Skip to main content
Top
Published in: Journal of Mammary Gland Biology and Neoplasia 4/2007

01-12-2007

Immune Components of Colostrum and Milk—A Historical Perspective

Authors: Thomas T. Wheeler, Alison J. Hodgkinson, Colin G. Prosser, Stephen R. Davis

Published in: Journal of Mammary Gland Biology and Neoplasia | Issue 4/2007

Login to get access

Abstract

Key developments in the understanding of the immune functions of milk and colostrum are reviewed, focusing on their proteinaceous components. The topics covered include the immunoglobulins, immune cells, immunomodulatory substances, and antimicrobial proteins. The contributions of new technologies and the introduction of fresh approaches from other fields are highlighted, as are the contributions that mammary biology research has made to the development of other fields. Finally, a summary of some current outstanding questions and likely future directions of the field are given.
Literature
1.
go back to reference Kitasato S. Das Verhalten der Cholerabacterien in der Milch. Z Hyg Infektionskrankh 1889;5:491–6. Kitasato S. Das Verhalten der Cholerabacterien in der Milch. Z Hyg Infektionskrankh 1889;5:491–6.
2.
go back to reference Fokker AP. Ueber bacterienvernichtende Eigenschaften der Milch. Z Hyg Infektionskrankh 1890;9:41–55. Fokker AP. Ueber bacterienvernichtende Eigenschaften der Milch. Z Hyg Infektionskrankh 1890;9:41–55.
3.
go back to reference Ehrlich P. Ueber Immunität durch Vererbung und Säugung. Z Hyg Infektionskr 1892;12:183–203. Ehrlich P. Ueber Immunität durch Vererbung und Säugung. Z Hyg Infektionskr 1892;12:183–203.
4.
go back to reference Isaacs CE. The antimicrobial function of milk lipids. Adv Nutr Res 2001;10:271–85.PubMed Isaacs CE. The antimicrobial function of milk lipids. Adv Nutr Res 2001;10:271–85.PubMed
5.
go back to reference Newburg DS. Innate immunity and human milk. J Nutr 2005;135(5):1308–12.PubMed Newburg DS. Innate immunity and human milk. J Nutr 2005;135(5):1308–12.PubMed
6.
go back to reference Ehrlich P, Brieger L. Beiträge zur Kenntnis der Milch immunisirter Thiere. Z Hyg Infektionskr 1893;13:336–46. Ehrlich P, Brieger L. Beiträge zur Kenntnis der Milch immunisirter Thiere. Z Hyg Infektionskr 1893;13:336–46.
7.
go back to reference Campbell B, Petersen WE. Immune milk—a historical survey. Dairy Sci Abst 1963;25(9):345–58. Campbell B, Petersen WE. Immune milk—a historical survey. Dairy Sci Abst 1963;25(9):345–58.
8.
go back to reference Famulener LW. On the transmission of immunity from mother to offspring. J Infect Disease 1912;10:332–40. Famulener LW. On the transmission of immunity from mother to offspring. J Infect Disease 1912;10:332–40.
9.
go back to reference Orcutt ML, Howe PE. The relation between the accumulation of globulins and the appearance of agglutinins in the blood of new-born calves. J Exp Med 1922;36:291–308.PubMed Orcutt ML, Howe PE. The relation between the accumulation of globulins and the appearance of agglutinins in the blood of new-born calves. J Exp Med 1922;36:291–308.PubMed
10.
go back to reference Smith T, Little RB. The significance of colostrum to the new-born calf. J Exp Med 1922;36:181–98.PubMed Smith T, Little RB. The significance of colostrum to the new-born calf. J Exp Med 1922;36:181–98.PubMed
11.
go back to reference Little RB, Orcutt ML. The transmission of agglutinins of Bacillus abortus from cow to calf in the colostrum. J Exp Med 1922;35:161–71.PubMed Little RB, Orcutt ML. The transmission of agglutinins of Bacillus abortus from cow to calf in the colostrum. J Exp Med 1922;35:161–71.PubMed
12.
go back to reference Ratner B, Jackson HC, Gruehl HL. Transmission of protein hypersensitiveness from mother to offspring: I. Critique of placental permeability. J Immunol 1927;14:249–65. Ratner B, Jackson HC, Gruehl HL. Transmission of protein hypersensitiveness from mother to offspring: I. Critique of placental permeability. J Immunol 1927;14:249–65.
13.
go back to reference Ratner B, Jackson HC, Gruehl HL. Transmission of protein hypersensitiveness from mother to offspring: II. The role of colostrum. J Immunol 1927;14:267–74. Ratner B, Jackson HC, Gruehl HL. Transmission of protein hypersensitiveness from mother to offspring: II. The role of colostrum. J Immunol 1927;14:267–74.
14.
go back to reference Ratner B, Jackson HC, Gruehl HL. Transmission of protein hypersensitiveness from mother to offspring: III. The rôle of milk. J Immunol 1927;14:275–90. Ratner B, Jackson HC, Gruehl HL. Transmission of protein hypersensitiveness from mother to offspring: III. The rôle of milk. J Immunol 1927;14:275–90.
15.
go back to reference Smith T. The immunological significance of colostrum. I. The relationship between colostrum, serum, and the milk of cows normal and immunized towards B. coli. J Exp Med 1930;51:473–81.PubMed Smith T. The immunological significance of colostrum. I. The relationship between colostrum, serum, and the milk of cows normal and immunized towards B. coli. J Exp Med 1930;51:473–81.PubMed
16.
go back to reference Ingram PL, Lovell R, Wood PC, Aschaffenburg R, Bartlett S, Kon SK, et al. Bacterium coli antibodies in colostrum and their relation to calf survival. J Pathol Bacteriol 1956;72:561–8. Ingram PL, Lovell R, Wood PC, Aschaffenburg R, Bartlett S, Kon SK, et al. Bacterium coli antibodies in colostrum and their relation to calf survival. J Pathol Bacteriol 1956;72:561–8.
17.
go back to reference Lascelles AK. A review of the literature on some aspects of immune milk. Dairy Sci Abstr 1963;25(9):359–64. Lascelles AK. A review of the literature on some aspects of immune milk. Dairy Sci Abstr 1963;25(9):359–64.
18.
go back to reference Richards CB, Marrack JR. Sheep serum gamma globulin. In: Peeters H, editor. Protides of the biological fluids bruges. Amsterdam: Elsevier Science; 1963. p. 154–156. Richards CB, Marrack JR. Sheep serum gamma globulin. In: Peeters H, editor. Protides of the biological fluids bruges. Amsterdam: Elsevier Science; 1963. p. 154–156.
19.
go back to reference Hanson LA. Comparative immunological studies of the immune globulins of human milk and of blood serum. Int Arch Allergy Appl Immunol 1961;18:241–67.PubMed Hanson LA. Comparative immunological studies of the immune globulins of human milk and of blood serum. Int Arch Allergy Appl Immunol 1961;18:241–67.PubMed
20.
go back to reference Campbell B, Porter RM, Petersen WE. Plasmacytosis of the bovine udder during colostrum secretion and experimental cessation of milking. Nature 1950;166(4230):913.PubMed Campbell B, Porter RM, Petersen WE. Plasmacytosis of the bovine udder during colostrum secretion and experimental cessation of milking. Nature 1950;166(4230):913.PubMed
21.
go back to reference Lee CS, Lascelles AK. Antibody-producing cells in antigenically stimulated mammary glands and in the gastro-intestinal tract of sheep. Aust J Exp Biol Med Sci 1970;48(5):525–35.PubMed Lee CS, Lascelles AK. Antibody-producing cells in antigenically stimulated mammary glands and in the gastro-intestinal tract of sheep. Aust J Exp Biol Med Sci 1970;48(5):525–35.PubMed
22.
go back to reference Blakemore F, Garner RJ. The maternal transference of antibodies in the bovine. J Comp Pathol 1956;66(4):287–9.PubMed Blakemore F, Garner RJ. The maternal transference of antibodies in the bovine. J Comp Pathol 1956;66(4):287–9.PubMed
23.
go back to reference Butler JE. Characteristics of bovine immunoglobulins and related molecules. Review of the bovine immunoglobulins. J Dairy Sci 1971;54(9):1315–6.PubMed Butler JE. Characteristics of bovine immunoglobulins and related molecules. Review of the bovine immunoglobulins. J Dairy Sci 1971;54(9):1315–6.PubMed
24.
go back to reference Jones EA, Waldmann TA. The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat. J Clin Invest 1972;51(11):2916–27.PubMed Jones EA, Waldmann TA. The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat. J Clin Invest 1972;51(11):2916–27.PubMed
25.
go back to reference Kemler R, Mossmann H, Strohmaier U, Kickhofen B, Hammer DK. In vitro studies on the selective binding of IgG from different species to tissue sections of the bovine mammary gland. Eur J Immunol 1975;5(9):603–8.PubMed Kemler R, Mossmann H, Strohmaier U, Kickhofen B, Hammer DK. In vitro studies on the selective binding of IgG from different species to tissue sections of the bovine mammary gland. Eur J Immunol 1975;5(9):603–8.PubMed
26.
go back to reference Barrington GM, Besser TE, Gay CC, Davis WC, Reeves JJ, McFadden TB, et al. Regulation of the immunoglobulin G1 receptor: effect of prolactin on in vivo expression of the bovine mammary immunoglobulin G1 receptor. J Endocrinol 1999;163(1):25–31.PubMed Barrington GM, Besser TE, Gay CC, Davis WC, Reeves JJ, McFadden TB, et al. Regulation of the immunoglobulin G1 receptor: effect of prolactin on in vivo expression of the bovine mammary immunoglobulin G1 receptor. J Endocrinol 1999;163(1):25–31.PubMed
27.
go back to reference Smith KL, Muir LA, Ferguson LC, Conrad HR. Selective transport of IgGl into the mammary gland: role of estrogen and progesterone. J Dairy Sci 1971;54(12):1886–94.PubMed Smith KL, Muir LA, Ferguson LC, Conrad HR. Selective transport of IgGl into the mammary gland: role of estrogen and progesterone. J Dairy Sci 1971;54(12):1886–94.PubMed
28.
go back to reference Lascelles AK, McDowell GH. Localized humoral immunity with particular reference to ruminants. Transplant Rev 1974;19(0):170–208.PubMed Lascelles AK, McDowell GH. Localized humoral immunity with particular reference to ruminants. Transplant Rev 1974;19(0):170–208.PubMed
29.
go back to reference Barrington GM, Besser TE, Gay CC, Davis WC, Reeves JJ, McFadden TB. Effect of prolactin on in vitro expression of the bovine mammary immunoglobulin G1 receptor. J Dairy Sci 1997;80(1):94–100.PubMed Barrington GM, Besser TE, Gay CC, Davis WC, Reeves JJ, McFadden TB. Effect of prolactin on in vitro expression of the bovine mammary immunoglobulin G1 receptor. J Dairy Sci 1997;80(1):94–100.PubMed
30.
go back to reference Roux ME, McWilliams M, Phillips-Quagliata JM, Weisz-Carrington P, Lamm ME. Origin of IgA-secreting plasma cells in the mammary gland. J Exp Med 1977;146(5):1311–22.PubMed Roux ME, McWilliams M, Phillips-Quagliata JM, Weisz-Carrington P, Lamm ME. Origin of IgA-secreting plasma cells in the mammary gland. J Exp Med 1977;146(5):1311–22.PubMed
31.
go back to reference Weisz-Carrington P, Roux ME, Lamm ME. Plasma cells and epithelial immunoglobulins in the mouse mammary gland during pregnancy and lactation. J Immunol 1977;119(4):1306–7.PubMed Weisz-Carrington P, Roux ME, Lamm ME. Plasma cells and epithelial immunoglobulins in the mouse mammary gland during pregnancy and lactation. J Immunol 1977;119(4):1306–7.PubMed
32.
go back to reference McDermott MR, Bienenstock J. Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues. J Immunol 1979;122(5):1892–8.PubMed McDermott MR, Bienenstock J. Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues. J Immunol 1979;122(5):1892–8.PubMed
33.
go back to reference Tanneau GM, Oyant LHS, Chevaleyre CC, Salmon HP. Differential recruitment of T- and IgA B-lymphocytes in the developing mammary gland in relation to homing receptors and vascular addressins. J Histochem Cytochem 1999;47(12):1581–92.PubMed Tanneau GM, Oyant LHS, Chevaleyre CC, Salmon HP. Differential recruitment of T- and IgA B-lymphocytes in the developing mammary gland in relation to homing receptors and vascular addressins. J Histochem Cytochem 1999;47(12):1581–92.PubMed
34.
go back to reference Finke D, Acha-Orbea H. Differential migration of in vivo primed B and T lymphocytes to lymphoid and non-lymphoid organs. Eur J Immunol 2001;31(9):2603–11.PubMed Finke D, Acha-Orbea H. Differential migration of in vivo primed B and T lymphocytes to lymphoid and non-lymphoid organs. Eur J Immunol 2001;31(9):2603–11.PubMed
35.
go back to reference Hodgkinson AJ, Carpenter EA, Smith CS, Molan PC, Prosser CG. Adhesion molecule expression in the bovine mammary gland. Vet Immunol Immunopathol 2007;115(3–4):205–15.PubMed Hodgkinson AJ, Carpenter EA, Smith CS, Molan PC, Prosser CG. Adhesion molecule expression in the bovine mammary gland. Vet Immunol Immunopathol 2007;115(3–4):205–15.PubMed
36.
go back to reference Wilson E, Butcher EC. CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J Exp Med 2004;200(6):805–9.PubMed Wilson E, Butcher EC. CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J Exp Med 2004;200(6):805–9.PubMed
37.
go back to reference Crago SS, Kulhavy R, Prince SJ, Mestecky J. Secretory component of epithelial cells is a surface receptor for polymeric immunoglobulins. J Exp Med 1978;147(6):1832–7.PubMed Crago SS, Kulhavy R, Prince SJ, Mestecky J. Secretory component of epithelial cells is a surface receptor for polymeric immunoglobulins. J Exp Med 1978;147(6):1832–7.PubMed
38.
go back to reference Apodaca G, Katz LA, Mostov KE. Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J Cell Biol 1994;125(1):67–86.PubMed Apodaca G, Katz LA, Mostov KE. Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J Cell Biol 1994;125(1):67–86.PubMed
39.
go back to reference de Groot N, Van Kuik-Romeijn P, Lee SH, De Boer HA. Increased immunoglobulin A levels in milk by over-expressing the murine polymeric immunoglobulin receptor gene in the mammary gland epithelial cells of transgenic mice. Immunology 2000;101(2):218–24.PubMed de Groot N, Van Kuik-Romeijn P, Lee SH, De Boer HA. Increased immunoglobulin A levels in milk by over-expressing the murine polymeric immunoglobulin receptor gene in the mammary gland epithelial cells of transgenic mice. Immunology 2000;101(2):218–24.PubMed
40.
go back to reference Rosato R, Jammes H, Belair L, Puissant C, Kraehenbuhl JP, Djiane J. Polymeric-Ig receptor gene expression in rabbit mammary gland during pregnancy and lactation: evolution and hormonal regulation. Mol Cell Endocrinol 1995;110(1–2):81–7.PubMed Rosato R, Jammes H, Belair L, Puissant C, Kraehenbuhl JP, Djiane J. Polymeric-Ig receptor gene expression in rabbit mammary gland during pregnancy and lactation: evolution and hormonal regulation. Mol Cell Endocrinol 1995;110(1–2):81–7.PubMed
41.
go back to reference Rincheval-Arnold A, Belair L, Djiane J. Developmental expression of pIgR gene in sheep mammary gland and hormonal regulation. J Dairy Res 2002;69(1):13–26.PubMed Rincheval-Arnold A, Belair L, Djiane J. Developmental expression of pIgR gene in sheep mammary gland and hormonal regulation. J Dairy Res 2002;69(1):13–26.PubMed
42.
go back to reference Brown WR, Newcomb RW, Ishizaka K. Proteolytic degradation of exocrine and serum immunoglobulins. J Clin Invest 1970;49(7):1374–80.PubMed Brown WR, Newcomb RW, Ishizaka K. Proteolytic degradation of exocrine and serum immunoglobulins. J Clin Invest 1970;49(7):1374–80.PubMed
43.
go back to reference Shuster J. Pepsin hydrolysis of IgA-delineation of two populations of molecules. Immunochemistry 1971;8(5):405–11.PubMed Shuster J. Pepsin hydrolysis of IgA-delineation of two populations of molecules. Immunochemistry 1971;8(5):405–11.PubMed
44.
go back to reference Phalipon A, Cardona A, Kraehenbuhl JP, Edelman L, Sansonetti PJ, Corthesy B. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 2002;17(1):107–15.PubMed Phalipon A, Cardona A, Kraehenbuhl JP, Edelman L, Sansonetti PJ, Corthesy B. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 2002;17(1):107–15.PubMed
45.
go back to reference Groves ML, Gordon WG. Isolation of a new glycoprotein-a and a gamma-G-globulin from individual cow milks. Biochemistry 1967;6(8):2388–94.PubMed Groves ML, Gordon WG. Isolation of a new glycoprotein-a and a gamma-G-globulin from individual cow milks. Biochemistry 1967;6(8):2388–94.PubMed
46.
go back to reference de Oliveira IR, de Araujo AN, Bao SN, Giugliano LG. Binding of lactoferrin and free secretory component to enterotoxigenic Escherichia coli. FEMS Microbiol Lett 2001;203(1):29–33.PubMed de Oliveira IR, de Araujo AN, Bao SN, Giugliano LG. Binding of lactoferrin and free secretory component to enterotoxigenic Escherichia coli. FEMS Microbiol Lett 2001;203(1):29–33.PubMed
47.
go back to reference Marshall LJ, Perks B, Ferkol T, Shute JK. IL-8 released constitutively by primary bronchial epithelial cells in culture forms an inactive complex with secretory component. J Immunol 2001;167(5):2816–23.PubMed Marshall LJ, Perks B, Ferkol T, Shute JK. IL-8 released constitutively by primary bronchial epithelial cells in culture forms an inactive complex with secretory component. J Immunol 2001;167(5):2816–23.PubMed
48.
go back to reference Breed RS. The sanitary significance of body cells in milk.. J Infect Dis. 1914;14:93–9. Breed RS. The sanitary significance of body cells in milk.. J Infect Dis. 1914;14:93–9.
49.
go back to reference Holm GC. The types of leucocytes in market milk as related to bovine mastitis. J Am Vet Med Assoc 1934;35:735–46. Holm GC. The types of leucocytes in market milk as related to bovine mastitis. J Am Vet Med Assoc 1934;35:735–46.
50.
go back to reference Nakajima S, Baba AS, Tamura N. Complement system in human colostrum: presence of nine complement components and factors of alternative pathway in human colostrum. Int Arch Allergy Appl Immunol 1977;54(5):428–33.PubMed Nakajima S, Baba AS, Tamura N. Complement system in human colostrum: presence of nine complement components and factors of alternative pathway in human colostrum. Int Arch Allergy Appl Immunol 1977;54(5):428–33.PubMed
51.
go back to reference Reiter B, Brock JH. Inhibition of Escherichia coli by bovine colostrum and post-colostral milk. I. Complement-mediated bactericidal activity of antibodies to a serum susceptible strain of E. coli of the serotype O 111. Immunology 1975;28(1):71–82.PubMed Reiter B, Brock JH. Inhibition of Escherichia coli by bovine colostrum and post-colostral milk. I. Complement-mediated bactericidal activity of antibodies to a serum susceptible strain of E. coli of the serotype O 111. Immunology 1975;28(1):71–82.PubMed
52.
go back to reference Smith CW, Goldman AS. The cells of human colostrum .I. In vitro studies of morphology and functions. Pediatr Res 1968;2(2):103–9.PubMed Smith CW, Goldman AS. The cells of human colostrum .I. In vitro studies of morphology and functions. Pediatr Res 1968;2(2):103–9.PubMed
53.
go back to reference Mohr JA. The possible induction and-or acquisition of cellular hypersensitivity associated with ingestion of colostrum. J Pediatr 1973;82(6):1062–4.PubMed Mohr JA. The possible induction and-or acquisition of cellular hypersensitivity associated with ingestion of colostrum. J Pediatr 1973;82(6):1062–4.PubMed
54.
go back to reference Beer AE, Billington RE, Head JR. Natural transplantation of leukocytes during suckling. Transplant Proc 1975;7:399–402. Beer AE, Billington RE, Head JR. Natural transplantation of leukocytes during suckling. Transplant Proc 1975;7:399–402.
