PubMed
6.
go back to reference Lorenzo-Anota HY, et al. Bovine dialyzable leukocyte extract IMMUNEPOTENT-CRP induces selective ROS-dependent apoptosis in T-acute lymphoblastic leukemia cell lines. J. Oncol. 2020;2020:1–17. Lorenzo-Anota HY, et al. Bovine dialyzable leukocyte extract IMMUNEPOTENT-CRP induces selective ROS-dependent apoptosis in T-acute lymphoblastic leukemia cell lines. J. Oncol. 2020;2020:1–17.
7.
go back to reference Franco-Molina MA, et al. Antiangiogenic and antitumor effects of IMMUNEPOTENT CRP in murine melanoma. Immunopharmacol Immunotoxicol. 2010;32(4):637–46.PubMed Franco-Molina MA, et al. Antiangiogenic and antitumor effects of IMMUNEPOTENT CRP in murine melanoma. Immunopharmacol Immunotoxicol. 2010;32(4):637–46.PubMed
8.
go back to reference Santana-Krímskaya SE, et al. IMMUNEPOTENT CRP plus doxorubicin/cyclophosphamide chemotherapy remodel the tumor microenvironment in an air pouch triple-negative breast cancer murine model. Biomed Pharmacother. 2020;126:110062.PubMed Santana-Krímskaya SE, et al. IMMUNEPOTENT CRP plus doxorubicin/cyclophosphamide chemotherapy remodel the tumor microenvironment in an air pouch triple-negative breast cancer murine model. Biomed Pharmacother. 2020;126:110062.PubMed
9.
go back to reference Rodríguez-Salazar MDC, et al. The novel immunomodulator IMMUNEPOTENT CRP combined with chemotherapy agent increased the rate of immunogenic cell death and prevented melanoma growth. Oncol Lett. 2017;14(1):844–52.PubMedPubMedCentral Rodríguez-Salazar MDC, et al. The novel immunomodulator IMMUNEPOTENT CRP combined with chemotherapy agent increased the rate of immunogenic cell death and prevented melanoma growth. Oncol Lett. 2017;14(1):844–52.PubMedPubMedCentral
10.
go back to reference Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nature Reviews Cancer. 2012;12(12):860–75.PubMed Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nature Reviews Cancer. 2012;12(12):860–75.PubMed
11.
go back to reference Kepp O, et al. EIF2α phosphorylation as a biomarker of immunogenic cell death. Seminars in Cancer Biol. 2015;33:86–92. Kepp O, et al. EIF2α phosphorylation as a biomarker of immunogenic cell death. Seminars in Cancer Biol. 2015;33:86–92.
12.
go back to reference Hou W, et al. Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis. 2013;4(12):e966.PubMedPubMedCentral Hou W, et al. Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis. 2013;4(12):e966.PubMedPubMedCentral
13.
go back to reference Zhang Q, Kang R, Zeh HJ, Lotze MT, Tang D. DAMPs and autophagy: Cellular adaptation to injury and unscheduled cell death. Autophagy. 2013;9(4) Taylor and Francis Inc.:451–8.PubMedPubMedCentral Zhang Q, Kang R, Zeh HJ, Lotze MT, Tang D. DAMPs and autophagy: Cellular adaptation to injury and unscheduled cell death. Autophagy. 2013;9(4) Taylor and Francis Inc.:451–8.PubMedPubMedCentral
14.
go back to reference Doherty J, Baehrecke EH. Life, death and autophagy. Nature Cell Biol. 2018;20(10) Nature Publishing Group:1110–7.PubMed Doherty J, Baehrecke EH. Life, death and autophagy. Nature Cell Biol. 2018;20(10) Nature Publishing Group:1110–7.PubMed
15.
go back to reference Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in Cancer therapy. Annu Rev Immunol. 2013;31:51–72.PubMed Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in Cancer therapy. Annu Rev Immunol. 2013;31:51–72.PubMed
16.
go back to reference Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Communications. 2017;482(3) Elsevier B.V:426–31. Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Communications. 2017;482(3) Elsevier B.V:426–31.
17.
go back to reference Galluzzi L, et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation. 2018;25(3) Nature Publishing Group:486–541.PubMedPubMedCentral Galluzzi L, et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation. 2018;25(3) Nature Publishing Group:486–541.PubMedPubMedCentral
18.
go back to reference Das CK, Mandal M, Kögel D. Pro-survival autophagy and cancer cell resistance to therapy. Cancer Metastasis Rev. 2018;37(4) Springer New York LLC:749–66.PubMed Das CK, Mandal M, Kögel D. Pro-survival autophagy and cancer cell resistance to therapy. Cancer Metastasis Rev. 2018;37(4) Springer New York LLC:749–66.PubMed
19.
go back to reference Khazaei S, et al. In vitro antiproliferative and apoptosis inducing effect of Allium atroviolaceum bulb extract on breast, cervical, and liver cancer cells. Front. Pharmacol. 2017;8(JAN):5.PubMedPubMedCentral Khazaei S, et al. In vitro antiproliferative and apoptosis inducing effect of Allium atroviolaceum bulb extract on breast, cervical, and liver cancer cells. Front. Pharmacol. 2017;8(JAN):5.PubMedPubMedCentral
20.
go back to reference Martínez-Torres AC, Zarate-Triviño DG, Lorenzo-Anota HY, Ávila-Ávila A, Rodríguez-Abrego C, Rodríguez-Padilla C. Chitosan gold nanoparticles induce cell death in hela and MCF-7 cells through reactive oxygen species production. Int J Nanomedicine. 2018;13:3235–50.PubMedPubMedCentral Martínez-Torres AC, Zarate-Triviño DG, Lorenzo-Anota HY, Ávila-Ávila A, Rodríguez-Abrego C, Rodríguez-Padilla C. Chitosan gold nanoparticles induce cell death in hela and MCF-7 cells through reactive oxygen species production. Int J Nanomedicine. 2018;13:3235–50.PubMedPubMedCentral
21.
go back to reference Liu S m, Ou S y, Huang H h. Green tea polyphenols induce cell death in breast cancer MCF-7 cells through induction of cell cycle arrest and mitochondrial-mediated apoptosis. J Zhejiang Univ Sci B. 2017;18(2):89–98.PubMedPubMedCentral Liu S m, Ou S y, Huang H h. Green tea polyphenols induce cell death in breast cancer MCF-7 cells through induction of cell cycle arrest and mitochondrial-mediated apoptosis. J Zhejiang Univ Sci B. 2017;18(2):89–98.PubMedPubMedCentral
22.
go back to reference Wu S, et al. Chelerythrine induced cell death through ROS-dependent ER stress in human prostate cancer cells. Onco Targets Ther. 2018;11:2593–601.PubMedPubMedCentral Wu S, et al. Chelerythrine induced cell death through ROS-dependent ER stress in human prostate cancer cells. Onco Targets Ther. 2018;11:2593–601.PubMedPubMedCentral
23.
go back to reference Kim TH, Park JH, Woo JS. Resveratrol induces cell death through ROS-dependent downregulation of Notch1/PTEN/Akt signaling in ovarian cancer cells. Mol Med Rep. 2019;19(4):3353–60.PubMed Kim TH, Park JH, Woo JS. Resveratrol induces cell death through ROS-dependent downregulation of Notch1/PTEN/Akt signaling in ovarian cancer cells. Mol Med Rep. 2019;19(4):3353–60.PubMed
24.
go back to reference Conway GE, et al. Non-thermal atmospheric plasma induces ROS-independent cell death in U373MG glioma cells and augments the cytotoxicity of temozolomide. Br J Cancer. 2016;114(4):435–43.PubMedPubMedCentral Conway GE, et al. Non-thermal atmospheric plasma induces ROS-independent cell death in U373MG glioma cells and augments the cytotoxicity of temozolomide. Br J Cancer. 2016;114(4):435–43.PubMedPubMedCentral
25.
go back to reference Seong M, Lee DG. Reactive oxygen species-independent apoptotic pathway by gold nanoparticles in Candida albicans. Microbiol Res. 2018;207:33–40.PubMed Seong M, Lee DG. Reactive oxygen species-independent apoptotic pathway by gold nanoparticles in Candida albicans. Microbiol Res. 2018;207:33–40.PubMed
26.
go back to reference Wang H, Zhang X. ROS reduction does not decrease the anticancer efficacy of X-Ray in two breast cancer cell lines. Oxid Med Cell Longev. 2019;2019. Article ID 3782074:1-12. Wang H, Zhang X. ROS reduction does not decrease the anticancer efficacy of X-Ray in two breast cancer cell lines. Oxid Med Cell Longev. 2019;2019. Article ID 3782074:1-12.
27.
go back to reference Li X. The inducers of immunogenic cell death for tumor immunotherapy. Tumori. 2017;104(1) SAGE Publications Ltd:1–8. Li X. The inducers of immunogenic cell death for tumor immunotherapy. Tumori. 2017;104(1) SAGE Publications Ltd:1–8.
28.
go back to reference Uscanga-Palomeque AC, et al. CD47 agonist peptide PKHB1 induces immunogenic cell death in T-cell acute lymphoblastic leukemia cells. Cancer Sci. 2019;110(1):256–68.PubMed Uscanga-Palomeque AC, et al. CD47 agonist peptide PKHB1 induces immunogenic cell death in T-cell acute lymphoblastic leukemia cells. Cancer Sci. 2019;110(1):256–68.PubMed
29.
go back to reference Martínez-Torres AC, et al. PKHB1 tumor cell lysate induces antitumor immune system stimulation and tumor regression in syngeneic mice with Tumoral T Lymphoblasts. J Oncol. 2019;2019:1–11. Martínez-Torres AC, et al. PKHB1 tumor cell lysate induces antitumor immune system stimulation and tumor regression in syngeneic mice with Tumoral T Lymphoblasts. J Oncol. 2019;2019:1–11.
30.
go back to reference Giampazolias E, et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol. Sep. 2017;19(9):1116–29.PubMedPubMedCentral Giampazolias E, et al. Mitochondrial permeabilization engages NF-κB-dependent anti-tumour activity under caspase deficiency. Nat Cell Biol. Sep. 2017;19(9):1116–29.PubMedPubMedCentral
31.
go back to reference Liu YN, et al. Citreoviridin induces ROS-dependent autophagic cell death in human liver HepG2 cells. Toxicon. Mar. 2015;95:30–7.PubMed Liu YN, et al. Citreoviridin induces ROS-dependent autophagic cell death in human liver HepG2 cells. Toxicon. Mar. 2015;95:30–7.PubMed
32.
go back to reference Jiang Y, et al. ROS-Dependent Activation of Autophagy through the PI3K/Akt/mTOR Pathway Is Induced by Hydroxysafflor Yellow A-Sonodynamic Therapy in THP-1 Macrophages. Oxid Med Cell Longev. 2017;2017. Article ID 8519169:1-16. Jiang Y, et al. ROS-Dependent Activation of Autophagy through the PI3K/Akt/mTOR Pathway Is Induced by Hydroxysafflor Yellow A-Sonodynamic Therapy in THP-1 Macrophages. Oxid Med Cell Longev. 2017;2017. Article ID 8519169:1-16.
33.
go back to reference Wu HY, et al. Ergosterol peroxide from marine fungus Phoma sp. induces ROS-dependent apoptosis and autophagy in human lung adenocarcinoma cells. Sci Rep. 2018;8(1):1–4. Wu HY, et al. Ergosterol peroxide from marine fungus Phoma sp. induces ROS-dependent apoptosis and autophagy in human lung adenocarcinoma cells. Sci Rep. 2018;8(1):1–4.
34.
go back to reference Yang G, et al. Patulin induced ROS-dependent autophagic cell death in human Hepatoma G2 cells. Chem Biol Interact. 2018;288:24–31.PubMed Yang G, et al. Patulin induced ROS-dependent autophagic cell death in human Hepatoma G2 cells. Chem Biol Interact. 2018;288:24–31.PubMed
35.
go back to reference Wang Y, et al. ROS generation and autophagosome accumulation contribute to the DMAMCL-induced inhibition of glioma cell proliferation by regulating the ROS/MAPK signaling pathway and suppressing the Akt/mTOR signaling pathway. Onco Targets Ther. 2019;12:1867–80.PubMedPubMedCentral Wang Y, et al. ROS generation and autophagosome accumulation contribute to the DMAMCL-induced inhibition of glioma cell proliferation by regulating the ROS/MAPK signaling pathway and suppressing the Akt/mTOR signaling pathway. Onco Targets Ther. 2019;12:1867–80.PubMedPubMedCentral
36.
go back to reference Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev. 2013;24(4):319–33.PubMed Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev. 2013;24(4):319–33.PubMed
37.
go back to reference Garg AD, et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol. 2015;6:588.PubMedPubMedCentral Garg AD, et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol. 2015;6:588.PubMedPubMedCentral
38.
go back to reference Rapoport BL, Anderson R. Realizing the clinical potential of immunogenic cell death in cancer chemotherapy and radiotherapy. Int J Mol Sci. 2019;20(4):959 MDPI AG.PubMedCentral Rapoport BL, Anderson R. Realizing the clinical potential of immunogenic cell death in cancer chemotherapy and radiotherapy. Int J Mol Sci. 2019;20(4):959 MDPI AG.PubMedCentral
39.
40.
go back to reference Michaud M, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science (80- ). 2011;334(6062):1573–7. Michaud M, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science (80- ). 2011;334(6062):1573–7.
41.
go back to reference Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA. Autophagy facilitates the development of breast cancer resistance to the anti-HER2 monoclonal antibody trastuzumab. PLoS One. 2009;4(7):e6251.PubMedPubMedCentral Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA. Autophagy facilitates the development of breast cancer resistance to the anti-HER2 monoclonal antibody trastuzumab. PLoS One. 2009;4(7):e6251.PubMedPubMedCentral
42.
go back to reference Sun WL, Chen J, Wang YP, Zheng H. Autophagy protects breast cancer cells from epirubicin-induced apoptosis and facilitates epirubicin-resistance development. Autophagy. 2011;7(9):1035–44.PubMed Sun WL, Chen J, Wang YP, Zheng H. Autophagy protects breast cancer cells from epirubicin-induced apoptosis and facilitates epirubicin-resistance development. Autophagy. 2011;7(9):1035–44.PubMed
43.
go back to reference Qadir MA, et al. Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization. Breast Cancer Res Treat. 2008;112(3):389–403.PubMed Qadir MA, et al. Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization. Breast Cancer Res Treat. 2008;112(3):389–403.PubMed
44.
go back to reference Wen J, et al. Autophagy inhibition re-sensitizes pulse stimulation-selected paclitaxel-resistant triple negative breast cancer cells to chemotherapy-induced apoptosis. Breast Cancer Res Treat. 2015;149(3):619–29.PubMedPubMedCentral Wen J, et al. Autophagy inhibition re-sensitizes pulse stimulation-selected paclitaxel-resistant triple negative breast cancer cells to chemotherapy-induced apoptosis. Breast Cancer Res Treat. 2015;149(3):619–29.PubMedPubMedCentral
45.
go back to reference Han MW, et al. Autophagy inhibition can overcome radioresistance in breast cancer cells through suppression of TAK1 activation. Anticancer Res. Mar. 2014;34(3):1449–55.PubMed Han MW, et al. Autophagy inhibition can overcome radioresistance in breast cancer cells through suppression of TAK1 activation. Anticancer Res. Mar. 2014;34(3):1449–55.PubMed
Metadata
Title
IMMUNEPOTENT CRP induces DAMPS release and ROS-dependent autophagosome formation in HeLa and MCF-7 cells
Authors
Ana Carolina Martínez-Torres
Alejandra Reyes-Ruiz
Kenny Misael Calvillo-Rodriguez
Karla Maria Alvarez-Valadez
Ashanti C. Uscanga-Palomeque
Reyes S. Tamez-Guerra
Cristina Rodríguez-Padilla
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2020
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-020-07124-5

Other articles of this Issue 1/2020

BMC Cancer 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine