Skip to main content
Top
Published in: Acta Neuropathologica Communications 1/2023

Open Access 01-12-2023 | Research

Immune stimulation recruits a subset of pro-regenerative macrophages to the retina that promotes axonal regrowth of injured neurons

Authors: Lien Andries, Daliya Kancheva, Luca Masin, Isabelle Scheyltjens, Hannah Van Hove, Karen De Vlaminck, Steven Bergmans, Marie Claes, Lies De Groef, Lieve Moons, Kiavash Movahedi

Published in: Acta Neuropathologica Communications | Issue 1/2023

Login to get access

Abstract

The multifaceted nature of neuroinflammation is highlighted by its ability to both aggravate and promote neuronal health. While in mammals retinal ganglion cells (RGCs) are unable to regenerate following injury, acute inflammation can induce axonal regrowth. However, the nature of the cells, cellular states and signalling pathways that drive this inflammation-induced regeneration have remained elusive. Here, we investigated the functional significance of macrophages during RGC de- and regeneration, by characterizing the inflammatory cascade evoked by optic nerve crush (ONC) injury, with or without local inflammatory stimulation in the vitreous. By combining single-cell RNA sequencing and fate mapping approaches, we elucidated the response of retinal microglia and recruited monocyte-derived macrophages (MDMs) to RGC injury. Importantly, inflammatory stimulation recruited large numbers of MDMs to the retina, which exhibited long-term engraftment and promoted axonal regrowth. Ligand-receptor analysis highlighted a subset of recruited macrophages that exhibited expression of pro-regenerative secreted factors, which were able to promote axon regrowth via paracrine signalling. Our work reveals how inflammation may promote CNS regeneration by modulating innate immune responses, providing a rationale for macrophage-centred strategies for driving neuronal repair following injury and disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Prinz M, Masuda T, Wheeler MA, Quintana FJ (2021) Microglia and central nervous system-associated macrophages mdash from origin to disease modulation. Annu Rev Immunol 39:251–277PubMedPubMedCentralCrossRef Prinz M, Masuda T, Wheeler MA, Quintana FJ (2021) Microglia and central nervous system-associated macrophages mdash from origin to disease modulation. Annu Rev Immunol 39:251–277PubMedPubMedCentralCrossRef
2.
go back to reference Drieu A, Du S, Storck SE, Rustenhoven J, Papadopoulos Z, Dykstra T et al (2022) Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid. Nature 611:585–593PubMedPubMedCentralCrossRef Drieu A, Du S, Storck SE, Rustenhoven J, Papadopoulos Z, Dykstra T et al (2022) Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid. Nature 611:585–593PubMedPubMedCentralCrossRef
3.
go back to reference Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–1290PubMedCrossRef Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–1290PubMedCrossRef
4.
go back to reference Anderson SR, Roberts JM, Zhang J, Steele MR, Romero CO, Bosco A et al (2019) Developmental apoptosis promotes a disease-related gene signature and independence from CSF1R signaling in retinal microglia. Cell Rep 27:2002–2013PubMedPubMedCentralCrossRef Anderson SR, Roberts JM, Zhang J, Steele MR, Romero CO, Bosco A et al (2019) Developmental apoptosis promotes a disease-related gene signature and independence from CSF1R signaling in retinal microglia. Cell Rep 27:2002–2013PubMedPubMedCentralCrossRef
5.
go back to reference Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A et al (2019) Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50:253–271PubMedCrossRef Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A et al (2019) Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50:253–271PubMedCrossRef
6.
go back to reference Jordão MJC, Sankowski R, Brendecke SM, Locatelli G, Tai YH et al (2019) Neuroimmunology: single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363:eaat7554PubMedCrossRef Jordão MJC, Sankowski R, Brendecke SM, Locatelli G, Tai YH et al (2019) Neuroimmunology: single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363:eaat7554PubMedCrossRef
7.
go back to reference Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, Okamoto J et al (2019) Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101:207–223PubMedCrossRef Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, Okamoto J et al (2019) Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101:207–223PubMedCrossRef
8.
go back to reference Masuda T, Sankowski R, Staszewski O, Böttcher C, Amann L et al (2019) Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566:388–392PubMedCrossRef Masuda T, Sankowski R, Staszewski O, Böttcher C, Amann L et al (2019) Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566:388–392PubMedCrossRef
9.
go back to reference Safaiyan S, Besson-Girard S, Kaya T, Cantuti-Castelvetri L, Liu L, Ji H et al (2021) White matter aging drives microglial diversity. Neuron 109:1100–1117PubMedCrossRef Safaiyan S, Besson-Girard S, Kaya T, Cantuti-Castelvetri L, Liu L, Ji H et al (2021) White matter aging drives microglial diversity. Neuron 109:1100–1117PubMedCrossRef
10.
go back to reference Van Hove H, Martens L, Scheyltjens I, De Vlaminck K, Pombo Antunes AR, De Prijck S et al (2019) A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci 22:1021–1035PubMedCrossRef Van Hove H, Martens L, Scheyltjens I, De Vlaminck K, Pombo Antunes AR, De Prijck S et al (2019) A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci 22:1021–1035PubMedCrossRef
13.
go back to reference Chen X, Holtzman DM (2022) Emerging roles of innate and adaptive immunity in Alzheimer’s disease. Immunity 55:2236–2254PubMedCrossRef Chen X, Holtzman DM (2022) Emerging roles of innate and adaptive immunity in Alzheimer’s disease. Immunity 55:2236–2254PubMedCrossRef
14.
go back to reference Yu C, Roubeix C, Sennlaub F, Saban DR (2020) Microglia versus monocytes: distinct roles in degenerative diseases of the retina. Trends Neurosci 43:433–449PubMedPubMedCentralCrossRef Yu C, Roubeix C, Sennlaub F, Saban DR (2020) Microglia versus monocytes: distinct roles in degenerative diseases of the retina. Trends Neurosci 43:433–449PubMedPubMedCentralCrossRef
15.
go back to reference De Vlaminck K, Van Hove H, Kancheva D, Scheyltjens I, Pombo Antunes AR, Bastos J et al (2022) Differential plasticity and fate of brain-resident and recruited macrophages during the onset and resolution of neuroinflammation. Immunity 55:2085–2102PubMedCrossRef De Vlaminck K, Van Hove H, Kancheva D, Scheyltjens I, Pombo Antunes AR, Bastos J et al (2022) Differential plasticity and fate of brain-resident and recruited macrophages during the onset and resolution of neuroinflammation. Immunity 55:2085–2102PubMedCrossRef
16.
go back to reference Guilliams M, Svedberg FR (2021) Does tissue imprinting restrict macrophage plasticity? Nat Immunol 22:118–127PubMedCrossRef Guilliams M, Svedberg FR (2021) Does tissue imprinting restrict macrophage plasticity? Nat Immunol 22:118–127PubMedCrossRef
17.
go back to reference Shechter R, Schwartz M (2013) Harnessing monocyte-derived macrophages to control central nervous system pathologies: no longer ‘if’ but ‘how.’ J Pathol 229:332–346PubMedCrossRef Shechter R, Schwartz M (2013) Harnessing monocyte-derived macrophages to control central nervous system pathologies: no longer ‘if’ but ‘how.’ J Pathol 229:332–346PubMedCrossRef
18.
go back to reference Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J et al (2013) Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38:555–569PubMedPubMedCentralCrossRef Shechter R, Miller O, Yovel G, Rosenzweig N, London A, Ruckh J et al (2013) Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38:555–569PubMedPubMedCentralCrossRef
19.
go back to reference Wattananit S, Tornero D, Graubardt N, Memanishvili T, Monni E, Tatarishvili J et al (2016) Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice. J Neurosci 36:4182–4195PubMedPubMedCentralCrossRef Wattananit S, Tornero D, Graubardt N, Memanishvili T, Monni E, Tatarishvili J et al (2016) Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice. J Neurosci 36:4182–4195PubMedPubMedCentralCrossRef
20.
go back to reference Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G et al (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6:e1000113PubMedPubMedCentralCrossRef Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G et al (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6:e1000113PubMedPubMedCentralCrossRef
21.
go back to reference London A, Itskovich E, Benhar I, Kalchenko V, Mack M, Jung S et al (2011) Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. J Exp Med 208:23–39PubMedPubMedCentralCrossRef London A, Itskovich E, Benhar I, Kalchenko V, Mack M, Jung S et al (2011) Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. J Exp Med 208:23–39PubMedPubMedCentralCrossRef
22.
go back to reference Lee-Liu D, Edwards-Faret G, Tapia VS, Larraín J (2013) Spinal cord regeneration: lessons for mammals from non-mammalian vertebrates. Genesis 51:529–544PubMedCrossRef Lee-Liu D, Edwards-Faret G, Tapia VS, Larraín J (2013) Spinal cord regeneration: lessons for mammals from non-mammalian vertebrates. Genesis 51:529–544PubMedCrossRef
23.
go back to reference David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Neurosci 12:388–399CrossRef David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Neurosci 12:388–399CrossRef
24.
go back to reference Gensel JC, Zhang B (2015) Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 1619:1–11PubMedCrossRef Gensel JC, Zhang B (2015) Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 1619:1–11PubMedCrossRef
25.
go back to reference Hilla AM, Diekmann H, Fischer D (2017) Microglia are irrelevant for neuronal degeneration and axon regeneration after acute injury. J Neurosci 37:6113–6124PubMedPubMedCentralCrossRef Hilla AM, Diekmann H, Fischer D (2017) Microglia are irrelevant for neuronal degeneration and axon regeneration after acute injury. J Neurosci 37:6113–6124PubMedPubMedCentralCrossRef
26.
go back to reference Hauk TG, Müller A, Lee J, Schwendener R, Fischer D (2008) Neuroprotective and axon growth promoting effects of intraocular inflammation do not depend on oncomodulin or the presence of large numbers of activated macrophages. Exp Neurol 209:469–482PubMedCrossRef Hauk TG, Müller A, Lee J, Schwendener R, Fischer D (2008) Neuroprotective and axon growth promoting effects of intraocular inflammation do not depend on oncomodulin or the presence of large numbers of activated macrophages. Exp Neurol 209:469–482PubMedCrossRef
27.
go back to reference Leibinger M, Andreadaki A, Gobrecht P, Levin E, Diekmann H, Fischer D (2016) Boosting central nervous system axon regeneration by circumventing limitations of natural cytokine signaling. Mol Ther 24:1712–1725PubMedPubMedCentralCrossRef Leibinger M, Andreadaki A, Gobrecht P, Levin E, Diekmann H, Fischer D (2016) Boosting central nervous system axon regeneration by circumventing limitations of natural cytokine signaling. Mol Ther 24:1712–1725PubMedPubMedCentralCrossRef
28.
go back to reference Hauk TG, Leibinger M, Müller A, Andreadaki A, Knippschild U, Fischer D (2010) Stimulation of axon regeneration in the mature optic nerve by intravitreal application of the toll-like receptor 2 agonist Pam3Cys. Invest Ophthalmol Vis Sci 51:459–464PubMedCrossRef Hauk TG, Leibinger M, Müller A, Andreadaki A, Knippschild U, Fischer D (2010) Stimulation of axon regeneration in the mature optic nerve by intravitreal application of the toll-like receptor 2 agonist Pam3Cys. Invest Ophthalmol Vis Sci 51:459–464PubMedCrossRef
29.
go back to reference Diekmann H, Leibinger M, Fischer D (2013) Do growth-stimulated retinal ganglion cell axons find their central targets after optic nerve injury? New insights by three-dimensional imaging of the visual pathway. Exp Neurol 248:254–257PubMedCrossRef Diekmann H, Leibinger M, Fischer D (2013) Do growth-stimulated retinal ganglion cell axons find their central targets after optic nerve injury? New insights by three-dimensional imaging of the visual pathway. Exp Neurol 248:254–257PubMedCrossRef
30.
go back to reference Andries L, Masin L, Salinas-Navarro M, Zaunz S, Claes M, Bergmans S et al (2021) Mmp2 modulates inflammatory response during axonal regeneration in the murine visual system. Cells 10:1672–1691PubMedPubMedCentralCrossRef Andries L, Masin L, Salinas-Navarro M, Zaunz S, Claes M, Bergmans S et al (2021) Mmp2 modulates inflammatory response during axonal regeneration in the murine visual system. Cells 10:1672–1691PubMedPubMedCentralCrossRef
31.
32.
go back to reference Cui Q, Yin Y, Benowitz LI (2009) The role of macrophages in optic nerve regeneration. Neuroscience 158:1039–1048PubMedCrossRef Cui Q, Yin Y, Benowitz LI (2009) The role of macrophages in optic nerve regeneration. Neuroscience 158:1039–1048PubMedCrossRef
33.
go back to reference Andries L, De Groef L, Moons L (2020) Neuroinflammation and optic nerve regeneration: where do we stand in elucidating underlying cellular and molecular players? Curr Eye Res 45:397–409PubMedCrossRef Andries L, De Groef L, Moons L (2020) Neuroinflammation and optic nerve regeneration: where do we stand in elucidating underlying cellular and molecular players? Curr Eye Res 45:397–409PubMedCrossRef
34.
go back to reference Wong KA, Benowitz LI (2022) Retinal Ganglion cell survival and axon regeneration after optic nerve injury: role of inflammation and other factors. Int J Mol Sci 23:10179–10194PubMedPubMedCentralCrossRef Wong KA, Benowitz LI (2022) Retinal Ganglion cell survival and axon regeneration after optic nerve injury: role of inflammation and other factors. Int J Mol Sci 23:10179–10194PubMedPubMedCentralCrossRef
35.
go back to reference Benhar I, Ding J, Yan W, Whitney IE, Jacobi A, Sud M et al (2023) Temporal single cell atlas of non-neuronal retinal cells reveals dynamic, coordinated multicellular responses to central nervous system injury. Nat Immunol 24:700–713PubMedCrossRef Benhar I, Ding J, Yan W, Whitney IE, Jacobi A, Sud M et al (2023) Temporal single cell atlas of non-neuronal retinal cells reveals dynamic, coordinated multicellular responses to central nervous system injury. Nat Immunol 24:700–713PubMedCrossRef
36.
go back to reference Bennett FC, Bennett ML, Yaqoob F, Mulinyawe SB, Grant GA, Hayden Gephart M et al (2018) A combination of ontogeny and CNS environment establishes microglial identity. Neuron 98:1170–1183PubMedPubMedCentralCrossRef Bennett FC, Bennett ML, Yaqoob F, Mulinyawe SB, Grant GA, Hayden Gephart M et al (2018) A combination of ontogeny and CNS environment establishes microglial identity. Neuron 98:1170–1183PubMedPubMedCentralCrossRef
37.
go back to reference Shemer A, Grozovski J, Tay TL, Tao J, Volaski A, Süß P et al (2018) Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge. Nat Commun 9:1–16CrossRef Shemer A, Grozovski J, Tay TL, Tao J, Volaski A, Süß P et al (2018) Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge. Nat Commun 9:1–16CrossRef
38.
go back to reference Cronk JC, Filiano AJ, Louveau A, Marin I, Marsh R, Ji E et al (2018) Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J Exp Med 215:1627–1647PubMedPubMedCentralCrossRef Cronk JC, Filiano AJ, Louveau A, Marin I, Marsh R, Ji E et al (2018) Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J Exp Med 215:1627–1647PubMedPubMedCentralCrossRef
39.
go back to reference Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I (2018) Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173:1073–1081PubMedCrossRef Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I (2018) Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173:1073–1081PubMedCrossRef
40.
go back to reference O’Koren EG, Yu C, Klingeborn M, Wong AYW, Prigge CL, Mathew R et al (2019) Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration. Immunity 50:723–737PubMedPubMedCentralCrossRef O’Koren EG, Yu C, Klingeborn M, Wong AYW, Prigge CL, Mathew R et al (2019) Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration. Immunity 50:723–737PubMedPubMedCentralCrossRef
41.
go back to reference Sala Frigerio C, Wolfs L, Fattorelli N, Thrupp N, Voytyuk I, Schmidt I et al (2019) The major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep 27:1293–1306PubMedCrossRef Sala Frigerio C, Wolfs L, Fattorelli N, Thrupp N, Voytyuk I, Schmidt I et al (2019) The major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep 27:1293–1306PubMedCrossRef
42.
go back to reference Heindl S, Gesierich B, Benakis C, Llovera G, Duering M, Liesz A (2018) Automated morphological analysis of microglia after stroke. Front Cell Neurosci 12:1–11CrossRef Heindl S, Gesierich B, Benakis C, Llovera G, Duering M, Liesz A (2018) Automated morphological analysis of microglia after stroke. Front Cell Neurosci 12:1–11CrossRef
43.
go back to reference Guo C, Cho KS, Li Y, Tchedre K, Antolik C, Ma J et al (2018) IGFBPL1 regulates axon growth through IGF-1-mediated signaling cascades. Sci Rep 8:1–13 Guo C, Cho KS, Li Y, Tchedre K, Antolik C, Ma J et al (2018) IGFBPL1 regulates axon growth through IGF-1-mediated signaling cascades. Sci Rep 8:1–13
44.
go back to reference Goldmann T, Wieghofer P, Müller PF, Wolf Y, Varol D, Yona S et al (2013) A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci 16:1618–1626PubMedCrossRef Goldmann T, Wieghofer P, Müller PF, Wolf Y, Varol D, Yona S et al (2013) A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci 16:1618–1626PubMedCrossRef
45.
go back to reference Boring L, Gosling J, Chensue SW, Kunkel SL, Farese RV, Broxmeyer HE et al (1997) Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest 100:2552–2561PubMedPubMedCentralCrossRef Boring L, Gosling J, Chensue SW, Kunkel SL, Farese RV, Broxmeyer HE et al (1997) Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest 100:2552–2561PubMedPubMedCentralCrossRef
46.
go back to reference Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G et al (2017) SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14:1083–1086PubMedPubMedCentralCrossRef Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G et al (2017) SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14:1083–1086PubMedPubMedCentralCrossRef
47.
go back to reference Van de Sande B, Flerin C, Davie K, De Waegeneer M, Hulselmans G, Aibar S et al (2020) A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat Protoc 15:2247–2276PubMedCrossRef Van de Sande B, Flerin C, Davie K, De Waegeneer M, Hulselmans G, Aibar S et al (2020) A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat Protoc 15:2247–2276PubMedCrossRef
48.
go back to reference Shemer A, Scheyltjens I, Frumer GR, Kim JS, Grozovski J, Ayanaw S et al (2020) Interleukin-10 prevents pathological microglia hyperactivation following peripheral endotoxin challenge. Immunity 53:1033–1049PubMedCrossRef Shemer A, Scheyltjens I, Frumer GR, Kim JS, Grozovski J, Ayanaw S et al (2020) Interleukin-10 prevents pathological microglia hyperactivation following peripheral endotoxin challenge. Immunity 53:1033–1049PubMedCrossRef
49.
go back to reference Pombo Antunes AR, Scheyltjens I, Lodi F, Messiaen J, Antoranz A, Duerinck J et al (2021) Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat Neurosci 24:595–610PubMedCrossRef Pombo Antunes AR, Scheyltjens I, Lodi F, Messiaen J, Antoranz A, Duerinck J et al (2021) Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nat Neurosci 24:595–610PubMedCrossRef
50.
go back to reference Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I, Hong G et al (2019) Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron 104:1039–1055PubMedPubMedCentralCrossRef Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I, Hong G et al (2019) Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron 104:1039–1055PubMedPubMedCentralCrossRef
51.
go back to reference Browaeys R, Saelens W, Saeys Y (2020) NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods 17:159–162PubMedCrossRef Browaeys R, Saelens W, Saeys Y (2020) NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods 17:159–162PubMedCrossRef
52.
go back to reference Jacobi A, Tran NM, Yan W, Benhar I, Tian F, Schaffer R et al (2022) Overlapping transcriptional programs promote survival and axonal regeneration of injured retinal ganglion cells. Neuron 110:2625–2645PubMedCrossRef Jacobi A, Tran NM, Yan W, Benhar I, Tian F, Schaffer R et al (2022) Overlapping transcriptional programs promote survival and axonal regeneration of injured retinal ganglion cells. Neuron 110:2625–2645PubMedCrossRef
53.
go back to reference Bray ER, Yungher BJ, Levay K, Ribeiro M, Dvoryanchikov G, Ayupe AC et al (2019) Thrombospondin-1 mediates axon regeneration in retinal ganglion cells. Neuron 103:642–657PubMedPubMedCentralCrossRef Bray ER, Yungher BJ, Levay K, Ribeiro M, Dvoryanchikov G, Ayupe AC et al (2019) Thrombospondin-1 mediates axon regeneration in retinal ganglion cells. Neuron 103:642–657PubMedPubMedCentralCrossRef
54.
go back to reference Böcker-Meffert S, Rosenstiel P, Röhl C, Warneke N, Held-Feindt J, Sievers J et al (2002) Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats. IOVS 43:2021–2026 Böcker-Meffert S, Rosenstiel P, Röhl C, Warneke N, Held-Feindt J, Sievers J et al (2002) Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats. IOVS 43:2021–2026
55.
go back to reference Rosenstein JM, Mani NM, Khaibullina A, Krum JM (2003) Neurotrophic effects of vascular endothelial growth factor (VEGF) on organotypic cortical explants and primary cortical neurons. J Neurosci 23:11036–11044PubMedPubMedCentralCrossRef Rosenstein JM, Mani NM, Khaibullina A, Krum JM (2003) Neurotrophic effects of vascular endothelial growth factor (VEGF) on organotypic cortical explants and primary cortical neurons. J Neurosci 23:11036–11044PubMedPubMedCentralCrossRef
56.
go back to reference Duan X, Qiao M, Bei F, Kim I-JJ, He Z, Sanes JRR (2015) Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron 85:1244–1256PubMedPubMedCentralCrossRef Duan X, Qiao M, Bei F, Kim I-JJ, He Z, Sanes JRR (2015) Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron 85:1244–1256PubMedPubMedCentralCrossRef
57.
go back to reference Joshi Y, Sória MG, Quadrato G, Inak G, Zhou L, Hervera A et al (2015) The MDM4/MDM2-p53-IGF1 axis controls axonal regeneration, sprouting and functional recovery after CNS injury. Brain 138:1843–1862PubMedCrossRef Joshi Y, Sória MG, Quadrato G, Inak G, Zhou L, Hervera A et al (2015) The MDM4/MDM2-p53-IGF1 axis controls axonal regeneration, sprouting and functional recovery after CNS injury. Brain 138:1843–1862PubMedCrossRef
58.
go back to reference Fricker FR, Lago N, Balarajah S, Tsantoulas C, Tanna S, Zhu N et al (2011) Axonally derived neuregulin-1 is required for remyelination and regeneration after nerve injury in adulthood. J Neurosci 31:3225–3233PubMedPubMedCentralCrossRef Fricker FR, Lago N, Balarajah S, Tsantoulas C, Tanna S, Zhu N et al (2011) Axonally derived neuregulin-1 is required for remyelination and regeneration after nerve injury in adulthood. J Neurosci 31:3225–3233PubMedPubMedCentralCrossRef
59.
go back to reference Murakami K, Tanaka T, Bando Y, Yoshida S (2015) Nerve injury induces the expression of syndecan-1 heparan sulfate proteoglycan in primary sensory neurons. Neuroscience 300:338–350PubMedCrossRef Murakami K, Tanaka T, Bando Y, Yoshida S (2015) Nerve injury induces the expression of syndecan-1 heparan sulfate proteoglycan in primary sensory neurons. Neuroscience 300:338–350PubMedCrossRef
61.
go back to reference Taggart CC, Cryan SA, Weldon S, Gibbons A, Greene CM, Kelly E et al (2005) Secretory leucoprotease inhibitor binds to NF-κB binding sites in monocytes and inhibits p65 binding. J Exp Med 202:1659–1668PubMedPubMedCentralCrossRef Taggart CC, Cryan SA, Weldon S, Gibbons A, Greene CM, Kelly E et al (2005) Secretory leucoprotease inhibitor binds to NF-κB binding sites in monocytes and inhibits p65 binding. J Exp Med 202:1659–1668PubMedPubMedCentralCrossRef
62.
go back to reference Mueller AM, Pedré X, Stempfl T, Kleiter I, Couillard-Despres S, Aigner L et al (2008) Novel role for SLPI in MOG-induced EAE revealed by spinal cord expression analysis. J Neuroinflamm 5:1–20CrossRef Mueller AM, Pedré X, Stempfl T, Kleiter I, Couillard-Despres S, Aigner L et al (2008) Novel role for SLPI in MOG-induced EAE revealed by spinal cord expression analysis. J Neuroinflamm 5:1–20CrossRef
63.
go back to reference Ghasemlou N, Bouhy D, Yang J, López-Vales R, Haber M, Thuraisingam T et al (2010) Beneficial effects of secretory leukocyte protease inhibitor after spinal cord injury. Brain 133:126–138PubMedCrossRef Ghasemlou N, Bouhy D, Yang J, López-Vales R, Haber M, Thuraisingam T et al (2010) Beneficial effects of secretory leukocyte protease inhibitor after spinal cord injury. Brain 133:126–138PubMedCrossRef
64.
go back to reference Wei K, Serpooshan V, Hurtado C, Diez-Cunado M, Zhao M, Maruyama S et al (2015) Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525:479–485PubMedPubMedCentralCrossRef Wei K, Serpooshan V, Hurtado C, Diez-Cunado M, Zhao M, Maruyama S et al (2015) Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525:479–485PubMedPubMedCentralCrossRef
65.
go back to reference Yin Y, Henzl MT, Lorber B, Nakazawa T, Thomas TT, Jiang F et al (2006) Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci 9:843–852PubMedCrossRef Yin Y, Henzl MT, Lorber B, Nakazawa T, Thomas TT, Jiang F et al (2006) Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci 9:843–852PubMedCrossRef
66.
go back to reference Yin Y, Cui Q, Gilbert HY, Yang Y, Yang Z, Berlinicke C et al (2009) Oncomodulin links inflammation to optic nerve regeneration. Proc Natl Acad Sci 106:19587–19592PubMedPubMedCentralCrossRef Yin Y, Cui Q, Gilbert HY, Yang Y, Yang Z, Berlinicke C et al (2009) Oncomodulin links inflammation to optic nerve regeneration. Proc Natl Acad Sci 106:19587–19592PubMedPubMedCentralCrossRef
67.
go back to reference Kurimoto T, Yin Y, Habboub G, Gilbert H-YY, Li Y, Nakao S et al (2013) Neutrophils express oncomodulin and promote optic nerve regeneration. J Neurosci 33:14816–14824PubMedPubMedCentralCrossRef Kurimoto T, Yin Y, Habboub G, Gilbert H-YY, Li Y, Nakao S et al (2013) Neutrophils express oncomodulin and promote optic nerve regeneration. J Neurosci 33:14816–14824PubMedPubMedCentralCrossRef
69.
go back to reference Xie L, Cen LP, Li Y, Gilbert HY, Strelko O, Berlinicke C et al (2022) Monocyte-derived SDF1 supports optic nerve regeneration and alters retinal ganglion cells’ response to Pten deletion. Proc Natl Acad Sci U S A 119:e2113751119PubMedPubMedCentralCrossRef Xie L, Cen LP, Li Y, Gilbert HY, Strelko O, Berlinicke C et al (2022) Monocyte-derived SDF1 supports optic nerve regeneration and alters retinal ganglion cells’ response to Pten deletion. Proc Natl Acad Sci U S A 119:e2113751119PubMedPubMedCentralCrossRef
70.
go back to reference Margeta MA, Yin Z, Madore C, Pitts KM, Letcher SM, Tang J et al (2022) Apolipoprotein E4 impairs the response of neurodegenerative retinal microglia and prevents neuronal loss in glaucoma. Immunity 55:1627–1644PubMedCrossRef Margeta MA, Yin Z, Madore C, Pitts KM, Letcher SM, Tang J et al (2022) Apolipoprotein E4 impairs the response of neurodegenerative retinal microglia and prevents neuronal loss in glaucoma. Immunity 55:1627–1644PubMedCrossRef
71.
go back to reference Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R et al (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47:566–581PubMedPubMedCentralCrossRef Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R et al (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47:566–581PubMedPubMedCentralCrossRef
72.
go back to reference Sousa C, Golebiewska A, Poovathingal SK, Kaoma T, Pires-Afonso Y, Martina S et al (2018) Single-cell transcriptomics reveals distinct inflammation-induced microglia signatures. EMBO Rep 19:e46171PubMedPubMedCentralCrossRef Sousa C, Golebiewska A, Poovathingal SK, Kaoma T, Pires-Afonso Y, Martina S et al (2018) Single-cell transcriptomics reveals distinct inflammation-induced microglia signatures. EMBO Rep 19:e46171PubMedPubMedCentralCrossRef
73.
go back to reference Lodder C, Scheyltjens I, Stancu IC, Botella Lucena P, Gutiérrez de Ravé M, Vanherle S et al (2021) CSF1R inhibition rescues tau pathology and neurodegeneration in an A/T/N model with combined AD pathologies, while preserving plaque associated microglia. Acta Neuropathol Commun 9:1–21CrossRef Lodder C, Scheyltjens I, Stancu IC, Botella Lucena P, Gutiérrez de Ravé M, Vanherle S et al (2021) CSF1R inhibition rescues tau pathology and neurodegeneration in an A/T/N model with combined AD pathologies, while preserving plaque associated microglia. Acta Neuropathol Commun 9:1–21CrossRef
74.
go back to reference Beuker C, Schafflick D, Strecker JK, Heming M, Li X, Wolbert J et al (2022) Stroke induces disease-specific myeloid cells in the brain parenchyma and pia. Nat Commun 13:1–14CrossRef Beuker C, Schafflick D, Strecker JK, Heming M, Li X, Wolbert J et al (2022) Stroke induces disease-specific myeloid cells in the brain parenchyma and pia. Nat Commun 13:1–14CrossRef
75.
go back to reference Reyes NJ, Mathew R, Saban DR (2019) Fate mapping in vivo to distinguish bona fide microglia versus recruited monocyte-derived macrophages in retinal disease. Methods Mol Biol 1834:153–164PubMedCrossRef Reyes NJ, Mathew R, Saban DR (2019) Fate mapping in vivo to distinguish bona fide microglia versus recruited monocyte-derived macrophages in retinal disease. Methods Mol Biol 1834:153–164PubMedCrossRef
76.
go back to reference O’Koren EG, Mathew R, Saban DR (2016) Fate mapping reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina. Sci Rep 6:20636–20648PubMedPubMedCentralCrossRef O’Koren EG, Mathew R, Saban DR (2016) Fate mapping reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina. Sci Rep 6:20636–20648PubMedPubMedCentralCrossRef
77.
go back to reference Wieghofer P, Hagemeyer N, Sankowski R, Schlecht A, Staszewski O, Amann L et al (2021) Mapping the origin and fate of myeloid cells in distinct compartments of the eye by single-cell profiling. EMBO J 40:e105123PubMedPubMedCentralCrossRef Wieghofer P, Hagemeyer N, Sankowski R, Schlecht A, Staszewski O, Amann L et al (2021) Mapping the origin and fate of myeloid cells in distinct compartments of the eye by single-cell profiling. EMBO J 40:e105123PubMedPubMedCentralCrossRef
78.
go back to reference Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR et al (2003) Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci 23:2284–2293PubMedPubMedCentralCrossRef Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR et al (2003) Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci 23:2284–2293PubMedPubMedCentralCrossRef
79.
go back to reference Gensel JC, Nakamura S, Guan Z, Van RN, Ankeny DP, Popovich PG (2009) Macrophages promote axon regeneration with concurrent neurotoxicity. J Neurosci 29:3956–3968PubMedPubMedCentralCrossRef Gensel JC, Nakamura S, Guan Z, Van RN, Ankeny DP, Popovich PG (2009) Macrophages promote axon regeneration with concurrent neurotoxicity. J Neurosci 29:3956–3968PubMedPubMedCentralCrossRef
80.
go back to reference Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444PubMedPubMedCentralCrossRef Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444PubMedPubMedCentralCrossRef
81.
go back to reference Rolls A, Shechter R, London A, Segev Y, Jacob-Hirsch J, Amariglio N et al (2008) Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med 5:1262–1277CrossRef Rolls A, Shechter R, London A, Segev Y, Jacob-Hirsch J, Amariglio N et al (2008) Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med 5:1262–1277CrossRef
82.
go back to reference David S, Greenhalgh AD, Kroner A (2015) Macrophage and microglial plasticity in the injured spinal cord. Neuroscience 307:311–318PubMedCrossRef David S, Greenhalgh AD, Kroner A (2015) Macrophage and microglial plasticity in the injured spinal cord. Neuroscience 307:311–318PubMedCrossRef
83.
go back to reference Schwartz M, Ramos JMP, Ben-Yehuda H (2020) A 20-Year journey from axonal injury to neurodegenerative diseases and the prospect of immunotherapy for combating Alzheimer’s disease. J Immunol 204:243–250PubMedCrossRef Schwartz M, Ramos JMP, Ben-Yehuda H (2020) A 20-Year journey from axonal injury to neurodegenerative diseases and the prospect of immunotherapy for combating Alzheimer’s disease. J Immunol 204:243–250PubMedCrossRef
84.
go back to reference Sas AR, Carbajal KS, Jerome AD, Menon R, Yoon C, Kalinski AL et al (2020) A new neutrophil subset promotes CNS neuron survival and axon regeneration. Nat Immunol 21:1496–1505PubMedPubMedCentralCrossRef Sas AR, Carbajal KS, Jerome AD, Menon R, Yoon C, Kalinski AL et al (2020) A new neutrophil subset promotes CNS neuron survival and axon regeneration. Nat Immunol 21:1496–1505PubMedPubMedCentralCrossRef
85.
go back to reference Batlle M, Ferri L, Andrade C, Ortega F-J, Vidal-Taboada JM, Pugliese M et al (2015) Astroglia-microglia cross talk during neurodegeneration in the rat hippocampus. Biomed Res Int 2015:102419–102434PubMedPubMedCentralCrossRef Batlle M, Ferri L, Andrade C, Ortega F-J, Vidal-Taboada JM, Pugliese M et al (2015) Astroglia-microglia cross talk during neurodegeneration in the rat hippocampus. Biomed Res Int 2015:102419–102434PubMedPubMedCentralCrossRef
86.
go back to reference Kirkley KS, Popichak KA, Afzali MF, Legare ME, Tjalkens RB (2017) Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J Neuroinflamm 14:1–17CrossRef Kirkley KS, Popichak KA, Afzali MF, Legare ME, Tjalkens RB (2017) Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J Neuroinflamm 14:1–17CrossRef
87.
88.
go back to reference Van Dyck A, Bollaerts I, Beckers A, Vanhunsel S, Glorian N, Houcke J et al (2021) Müller glia–myeloid cell crosstalk accelerates optic nerve regeneration in the adult zebrafish. Glia 69:1444–1463PubMedCrossRef Van Dyck A, Bollaerts I, Beckers A, Vanhunsel S, Glorian N, Houcke J et al (2021) Müller glia–myeloid cell crosstalk accelerates optic nerve regeneration in the adult zebrafish. Glia 69:1444–1463PubMedCrossRef
89.
go back to reference Gambarotta G, Fregnan F, Gnavi S, Perroteau I (2013) Neuregulin 1 role in Schwann cell regulation and potential applications to promote peripheral nerve regeneration. Int Rev Neurobiol 108:223–256PubMedCrossRef Gambarotta G, Fregnan F, Gnavi S, Perroteau I (2013) Neuregulin 1 role in Schwann cell regulation and potential applications to promote peripheral nerve regeneration. Int Rev Neurobiol 108:223–256PubMedCrossRef
90.
go back to reference Faust N, Varas F, Kelly LM, Heck S, Graf T (2000) Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96:719–726PubMedCrossRef Faust N, Varas F, Kelly LM, Heck S, Graf T (2000) Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96:719–726PubMedCrossRef
91.
go back to reference Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91PubMedCrossRef Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91PubMedCrossRef
92.
go back to reference Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM et al (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:1–8CrossRef Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM et al (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:1–8CrossRef
93.
go back to reference De Groef L, Dekeyster E, Geeraerts E, Lefevere E, Stalmans I, Salinas Navarro M et al (2016) Differential visual system organization and susceptibility to experimental models of optic neuropathies in three commonly used mouse strains. Exp Eye Res 145:235–247PubMedCrossRef De Groef L, Dekeyster E, Geeraerts E, Lefevere E, Stalmans I, Salinas Navarro M et al (2016) Differential visual system organization and susceptibility to experimental models of optic neuropathies in three commonly used mouse strains. Exp Eye Res 145:235–247PubMedCrossRef
94.
go back to reference Lefevere E, Salinas-Navarro M, Andries L, Noterdaeme L, Etienne I, Van WE et al (2020) Tightening the retinal glia limitans attenuates neuroinflammation after optic nerve injury. Glia 68:2643–2660PubMedCrossRef Lefevere E, Salinas-Navarro M, Andries L, Noterdaeme L, Etienne I, Van WE et al (2020) Tightening the retinal glia limitans attenuates neuroinflammation after optic nerve injury. Glia 68:2643–2660PubMedCrossRef
95.
go back to reference Devoldere J, Peynshaert K, Dewitte H, Vanhove C, De Groef L, Moons L et al (2019) Non-viral delivery of chemically modified mRNA to the retina: subretinal versus intravitreal administration. J Control Release 307:315–330PubMedCrossRef Devoldere J, Peynshaert K, Dewitte H, Vanhove C, De Groef L, Moons L et al (2019) Non-viral delivery of chemically modified mRNA to the retina: subretinal versus intravitreal administration. J Control Release 307:315–330PubMedCrossRef
96.
go back to reference Pernet V, Schwab ME (2012) The role of Nogo-A in axonal plasticity, regrowth and repair. Cell Tissue Res 349:97–104PubMedCrossRef Pernet V, Schwab ME (2012) The role of Nogo-A in axonal plasticity, regrowth and repair. Cell Tissue Res 349:97–104PubMedCrossRef
97.
go back to reference Wu YE, Pan L, Zuo Y, Li X, Hong W (2017) Detecting activated cell populations using single-cell RNA-Seq. Neuron 96:313–329PubMedCrossRef Wu YE, Pan L, Zuo Y, Li X, Hong W (2017) Detecting activated cell populations using single-cell RNA-Seq. Neuron 96:313–329PubMedCrossRef
98.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504PubMedPubMedCentralCrossRef Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504PubMedPubMedCentralCrossRef
99.
go back to reference Davis BM, Salinas-Navarro M, Cordeiro MF, Moons L, De GL (2017) Characterizing microglia activation: a spatial statistics approach to maximize information extraction. Sci Rep 7:1–12CrossRef Davis BM, Salinas-Navarro M, Cordeiro MF, Moons L, De GL (2017) Characterizing microglia activation: a spatial statistics approach to maximize information extraction. Sci Rep 7:1–12CrossRef
101.
Metadata
Title
Immune stimulation recruits a subset of pro-regenerative macrophages to the retina that promotes axonal regrowth of injured neurons
Authors
Lien Andries
Daliya Kancheva
Luca Masin
Isabelle Scheyltjens
Hannah Van Hove
Karen De Vlaminck
Steven Bergmans
Marie Claes
Lies De Groef
Lieve Moons
Kiavash Movahedi
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Acta Neuropathologica Communications / Issue 1/2023
Electronic ISSN: 2051-5960
DOI
https://doi.org/10.1186/s40478-023-01580-3

Other articles of this Issue 1/2023

Acta Neuropathologica Communications 1/2023 Go to the issue