55.
go back to reference Weiler IJ, Hickler W, Sprenger R. Demonstration that milk cells invade the suckling neonatal mouse. Am J Reprod Immunol 1983;4(2):95–8.PubMed Weiler IJ, Hickler W, Sprenger R. Demonstration that milk cells invade the suckling neonatal mouse. Am J Reprod Immunol 1983;4(2):95–8.PubMed
56.
go back to reference Sheldrake RF, Husband AJ. Intestinal uptake of intact maternal lymphocytes by neonatal rats and lambs. Res Vet Sci 1985;39(1):10–5.PubMed Sheldrake RF, Husband AJ. Intestinal uptake of intact maternal lymphocytes by neonatal rats and lambs. Res Vet Sci 1985;39(1):10–5.PubMed
57.
go back to reference Miller SC. Failure to demonstrate morphologically the presence of colostral or milk cells in the wall of the gastrointestinal tract of the suckling neonatal mouse. J Reprod Immunol 1981;3(3):187–94.PubMed Miller SC. Failure to demonstrate morphologically the presence of colostral or milk cells in the wall of the gastrointestinal tract of the suckling neonatal mouse. J Reprod Immunol 1981;3(3):187–94.PubMed
58.
go back to reference Keller MA, Kidd RM, Bryson YJ, Turner JL, Carter J. Lymphokine production by human milk lymphocytes. Infect Immun 1981;32(2):632–6.PubMed Keller MA, Kidd RM, Bryson YJ, Turner JL, Carter J. Lymphokine production by human milk lymphocytes. Infect Immun 1981;32(2):632–6.PubMed
59.
go back to reference Lawton JW, Shortridge KF, Wong RL, Ng MH. Interferon synthesis by human colostral leucocytes. Arch Dis Child 1979;54(2):127–30.PubMed Lawton JW, Shortridge KF, Wong RL, Ng MH. Interferon synthesis by human colostral leucocytes. Arch Dis Child 1979;54(2):127–30.PubMed
60.
go back to reference Donnet-Hughes A, Duc N, Serrant P, Vidal K, Schiffrin EJ. Bioactive molecules in milk and their role in health and disease: the role of transforming growth factor-beta. Immunol Cell Biol 2000;78(1):74–9.PubMed Donnet-Hughes A, Duc N, Serrant P, Vidal K, Schiffrin EJ. Bioactive molecules in milk and their role in health and disease: the role of transforming growth factor-beta. Immunol Cell Biol 2000;78(1):74–9.PubMed
61.
go back to reference Penttilla IA. Effects of transforming growth factor-beta and formula feeding on systemic immune responses to dietary beta-lactoglobulin in allergy-prone rats. Pediatr Res 2006;59:650–5. Penttilla IA. Effects of transforming growth factor-beta and formula feeding on systemic immune responses to dietary beta-lactoglobulin in allergy-prone rats. Pediatr Res 2006;59:650–5.
62.
go back to reference Stavnezer J. Regulation of antibody production and class switching by TGF-beta. J Immunol 1995;155(4):1647–51.PubMed Stavnezer J. Regulation of antibody production and class switching by TGF-beta. J Immunol 1995;155(4):1647–51.PubMed
63.
go back to reference Sordillo LM, Shafer-Weaver K, DeRosa D. Immunobiology of the mammary gland. J Dairy Sci 1997;80(8):1851–65.PubMedCrossRef Sordillo LM, Shafer-Weaver K, DeRosa D. Immunobiology of the mammary gland. J Dairy Sci 1997;80(8):1851–65.PubMedCrossRef
64.
go back to reference Gauthier SF, Pouliot Y, Saint-Sauveur D. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int Dairy J 2006;16:1315–1323. Gauthier SF, Pouliot Y, Saint-Sauveur D. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int Dairy J 2006;16:1315–1323.
65.
go back to reference Silanikove N, Shapiro F, Shamay A, Leitner G. Role of xanthine oxidase, lactoperoxidase, and NO in the innate immune system of mammary secretion during active involution in dairy cows: manipulation with casein hydrolyzates. Free Radic Biol Med 2005;38(9):1139–51.PubMed Silanikove N, Shapiro F, Shamay A, Leitner G. Role of xanthine oxidase, lactoperoxidase, and NO in the innate immune system of mammary secretion during active involution in dairy cows: manipulation with casein hydrolyzates. Free Radic Biol Med 2005;38(9):1139–51.PubMed
66.
go back to reference Elliott RB, Harris DP, Hill JP, Bibby NJ, Wasmuth HE. Type I (insulin-dependent) diabetes mellitus and cow milk: casein variant consumption. Diabetologia 1999;42(3):292–6.PubMed Elliott RB, Harris DP, Hill JP, Bibby NJ, Wasmuth HE. Type I (insulin-dependent) diabetes mellitus and cow milk: casein variant consumption. Diabetologia 1999;42(3):292–6.PubMed
67.
go back to reference Yu WH. Scientific rationale and benefits of nucleotide supplementation of infant formula. J Paediatr Child Health 2002;38:543–9.PubMed Yu WH. Scientific rationale and benefits of nucleotide supplementation of infant formula. J Paediatr Child Health 2002;38:543–9.PubMed
68.
go back to reference Horrobin E. Low prevalences of coronary heart disease (CHD), psoriasis, asthma and rheumatoid arthritis in Eskimos: are they caused by high dietary intake of ecosapentaenoic acid (EPA), a genetic variation of essential fatty acid (EPA) metabolism or a combination of both? Med Hypothesis 1987;22:388–96. Horrobin E. Low prevalences of coronary heart disease (CHD), psoriasis, asthma and rheumatoid arthritis in Eskimos: are they caused by high dietary intake of ecosapentaenoic acid (EPA), a genetic variation of essential fatty acid (EPA) metabolism or a combination of both? Med Hypothesis 1987;22:388–96.
69.
go back to reference Pastor N, Soler B, Mitmesser SH, Ferguson P, Lifschitz C. Infants fed docosahexaenoic acid- and arachidonic acid-supplemented formula have decreased incidence of bronchiolitis/bronchitis the first year of life. Clin Pediatr (Phila) 2006;45(9):850–5.CrossRef Pastor N, Soler B, Mitmesser SH, Ferguson P, Lifschitz C. Infants fed docosahexaenoic acid- and arachidonic acid-supplemented formula have decreased incidence of bronchiolitis/bronchitis the first year of life. Clin Pediatr (Phila) 2006;45(9):850–5.CrossRef
70.
go back to reference Dunstan JA, Mori TA, Barden A, Beilin LJ, Taylor AL, Holt PG, et al. Maternal fish oil supplementation in pregnancy reduces interleukin-13 levels in cord blood of infants at high risk of atopy. Clin Exp Allergy 2003;33(4):442–8.PubMed Dunstan JA, Mori TA, Barden A, Beilin LJ, Taylor AL, Holt PG, et al. Maternal fish oil supplementation in pregnancy reduces interleukin-13 levels in cord blood of infants at high risk of atopy. Clin Exp Allergy 2003;33(4):442–8.PubMed
71.
go back to reference Grulee CG, Sanford HN, Herron PH. Breast and artificial feeding: influences on morbidity and mortality of twenty thousand infants. J Am Med Assoc 1934;103:735–9. Grulee CG, Sanford HN, Herron PH. Breast and artificial feeding: influences on morbidity and mortality of twenty thousand infants. J Am Med Assoc 1934;103:735–9.
72.
go back to reference Jarvinen KM, Suomalainen H. Leucocytes in human milk and lymphocyte subsets in cow’s milk-allergic infants. Pediatr Allergy Immunol 2002;13(4):243–54.PubMed Jarvinen KM, Suomalainen H. Leucocytes in human milk and lymphocyte subsets in cow’s milk-allergic infants. Pediatr Allergy Immunol 2002;13(4):243–54.PubMed
73.
go back to reference Ruiz RG, Kemeny DM, Price JF. Higher risk of infantile atopic dermatitis from maternal atopy than from paternal atopy. Clin Exp Allergy 1992;22(8):762–6.PubMed Ruiz RG, Kemeny DM, Price JF. Higher risk of infantile atopic dermatitis from maternal atopy than from paternal atopy. Clin Exp Allergy 1992;22(8):762–6.PubMed
74.
go back to reference Han Y-S, Park H-Y, Ahn K-M, Lee J-S, Choi H-M, Lee S-I. Short-term effect of partially hydrolysed formula on the prevention of development of atopic dermatitis in infants at high risk. J Korean Med Sci 2003;18:547–51.PubMed Han Y-S, Park H-Y, Ahn K-M, Lee J-S, Choi H-M, Lee S-I. Short-term effect of partially hydrolysed formula on the prevention of development of atopic dermatitis in infants at high risk. J Korean Med Sci 2003;18:547–51.PubMed
75.
go back to reference Saarinen KM, Savilahti E. Infant feeding patterns affect the subsequent immunological features in cow’s milk allergy. Clin Exp Allergy 2000;30(3):400–6.PubMed Saarinen KM, Savilahti E. Infant feeding patterns affect the subsequent immunological features in cow’s milk allergy. Clin Exp Allergy 2000;30(3):400–6.PubMed
76.
go back to reference Gdalevich M, Mimouni D, David M, Mimouni M. Breast-feeding and the onset of atopic dermatitis in childhood: a systematic review and meta-analysis of prospective studies. J Am Acad Dermatol 2001;45(4):520–7.PubMed Gdalevich M, Mimouni D, David M, Mimouni M. Breast-feeding and the onset of atopic dermatitis in childhood: a systematic review and meta-analysis of prospective studies. J Am Acad Dermatol 2001;45(4):520–7.PubMed
77.
go back to reference Fleming A. On a remarkable bacteriolytic element found in tissues and secretions. Proc Roy Soc Ser Biol Sci 1922;93:306–17. Fleming A. On a remarkable bacteriolytic element found in tissues and secretions. Proc Roy Soc Ser Biol Sci 1922;93:306–17.
78.
go back to reference Bordet J, Bordet M. Le pouvoir bacteriolytique du colostrum et du lait. Compt Rend 1924;179:1109–13. Bordet J, Bordet M. Le pouvoir bacteriolytique du colostrum et du lait. Compt Rend 1924;179:1109–13.
79.
go back to reference Jones FS, Little RB. The bactericidal properties of cow’s milk. J Exp Med 1927;45:319–35.PubMed Jones FS, Little RB. The bactericidal properties of cow’s milk. J Exp Med 1927;45:319–35.PubMed
80.
go back to reference Salton MR. The properties of lysozyme and its action on microorganisms. Bacteriol Rev 1957;21(2):82–100.PubMed Salton MR. The properties of lysozyme and its action on microorganisms. Bacteriol Rev 1957;21(2):82–100.PubMed
81.
go back to reference Jolles P, Jolles J. Lysozyme from human milk. Nature 1961;192:1187–1188. Jolles P, Jolles J. Lysozyme from human milk. Nature 1961;192:1187–1188.
82.
go back to reference Chandan RC, Shahani KM, Holly RG. Lysozyme content of human milk. Nature 1964;204:76–7.PubMed Chandan RC, Shahani KM, Holly RG. Lysozyme content of human milk. Nature 1964;204:76–7.PubMed
83.
go back to reference Auclair JE. Studies on the antibacterial properties of cow’s milk. PhD Thesis, University of Reading 1953. Auclair JE. Studies on the antibacterial properties of cow’s milk. PhD Thesis, University of Reading 1953.
84.
go back to reference Wright RC, Tramer J. Factors influencing the activity of cheese starters. The role of milk peroxidase. J Dairy Res 1958;25:104–18.CrossRef Wright RC, Tramer J. Factors influencing the activity of cheese starters. The role of milk peroxidase. J Dairy Res 1958;25:104–18.CrossRef
85.
go back to reference Theorell H, Akeson A. Highly purified milk peroxidase. Ark Kemi Mineral Geol 1943;B17(7):1–6. Theorell H, Akeson A. Highly purified milk peroxidase. Ark Kemi Mineral Geol 1943;B17(7):1–6.
86.
go back to reference Jago GR, Morrison M. Anti-streptococcal activity of lactoperoxidase III. Proc Soc Exp Biol Med 1962;111:585–8.PubMed Jago GR, Morrison M. Anti-streptococcal activity of lactoperoxidase III. Proc Soc Exp Biol Med 1962;111:585–8.PubMed
87.
go back to reference Sorensen M, Sorensen SPL. The proteins in whey. C R Trav Lab Carlsberg 1939;23:55–99. Sorensen M, Sorensen SPL. The proteins in whey. C R Trav Lab Carlsberg 1939;23:55–99.
88.
go back to reference Schäfer KH. Elektrophoretische Untersuchengen zum Milchweissproblem. Monatsschr Kinderheilkd 1951;99:69. Schäfer KH. Elektrophoretische Untersuchengen zum Milchweissproblem. Monatsschr Kinderheilkd 1951;99:69.
89.
go back to reference Oram JD, Reiter B. Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochim Biophys Acta 1968;170(2):351–65.PubMed Oram JD, Reiter B. Inhibition of bacteria by lactoferrin and other iron-chelating agents. Biochim Biophys Acta 1968;170(2):351–65.PubMed
90.
go back to reference Kirkpatrick CH, Green I, Rich RR, Schade AL. Inhibition of growth of Candida albicans by iron-unsaturated lactoferrin: relation to host-defense mechanisms in chronic mucocutaneous candidiasis. J Infect Dis 1971;124(6):539–44.PubMed Kirkpatrick CH, Green I, Rich RR, Schade AL. Inhibition of growth of Candida albicans by iron-unsaturated lactoferrin: relation to host-defense mechanisms in chronic mucocutaneous candidiasis. J Infect Dis 1971;124(6):539–44.PubMed
91.
go back to reference Schardinger F. Ueber das Verhalten der Kuhmilch gegen Methylenblau und seine Verwendung sur Unterscheidung von ungekochter und gekochter Milch. Z Unters Nahr Genussm 1902;5:1113–21. Schardinger F. Ueber das Verhalten der Kuhmilch gegen Methylenblau und seine Verwendung sur Unterscheidung von ungekochter und gekochter Milch. Z Unters Nahr Genussm 1902;5:1113–21.
92.
go back to reference Green DE, Pauli R. The antibacterial action of the xanthine oxidase system. Proc Soc Exp Biol Med 1943;54:148–50. Green DE, Pauli R. The antibacterial action of the xanthine oxidase system. Proc Soc Exp Biol Med 1943;54:148–50.
93.
go back to reference Lipmann F, Owen CR. The antibacterial effect of enzymatic xanthine oxidation. Science 1943;98:246–8.PubMed Lipmann F, Owen CR. The antibacterial effect of enzymatic xanthine oxidation. Science 1943;98:246–8.PubMed
94.
go back to reference Gyorgy P, Dhanamitta S, Steers E. Protective effects of human milk in experimental staphylococcus infection. Science 1962;137:338–40.PubMed Gyorgy P, Dhanamitta S, Steers E. Protective effects of human milk in experimental staphylococcus infection. Science 1962;137:338–40.PubMed
95.
go back to reference Reiter B, Oram J. Bacterial inhibitors in milk and other biological fluids. Nature 1967;216:328–30. Reiter B, Oram J. Bacterial inhibitors in milk and other biological fluids. Nature 1967;216:328–30.
96.
go back to reference Masson PL, Heremans JF, Dive C. An iron-binding protein common to many external secretions. Clin Chim Acta 1966;14:735–739. Masson PL, Heremans JF, Dive C. An iron-binding protein common to many external secretions. Clin Chim Acta 1966;14:735–739.
97.
go back to reference Masson PL, Heremans JF, Schonne E. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med 1969;130(3):643–58.PubMed Masson PL, Heremans JF, Schonne E. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med 1969;130(3):643–58.PubMed
98.
go back to reference Harmon RJ, Schanbacher FL, Ferguson LC, Smith KL. Concentration of lactoferrin in milk of normal lactating cows and changes occurring during mastitis. Am J Vet Res 1975;36(7):1001–7.PubMed Harmon RJ, Schanbacher FL, Ferguson LC, Smith KL. Concentration of lactoferrin in milk of normal lactating cows and changes occurring during mastitis. Am J Vet Res 1975;36(7):1001–7.PubMed
99.
go back to reference Masson PL, Heremans JF. Metal-combining properties of human lactoferrin (red milk protein). 1. The involvement of bicarbonate in the reaction. Eur J Biochem 1968;6(4):579–84.PubMed Masson PL, Heremans JF. Metal-combining properties of human lactoferrin (red milk protein). 1. The involvement of bicarbonate in the reaction. Eur J Biochem 1968;6(4):579–84.PubMed
100.
go back to reference Goldsmith SJ, Eitenmiller RR, Barnhart HM, Toledo RT, Rao VN. Unsaturated iron-binding capacity of human milk. J Food Sci 1982;47:1298–304. Goldsmith SJ, Eitenmiller RR, Barnhart HM, Toledo RT, Rao VN. Unsaturated iron-binding capacity of human milk. J Food Sci 1982;47:1298–304.
101.
go back to reference Arnold RR, Brewer M, Gauthier JJ. Bactericidal activity of human lactoferrin: sensitivity of a variety of microorganisms. Infect Immun 1980;28(3):893–8.PubMed Arnold RR, Brewer M, Gauthier JJ. Bactericidal activity of human lactoferrin: sensitivity of a variety of microorganisms. Infect Immun 1980;28(3):893–8.PubMed
102.
go back to reference Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 1991;74(12):4137–42.PubMedCrossRef Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 1991;74(12):4137–42.PubMedCrossRef
103.
go back to reference van der Strate BW, Beljaars L, Molema G, Harmsen MC, Meijer DK. Antiviral activities of lactoferrin. Antiviral Res 2001;52(3):225–39.PubMed van der Strate BW, Beljaars L, Molema G, Harmsen MC, Meijer DK. Antiviral activities of lactoferrin. Antiviral Res 2001;52(3):225–39.PubMed
104.
go back to reference Reiter B. The lactoperoxidase-thiocyanate-hydrogen peroxide antibacterium system. Ciba Found Symp 1978;65:285–94.PubMed Reiter B. The lactoperoxidase-thiocyanate-hydrogen peroxide antibacterium system. Ciba Found Symp 1978;65:285–94.PubMed
105.
go back to reference de Wit JN, Hooydonk ACM. Structure, functions and applications of lactoperoxidase in natural antimicrobial systems. Neth Milk Dairy J 1996;50:227–44. de Wit JN, Hooydonk ACM. Structure, functions and applications of lactoperoxidase in natural antimicrobial systems. Neth Milk Dairy J 1996;50:227–44.
106.
go back to reference Kussendrager KD, van Hooijdonk AC. Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications. Br J Nutr. 2000;84(Suppl 1):S19–S25.PubMed Kussendrager KD, van Hooijdonk AC. Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications. Br J Nutr. 2000;84(Suppl 1):S19–S25.PubMed
107.
go back to reference Bjorck L, Rosen C, Marshall V, Reiter B. Antibacterial activity of the lactoperoxidase system in milk against pseudomonads and other gram-negative bacteria. Appl Microbiol 1975;30(2):199–204.PubMed Bjorck L, Rosen C, Marshall V, Reiter B. Antibacterial activity of the lactoperoxidase system in milk against pseudomonads and other gram-negative bacteria. Appl Microbiol 1975;30(2):199–204.PubMed
108.
go back to reference Reiter B, Marshall VM, Bjorck L, Rosen CG. Nonspecific bactericidal activity of the lactoperoxidases-thiocyanate-hydrogen peroxide system of milk against Escherichia coli and some gram-negative pathogens. Infect Immun 1976;13(3):800–7.PubMed Reiter B, Marshall VM, Bjorck L, Rosen CG. Nonspecific bactericidal activity of the lactoperoxidases-thiocyanate-hydrogen peroxide system of milk against Escherichia coli and some gram-negative pathogens. Infect Immun 1976;13(3):800–7.PubMed
109.
go back to reference Bjorck L, Claesson O. Xanthine oxidase as a source of hydrogen peroxide for the lactoperoxidase system in milk. J Dairy Sci 1979;62:1211–5. Bjorck L, Claesson O. Xanthine oxidase as a source of hydrogen peroxide for the lactoperoxidase system in milk. J Dairy Sci 1979;62:1211–5.
110.
go back to reference Hunt J, Massey V. Purification and properties of milk xanthine dehydrogenase. J Biol Chem 1992;267(30):21479–85.PubMed Hunt J, Massey V. Purification and properties of milk xanthine dehydrogenase. J Biol Chem 1992;267(30):21479–85.PubMed
111.
go back to reference Tubaro E, Lotti B, Santiangeli C, Cavallo G. Xanthine oxidase increase in polymorphonuclear leucocytes and macrophages in mice in three pathological situations. Biochem Pharmacol 1980;29(3):1945–8.PubMed Tubaro E, Lotti B, Santiangeli C, Cavallo G. Xanthine oxidase increase in polymorphonuclear leucocytes and macrophages in mice in three pathological situations. Biochem Pharmacol 1980;29(3):1945–8.PubMed
112.
go back to reference Bungener W. Influence of allopurinol on the multiplication of rodent malaria parasites. Tropenmed Parasitol 1974;25(3):309–12.PubMed Bungener W. Influence of allopurinol on the multiplication of rodent malaria parasites. Tropenmed Parasitol 1974;25(3):309–12.PubMed
113.
go back to reference Chipman DM, Sharon N. Mechanism of lysozyme action. Science 1969;165(892):454–65.PubMed Chipman DM, Sharon N. Mechanism of lysozyme action. Science 1969;165(892):454–65.PubMed
114.
go back to reference Cohn ZA, Hirsch JG. The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leucocytes. J Exp Med 1960;112:983–1004.PubMed Cohn ZA, Hirsch JG. The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leucocytes. J Exp Med 1960;112:983–1004.PubMed
115.
go back to reference Leffell MS, Spitznagel JK. Association of lactoferrin with lysozyme in granules of human polymorphonuclear leukocytes. Infect Immun 1972;6(5):761–5.PubMed Leffell MS, Spitznagel JK. Association of lactoferrin with lysozyme in granules of human polymorphonuclear leukocytes. Infect Immun 1972;6(5):761–5.PubMed
116.
go back to reference Lahov E, Regelson W. Antibacterial and immunostimulating casein-derived substances from milk: casecidin, isracidin peptides. Food Chem Toxicol 1996;34(1):131–45.PubMed Lahov E, Regelson W. Antibacterial and immunostimulating casein-derived substances from milk: casecidin, isracidin peptides. Food Chem Toxicol 1996;34(1):131–45.PubMed
117.
go back to reference Medzhitov R, Janeway CA Jr. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 1997;9(1):4–9.PubMed Medzhitov R, Janeway CA Jr. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 1997;9(1):4–9.PubMed
118.
go back to reference Lehrer RI, Ganz T. Defensins of vertebrate animals. Curr Opin Immunol 2002;14(1):96–102.PubMed Lehrer RI, Ganz T. Defensins of vertebrate animals. Curr Opin Immunol 2002;14(1):96–102.PubMed
119.
go back to reference Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 2004;75(1):39–48.PubMed Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 2004;75(1):39–48.PubMed
120.
go back to reference Goldammer T, Zerbe H, Molenaar A, Schuberth HJ, Brunner RM, Kata SR, et al. Mastitis increases mammary mRNA abundance of beta-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle. Clin Diagn Lab Immunol 2004;11(1):174–85.PubMed Goldammer T, Zerbe H, Molenaar A, Schuberth HJ, Brunner RM, Kata SR, et al. Mastitis increases mammary mRNA abundance of beta-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle. Clin Diagn Lab Immunol 2004;11(1):174–85.PubMed
121.
go back to reference Swanson K, Gorodetsky S, Good L, Davis S, Musgrave D, Stelwagen K, et al. Expression of a beta-defensin mRNA, lingual antimicrobial peptide, in bovine mammary epithelial tissue is induced by mastitis. Infect Immun 2004;72(12):7311–4.PubMed Swanson K, Gorodetsky S, Good L, Davis S, Musgrave D, Stelwagen K, et al. Expression of a beta-defensin mRNA, lingual antimicrobial peptide, in bovine mammary epithelial tissue is induced by mastitis. Infect Immun 2004;72(12):7311–4.PubMed
122.
go back to reference Armogida SA, Yannaras NM, Melton AL, Srivastava MD. Identification and quantification of innate immune system mediators in human breast milk. Allergy Asthma Proc 2004;25(5):297–304.PubMed Armogida SA, Yannaras NM, Melton AL, Srivastava MD. Identification and quantification of innate immune system mediators in human breast milk. Allergy Asthma Proc 2004;25(5):297–304.PubMed
123.
go back to reference Murakami M, Dorschner RA, Stern LJ, Lin KH, Gallo RL. Expression and secretion of cathelicidin antimicrobial peptides in murine mammary glands and human milk. Pediatr Res 2005;57(1):10–5.PubMed Murakami M, Dorschner RA, Stern LJ, Lin KH, Gallo RL. Expression and secretion of cathelicidin antimicrobial peptides in murine mammary glands and human milk. Pediatr Res 2005;57(1):10–5.PubMed
124.
go back to reference McDonald TL, Larson MA, Mack DR, Weber A. Elevated extrahepatic expression and secretion of mammary-associated serum amyloid A 3 (M-SAA3) into colostrum. Vet Immunol Immunopathol 2001;83(3–4):203–11.PubMed McDonald TL, Larson MA, Mack DR, Weber A. Elevated extrahepatic expression and secretion of mammary-associated serum amyloid A 3 (M-SAA3) into colostrum. Vet Immunol Immunopathol 2001;83(3–4):203–11.PubMed
125.
go back to reference Maes P, Damart D, Rommens C, Montreuil J, Spik G, Tartar A. The complete amino acid sequence of bovine milk angiogenin. FEBS Lett 1988;241(1–2):41–5.PubMed Maes P, Damart D, Rommens C, Montreuil J, Spik G, Tartar A. The complete amino acid sequence of bovine milk angiogenin. FEBS Lett 1988;241(1–2):41–5.PubMed
126.
go back to reference Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 2003;4(3):269–73.PubMed Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 2003;4(3):269–73.PubMed
127.
go back to reference Egesten A, Dyer KD, Batten D, Domachowske JB, Rosenberg HF. Ribonucleases and host defense: identification, localization and gene expression in adherent monocytes in vitro. Biochim Biophys Acta 1997;1358(3):255–60.PubMed Egesten A, Dyer KD, Batten D, Domachowske JB, Rosenberg HF. Ribonucleases and host defense: identification, localization and gene expression in adherent monocytes in vitro. Biochim Biophys Acta 1997;1358(3):255–60.PubMed
128.
go back to reference Rosenberg HF, Domachowske JB. Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J Leukoc Biol 2001;70(5):691–8.PubMed Rosenberg HF, Domachowske JB. Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J Leukoc Biol 2001;70(5):691–8.PubMed
129.
go back to reference Donaldson L, Vuocolo T, Gray C, Strandberg Y, Reverter A, McWilliam S, et al. Construction and validation of a bovine innate immune microarray. BMC Genomics 2005;6:135.PubMed Donaldson L, Vuocolo T, Gray C, Strandberg Y, Reverter A, McWilliam S, et al. Construction and validation of a bovine innate immune microarray. BMC Genomics 2005;6:135.PubMed
130.
go back to reference Swanson KM, Henderson HV, Farr VC, Davis SR, Oden K, Stelwagen K, et al. The use of microarrays to investigate gene regulation in the bovine mammary gland during Streptococcus uberis mastitis. Proc NZ Soc Anim Prod 2004;64:14–6. Swanson KM, Henderson HV, Farr VC, Davis SR, Oden K, Stelwagen K, et al. The use of microarrays to investigate gene regulation in the bovine mammary gland during Streptococcus uberis mastitis. Proc NZ Soc Anim Prod 2004;64:14–6.
131.
go back to reference Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, Heath VJ, et al. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res 2004;6(2):R75–R91.PubMed Stein T, Morris JS, Davies CR, Weber-Hall SJ, Duffy MA, Heath VJ, et al. Involution of the mouse mammary gland is associated with an immune cascade and an acute-phase response, involving LBP, CD14 and STAT3. Breast Cancer Res 2004;6(2):R75–R91.PubMed
132.
go back to reference Clarkson RW, Wayland MT, Lee J, Freeman T, Watson CJ. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res 2004;6(2):R92–R109.PubMed Clarkson RW, Wayland MT, Lee J, Freeman T, Watson CJ. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res 2004;6(2):R92–R109.PubMed
133.
go back to reference Hogarth CJ, Fitzpatrick JL, Nolan AM, Young FJ, Pitt A, Eckersall PD. Differential protein composition of bovine whey: a comparison of whey from healthy animals and from those with clinical mastitis. Proteomics 2004;4(7):2094–100.PubMed Hogarth CJ, Fitzpatrick JL, Nolan AM, Young FJ, Pitt A, Eckersall PD. Differential protein composition of bovine whey: a comparison of whey from healthy animals and from those with clinical mastitis. Proteomics 2004;4(7):2094–100.PubMed
134.
go back to reference Smolenski G, Haines S, Kwan FY, Bond J, Farr V, Davis SR, et al. Characterisation of host defence proteins in milk using a proteomic approach. J Proteome Res 2007;6(1):207–15.PubMed Smolenski G, Haines S, Kwan FY, Bond J, Farr V, Davis SR, et al. Characterisation of host defence proteins in milk using a proteomic approach. J Proteome Res 2007;6(1):207–15.PubMed
135.
go back to reference Takakura N, Wakabayashi H, Yamauchi K, Takase M. Influences of orally administered lactoferrin on IFN-gamma and IL-10 production by intestinal intraepithelial lymphocytes and mesenteric lymph-node cells. Biochem Cell Biol 2006;84(3):363–8.PubMed Takakura N, Wakabayashi H, Yamauchi K, Takase M. Influences of orally administered lactoferrin on IFN-gamma and IL-10 production by intestinal intraepithelial lymphocytes and mesenteric lymph-node cells. Biochem Cell Biol 2006;84(3):363–8.PubMed
136.
go back to reference Bowdish DM, Davidson DJ, Hancock RE. Immunomodulatory properties of defensins and cathelicidins. Curr Top Microbiol Immunol 2006;306:27–66.PubMedCrossRef Bowdish DM, Davidson DJ, Hancock RE. Immunomodulatory properties of defensins and cathelicidins. Curr Top Microbiol Immunol 2006;306:27–66.PubMedCrossRef
137.
go back to reference Hodgkinson AJ, Cannon RD, Holmes AR, Fischer FJ, Willix-Payne DJ. Production from dairy cows of semi-industrial quantities of milk-protein concentrate (MPC) containing efficacious anti-Candida albicans IgA antibodies. J Dairy Res 2007;74(3):269–75.PubMed Hodgkinson AJ, Cannon RD, Holmes AR, Fischer FJ, Willix-Payne DJ. Production from dairy cows of semi-industrial quantities of milk-protein concentrate (MPC) containing efficacious anti-Candida albicans IgA antibodies. J Dairy Res 2007;74(3):269–75.PubMed
138.
go back to reference Finlay BB, Hancock RE. Can innate immunity be enhanced to treat microbial infections? Nat Rev Microbiol 2004;2(6):497–504.PubMed Finlay BB, Hancock RE. Can innate immunity be enhanced to treat microbial infections? Nat Rev Microbiol 2004;2(6):497–504.PubMed
139.
go back to reference Caccavo D, Pellegrino NM, Altamura M, Rigon A, Amati L, Amoroso A, et al. Antimicrobial and immunoregulatory functions of lactoferrin and its potential therapeutic application. J Endotoxin Res 2002;8(6):403–17.PubMed Caccavo D, Pellegrino NM, Altamura M, Rigon A, Amati L, Amoroso A, et al. Antimicrobial and immunoregulatory functions of lactoferrin and its potential therapeutic application. J Endotoxin Res 2002;8(6):403–17.PubMed
140.
go back to reference Kerr DE, Plaut K, Bramley AJ, Williamson CM, Lax AJ, Moore K, et al. Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice. Nat Biotechnol 2001;19(1):66–70.PubMed Kerr DE, Plaut K, Bramley AJ, Williamson CM, Lax AJ, Moore K, et al. Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice. Nat Biotechnol 2001;19(1):66–70.PubMed
141.
go back to reference Sun H-C, Xue F-M, Qian K, Fang H-X, Qiu H-L, Zhang X-Y, et al. Intramammary expression and therapeutic effect of a human lysozyme-expressing vector for treating bovine mastitis. J Zhejiang Univ Science B 2006;7:324–330. Sun H-C, Xue F-M, Qian K, Fang H-X, Qiu H-L, Zhang X-Y, et al. Intramammary expression and therapeutic effect of a human lysozyme-expressing vector for treating bovine mastitis. J Zhejiang Univ Science B 2006;7:324–330.
Metadata
Title
Immune Components of Colostrum and Milk—A Historical Perspective
Authors
Thomas T. Wheeler
Alison J. Hodgkinson
Colin G. Prosser
Stephen R. Davis
Publication date
01-12-2007
Publisher
Springer US
Published in
Journal of Mammary Gland Biology and Neoplasia / Issue 4/2007
Print ISSN: 1083-3021
Electronic ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-007-9051-7

Other articles of this Issue 4/2007

Journal of Mammary Gland Biology and Neoplasia 4/2007 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine