Skip to main content
Top
Published in: Insights into Imaging 5-6/2010

Open Access 01-11-2010 | Review

Imaging with non-FDG PET tracers: outlook for current clinical applications

Authors: Egesta Lopci, Cristina Nanni, Paolo Castellucci, Gian Carlo Montini, Vincenzo Allegri, Domenico Rubello, Franca Chierichetti, Valentina Ambrosini, Stefano Fanti

Published in: Insights into Imaging | Issue 5-6/2010

Login to get access

Abstract

Apart from the historical and clinical relevance of positron emission tomography (PET) with 18F-fluorodeoxyglucose (18F-FDG), various other new tracers are gaining a remarkable place in functional imaging. Their contribution to clinical decision-making is irreplaceable in several disciplines. In this brief review we aimed to describe the main non-FDG PET tracers based on their clinical relevance and application for patient care.
Literature
1.
go back to reference Beyer T, Townsend DW, Brun T et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8):1369–1379PubMed Beyer T, Townsend DW, Brun T et al (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8):1369–1379PubMed
3.
go back to reference Husarik DB, Miralbell R, Dubs M et al (2008) Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 35(2):253–263PubMedCrossRef Husarik DB, Miralbell R, Dubs M et al (2008) Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 35(2):253–263PubMedCrossRef
4.
go back to reference Hara T, Kosada N, Kondo T et al (1997) Imaging of brain tumor, lung cancer, esophageal cancer, colon cancer, prostate cancer and bladder cancer with (C-11)choline. J Nucl Med 38(Suppl):250P Hara T, Kosada N, Kondo T et al (1997) Imaging of brain tumor, lung cancer, esophageal cancer, colon cancer, prostate cancer and bladder cancer with (C-11)choline. J Nucl Med 38(Suppl):250P
5.
go back to reference Briganti A, Chun FK-H, Salonia A et al (2006) Validation of a nomogram predicting the probability of lymph node invasion among patients undergoing radical prostatectomy and an extended pelvic lymphadenectomy. Eur Urol 49:1019–1027PubMedCrossRef Briganti A, Chun FK-H, Salonia A et al (2006) Validation of a nomogram predicting the probability of lymph node invasion among patients undergoing radical prostatectomy and an extended pelvic lymphadenectomy. Eur Urol 49:1019–1027PubMedCrossRef
6.
go back to reference Schiavina R, Scattoni V, Castellucci P et al (2008) 11C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol 54(2):392–401PubMedCrossRef Schiavina R, Scattoni V, Castellucci P et al (2008) 11C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol 54(2):392–401PubMedCrossRef
7.
go back to reference Farsad M, Schiavina R, Castellucci P et al (2005) Detection and localization of prostate cancer: correlation of 11C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 46(10):1642–1649PubMed Farsad M, Schiavina R, Castellucci P et al (2005) Detection and localization of prostate cancer: correlation of 11C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 46(10):1642–1649PubMed
8.
go back to reference Giovacchini G, Picchio M, Coradeschi E et al (2008) [(11)C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging 35(6):1065–1073PubMedCrossRef Giovacchini G, Picchio M, Coradeschi E et al (2008) [(11)C]choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging 35(6):1065–1073PubMedCrossRef
9.
go back to reference Castellucci P, Fuccio C, Fanti S (2010) Influence of trigger PSA and PSA kinetics on 11C-choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med. doi:10.2967/jnumed.109.072322PubMed Castellucci P, Fuccio C, Fanti S (2010) Influence of trigger PSA and PSA kinetics on 11C-choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med. doi:10.​2967/​jnumed.​109.​072322PubMed
10.
go back to reference Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39:990–995PubMed Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39:990–995PubMed
11.
go back to reference De Jong I, Pruim J, Elsinga PH et al (2003) 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 44:32–38PubMedCrossRef De Jong I, Pruim J, Elsinga PH et al (2003) 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 44:32–38PubMedCrossRef
12.
go back to reference Krause BJ, Souvatzoglou M, Tincel M et al (2008) The detection rate of 11-C choline PET/TC depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 35:18–23PubMedCrossRef Krause BJ, Souvatzoglou M, Tincel M et al (2008) The detection rate of 11-C choline PET/TC depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 35:18–23PubMedCrossRef
13.
go back to reference Breeuwsma AJ, Pruim J, Van den Bergh AC et al (2010) Detection of local, regional, and distant recurrence in patients with PSA relapse after external-beam radiotherapy using (11)C-choline positron emission tomography. Int J Radiat Oncol Biol Phys 77(1):160–164PubMedCrossRef Breeuwsma AJ, Pruim J, Van den Bergh AC et al (2010) Detection of local, regional, and distant recurrence in patients with PSA relapse after external-beam radiotherapy using (11)C-choline positron emission tomography. Int J Radiat Oncol Biol Phys 77(1):160–164PubMedCrossRef
14.
go back to reference Giovacchini G, Picchio M, Scattoni V et al (2010) PSA doubling time for prediction of [(11)C]choline PET/CT findings in prostate cancer patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging 37(6):1106–1116PubMedCrossRef Giovacchini G, Picchio M, Scattoni V et al (2010) PSA doubling time for prediction of [(11)C]choline PET/CT findings in prostate cancer patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging 37(6):1106–1116PubMedCrossRef
15.
go back to reference Nanni C, Zamagni E, Cavo M et al (2007) 11C-choline vs. 18F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma. World J Surg Oncol 20(5):68CrossRef Nanni C, Zamagni E, Cavo M et al (2007) 11C-choline vs. 18F-FDG PET/CT in assessing bone involvement in patients with multiple myeloma. World J Surg Oncol 20(5):68CrossRef
16.
go back to reference Hoffman RM (1984) Altered methionine metabolism, DNA methylation and oncogenic expression in carcinogenesis. Biochem Biophys Acta 738:49–87PubMed Hoffman RM (1984) Altered methionine metabolism, DNA methylation and oncogenic expression in carcinogenesis. Biochem Biophys Acta 738:49–87PubMed
17.
go back to reference Derlon JM, Bourdet C, Bustany P et al (1989) [11C]L-methionine uptake in gliomas. Neurosurgery 25:720–728PubMedCrossRef Derlon JM, Bourdet C, Bustany P et al (1989) [11C]L-methionine uptake in gliomas. Neurosurgery 25:720–728PubMedCrossRef
18.
go back to reference Leskinen-Kallio S, Någren K, Lehikoinen P et al (1991) Uptake of 11C-methionine in breast cancer studied by PET. An association with the size of S-phase fraction. Br J Cancer 64(6):1121–1124PubMedPubMedCentralCrossRef Leskinen-Kallio S, Någren K, Lehikoinen P et al (1991) Uptake of 11C-methionine in breast cancer studied by PET. An association with the size of S-phase fraction. Br J Cancer 64(6):1121–1124PubMedPubMedCentralCrossRef
19.
go back to reference Leskinen-Kallio S, Någren K, Lehikoinen P et al (1992) Carbon-11-methionine and PET is an effective method to image head and neck cancer. J Nucl Med 33(5):691–695PubMed Leskinen-Kallio S, Någren K, Lehikoinen P et al (1992) Carbon-11-methionine and PET is an effective method to image head and neck cancer. J Nucl Med 33(5):691–695PubMed
20.
go back to reference Huang MC, Shih MH, Chung WY et al (2005) Malignancy of intracerebral lesions evaluated with 11C-methionine-PET. J Clin Neurosci 12:775–780PubMedCrossRef Huang MC, Shih MH, Chung WY et al (2005) Malignancy of intracerebral lesions evaluated with 11C-methionine-PET. J Clin Neurosci 12:775–780PubMedCrossRef
21.
go back to reference Kim S, Chung JK, Im SH et al (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32:52–59PubMedCrossRef Kim S, Chung JK, Im SH et al (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32:52–59PubMedCrossRef
22.
go back to reference Nariai T, Tanaka Y, Wakimoto H et al (2005) Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507PubMedCrossRef Nariai T, Tanaka Y, Wakimoto H et al (2005) Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507PubMedCrossRef
23.
go back to reference Terakawa Y, Tsuyuguchi N, Iwai Y et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49(5):694–699PubMedCrossRef Terakawa Y, Tsuyuguchi N, Iwai Y et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49(5):694–699PubMedCrossRef
24.
go back to reference Chung JK, Kim YK, Kim SK et al (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:176–182PubMedCrossRef Chung JK, Kim YK, Kim SK et al (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:176–182PubMedCrossRef
25.
go back to reference Yamane T, Sakamoto S, Senda M (2010) Clinical impact of (11)C-methionine PET on expected management of patients with brain neoplasm. Eur J Nucl Med Mol Imaging 37(4):685–690PubMedCrossRef Yamane T, Sakamoto S, Senda M (2010) Clinical impact of (11)C-methionine PET on expected management of patients with brain neoplasm. Eur J Nucl Med Mol Imaging 37(4):685–690PubMedCrossRef
26.
go back to reference Tsuyuguchi N, Takami T, Sunada I et al (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery—in malignant glioma. Ann Nucl Med 18(4):291–296PubMedCrossRef Tsuyuguchi N, Takami T, Sunada I et al (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery—in malignant glioma. Ann Nucl Med 18(4):291–296PubMedCrossRef
27.
go back to reference Wong TZ, Van der Westhuizen GJ, Coleman RE (2002) Positron emission tomography imaging of brain tumours. Neuroimaging Clin N Am 12:615–626PubMedCrossRef Wong TZ, Van der Westhuizen GJ, Coleman RE (2002) Positron emission tomography imaging of brain tumours. Neuroimaging Clin N Am 12:615–626PubMedCrossRef
28.
go back to reference Goldman S, Levivier M, Pirotte B et al (1997) Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med 38:1459–1462PubMed Goldman S, Levivier M, Pirotte B et al (1997) Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med 38:1459–1462PubMed
29.
go back to reference Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137–138PubMedCrossRef Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137–138PubMedCrossRef
30.
go back to reference Heiss WD, Wienhard K, Wagner R et al (1996) F-Dopa as an amino acid tracer to detect brain tumours. J Nucl Med 37(7):1180–1182PubMed Heiss WD, Wienhard K, Wagner R et al (1996) F-Dopa as an amino acid tracer to detect brain tumours. J Nucl Med 37(7):1180–1182PubMed
31.
go back to reference Becherer A, Szabó M, Karanikas G et al (2004) Imaging of advanced neuroendocrine tumors with (18)F-FDOPA PET. J Nucl Med 45(7):1161–1167PubMed Becherer A, Szabó M, Karanikas G et al (2004) Imaging of advanced neuroendocrine tumors with (18)F-FDOPA PET. J Nucl Med 45(7):1161–1167PubMed
32.
go back to reference Hardy O, Hernandez-Pampaloni M, Saffer JR et al (2007) Diagnosis and localization of focal congenital hyperinsulinism by 18F-fluorodopa PET scan. J Pediatr 150(2):140–145PubMedCrossRef Hardy O, Hernandez-Pampaloni M, Saffer JR et al (2007) Diagnosis and localization of focal congenital hyperinsulinism by 18F-fluorodopa PET scan. J Pediatr 150(2):140–145PubMedCrossRef
33.
go back to reference Pearce AG (1969) The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic implications of the concept. J Histochem Cytochem 17:303–313CrossRef Pearce AG (1969) The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic implications of the concept. J Histochem Cytochem 17:303–313CrossRef
34.
go back to reference Gazdar AF, Helman LJ, Israel MA et al (1988) Expression of neuroendocrine cell markers L-dopa decarboxylase, chromogranin A, and dense core granules in human tumors of endocrine and nonendocrine origin. Cancer Res 48:4078–4082PubMed Gazdar AF, Helman LJ, Israel MA et al (1988) Expression of neuroendocrine cell markers L-dopa decarboxylase, chromogranin A, and dense core granules in human tumors of endocrine and nonendocrine origin. Cancer Res 48:4078–4082PubMed
35.
go back to reference Hoegerle S, Altehoefer C, Ghanem N et al (2001) 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 28(1):64–71PubMedCrossRef Hoegerle S, Altehoefer C, Ghanem N et al (2001) 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 28(1):64–71PubMedCrossRef
36.
go back to reference Imani F, Agopian VG, Auerbach MS et al (2009) 18F-FDOPA PET and PET/CT accurately localize pheochromocytomas. J Nucl Med 50(4):513–519PubMedCrossRef Imani F, Agopian VG, Auerbach MS et al (2009) 18F-FDOPA PET and PET/CT accurately localize pheochromocytomas. J Nucl Med 50(4):513–519PubMedCrossRef
37.
go back to reference Koopmans KP, de Vries EG, Kema IP et al (2006) Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol 7(9):728–734PubMedCrossRef Koopmans KP, de Vries EG, Kema IP et al (2006) Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol 7(9):728–734PubMedCrossRef
38.
go back to reference Fiebrich HB, Brouwers AH, Kerstens MN et al (2009) 6-[F-18]Fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to conventional imaging with (123)I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab 94(10):3922–3930PubMedCrossRef Fiebrich HB, Brouwers AH, Kerstens MN et al (2009) 6-[F-18]Fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to conventional imaging with (123)I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. J Clin Endocrinol Metab 94(10):3922–3930PubMedCrossRef
39.
go back to reference Bombardieri E, Maccauro M, De Deckere E et al (2001) Nuclear medicine imaging of neuroendocrine tumours. Ann Oncol 12(Suppl 2):S51–S61PubMedCrossRef Bombardieri E, Maccauro M, De Deckere E et al (2001) Nuclear medicine imaging of neuroendocrine tumours. Ann Oncol 12(Suppl 2):S51–S61PubMedCrossRef
40.
go back to reference Kwekkeboom DJ, Kooj PP, Bakker WH et al (1999) Comparison of 111In-DOTA-Tyr3-octreotide and 111In-DTPA-octreotide in the same patients: biodistribution, kinetics, organ and tumour uptake. J Nucl Med 40:762–767PubMed Kwekkeboom DJ, Kooj PP, Bakker WH et al (1999) Comparison of 111In-DOTA-Tyr3-octreotide and 111In-DTPA-octreotide in the same patients: biodistribution, kinetics, organ and tumour uptake. J Nucl Med 40:762–767PubMed
41.
go back to reference Hofmann M, Maecke H, Börner R et al (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand 68 Ga-DOTATOC: preliminary data. Eur J Nucl Med 28:1751–1757PubMedCrossRef Hofmann M, Maecke H, Börner R et al (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand 68 Ga-DOTATOC: preliminary data. Eur J Nucl Med 28:1751–1757PubMedCrossRef
42.
go back to reference Prasad V, Baum RP (2010) Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in normal organs and tumor lesions. Q J Nucl Med Mol Imaging 54(1):61–67PubMed Prasad V, Baum RP (2010) Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in normal organs and tumor lesions. Q J Nucl Med Mol Imaging 54(1):61–67PubMed
43.
go back to reference Maecke HR, Hofmann M, Haberkorn U (2005) 68 Ga-labeled peptides in tumor imaging. J Nucl Med 46:172S–178SPubMed Maecke HR, Hofmann M, Haberkorn U (2005) 68 Ga-labeled peptides in tumor imaging. J Nucl Med 46:172S–178SPubMed
44.
go back to reference Baum RP (2005) Receptor PET/CT imaging of neuroendocrine tumors using the Ga-68 labelled, high affinity somatostatin analogue DOTA-1-NaI3-octreotide (DOTA-NOC): clinical results in 327 patients. Eur J Nucl Med Mol Imaging 32:109s Baum RP (2005) Receptor PET/CT imaging of neuroendocrine tumors using the Ga-68 labelled, high affinity somatostatin analogue DOTA-1-NaI3-octreotide (DOTA-NOC): clinical results in 327 patients. Eur J Nucl Med Mol Imaging 32:109s
45.
go back to reference Prasad V, Ambrosini V, Hommann M et al (2010) Detection of unknown primary neuroendocrine tumours (CUP-NET) using (68)Ga-DOTA-NOC receptor PET/CT. Eur J Nucl Med Mol Imaging 37:67–77PubMedCrossRef Prasad V, Ambrosini V, Hommann M et al (2010) Detection of unknown primary neuroendocrine tumours (CUP-NET) using (68)Ga-DOTA-NOC receptor PET/CT. Eur J Nucl Med Mol Imaging 37:67–77PubMedCrossRef
46.
go back to reference Gabriel M, Decristoforo C, Kendler D et al (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumours: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518PubMedCrossRef Gabriel M, Decristoforo C, Kendler D et al (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumours: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518PubMedCrossRef
47.
go back to reference Ambrosini V, Nanni C, Zompatori M et al (2010) 68Ga-DOTA-NOC PET/CT in comparison with CT for the detection of bone metastasis in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 37:722–727PubMedCrossRef Ambrosini V, Nanni C, Zompatori M et al (2010) 68Ga-DOTA-NOC PET/CT in comparison with CT for the detection of bone metastasis in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 37:722–727PubMedCrossRef
48.
go back to reference Haug A, Auernhammer CJ, Wängler B et al (2009) Intraindividual comparison of [68Ga]DOTA-TATE and [18F]DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 36:765–770PubMedCrossRef Haug A, Auernhammer CJ, Wängler B et al (2009) Intraindividual comparison of [68Ga]DOTA-TATE and [18F]DOPA PET in patients with well-differentiated metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging 36:765–770PubMedCrossRef
49.
go back to reference Ambrosini V, Tomassetti P, Castellucci P et al (2008) Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging 35(8):1431–1438PubMedCrossRef Ambrosini V, Tomassetti P, Castellucci P et al (2008) Comparison between 68Ga-DOTA-NOC and 18F-DOPA PET for the detection of gastro-entero-pancreatic and lung neuro-endocrine tumours. Eur J Nucl Med Mol Imaging 35(8):1431–1438PubMedCrossRef
50.
go back to reference Campana D, Ambrosini V, Pezzilli R et al (2010) Standardized uptake values of (68)Ga-DOTANOC PET: a promising prognostic tool in neuroendocrine tumors. J Nucl Med 51:353–359PubMedCrossRef Campana D, Ambrosini V, Pezzilli R et al (2010) Standardized uptake values of (68)Ga-DOTANOC PET: a promising prognostic tool in neuroendocrine tumors. J Nucl Med 51:353–359PubMedCrossRef
51.
go back to reference Gabriel M, Andergassen U, Putzer D et al (2010) Individualized peptide-related-radionuclide-therapy concept using different radiolabelled somatostatin analogs in advanced cancer patients. Q J Nucl Med Mol Imaging 54(1):92–99PubMed Gabriel M, Andergassen U, Putzer D et al (2010) Individualized peptide-related-radionuclide-therapy concept using different radiolabelled somatostatin analogs in advanced cancer patients. Q J Nucl Med Mol Imaging 54(1):92–99PubMed
52.
go back to reference Howard BV, Howard WJ (1975) Lipids in normal and tumor cells in culture. Prog Biochem Pharmacol 10:135–166PubMed Howard BV, Howard WJ (1975) Lipids in normal and tumor cells in culture. Prog Biochem Pharmacol 10:135–166PubMed
53.
go back to reference Luong A, Hannah VC, Brown MS et al (2000) Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J Biol Chem 275(34):26458–26466PubMedCrossRef Luong A, Hannah VC, Brown MS et al (2000) Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J Biol Chem 275(34):26458–26466PubMedCrossRef
54.
go back to reference Rigo P, De Landsheere C, Melon P et al (1990) Imaging of myocardial metabolism by positron emission tomography. Cardiovasc Drugs Ther 4(Suppl 4):847–851PubMedCrossRef Rigo P, De Landsheere C, Melon P et al (1990) Imaging of myocardial metabolism by positron emission tomography. Cardiovasc Drugs Ther 4(Suppl 4):847–851PubMedCrossRef
55.
go back to reference Oyama N, Miller TR, Dehdashti F et al (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44(4):549–555PubMed Oyama N, Miller TR, Dehdashti F et al (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44(4):549–555PubMed
56.
go back to reference Ho CL, Yu SC, Yeung DW (2003) 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 44:213–221PubMed Ho CL, Yu SC, Yeung DW (2003) 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 44:213–221PubMed
57.
58.
go back to reference Swinnen JV, Van Veldhoven PP, Timmermans L et al (2003) Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun 302:898–903PubMedCrossRef Swinnen JV, Van Veldhoven PP, Timmermans L et al (2003) Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun 302:898–903PubMedCrossRef
59.
go back to reference Nanni C, Castellucci P, Farsad M et al (2007) 11C/18F-choline PET or 11C/8F-acetate PET in prostate cancer: may a choice be recommended? Eur J Nucl Med Mol Imaging 34:1704–1705PubMedCrossRef Nanni C, Castellucci P, Farsad M et al (2007) 11C/18F-choline PET or 11C/8F-acetate PET in prostate cancer: may a choice be recommended? Eur J Nucl Med Mol Imaging 34:1704–1705PubMedCrossRef
60.
go back to reference Chierichetti F, Lessi G, Bissoli S et al (2005) Preliminary experience with 11C-acetate and PET7CT in prostate cancer. J Nucl Med 46 (Suppl 2) Chierichetti F, Lessi G, Bissoli S et al (2005) Preliminary experience with 11C-acetate and PET7CT in prostate cancer. J Nucl Med 46 (Suppl 2)
61.
go back to reference Soloviev D, Fini A, Chierichetti F et al (2008) PET imaging with 11C-acetate in prostate cancer: a biochemical, radiochemical and clinical perspective. Eur J Nucl Med Mol Imaging 35(5):942–949PubMedCrossRef Soloviev D, Fini A, Chierichetti F et al (2008) PET imaging with 11C-acetate in prostate cancer: a biochemical, radiochemical and clinical perspective. Eur J Nucl Med Mol Imaging 35(5):942–949PubMedCrossRef
62.
go back to reference Albrecht S, Buchegger F, Soloviev D et al (2007) (11)C-Acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 34:185–196PubMedCrossRef Albrecht S, Buchegger F, Soloviev D et al (2007) (11)C-Acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 34:185–196PubMedCrossRef
63.
go back to reference Iwata Y, Shiomi S, Sasaki N et al (2000) Clinical usefulness of positron emission tomography with fluorine-18-fluorodeoxyglucose in the diagnosis of liver tumors. Ann Nucl Med 14:121–126PubMedCrossRef Iwata Y, Shiomi S, Sasaki N et al (2000) Clinical usefulness of positron emission tomography with fluorine-18-fluorodeoxyglucose in the diagnosis of liver tumors. Ann Nucl Med 14:121–126PubMedCrossRef
64.
go back to reference Hwang KH, Choi DJ, Lee SY et al (2009) Evaluation of patients with hepatocellular carcinomas using [(11)C]acetate and [(18)F]FDG PET/CT: a preliminary study. Appl Radiat Isot 67(7–8):1195–1198PubMedCrossRef Hwang KH, Choi DJ, Lee SY et al (2009) Evaluation of patients with hepatocellular carcinomas using [(11)C]acetate and [(18)F]FDG PET/CT: a preliminary study. Appl Radiat Isot 67(7–8):1195–1198PubMedCrossRef
65.
go back to reference Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [18F]FLT and positron emission tomography. Nat Med 4:1334–1336PubMedCrossRef Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [18F]FLT and positron emission tomography. Nat Med 4:1334–1336PubMedCrossRef
66.
go back to reference Barthel H, Perumal M, Latigo J et al (2005) The uptake of 3’-deoxy-3’-[18F]fluorothymidine into L178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging 32(3):257–263PubMedCrossRef Barthel H, Perumal M, Latigo J et al (2005) The uptake of 3’-deoxy-3’-[18F]fluorothymidine into L178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging 32(3):257–263PubMedCrossRef
67.
go back to reference Shields AF (2006) Positron emission tomography measurement of tumor metabolism and growth: its expanding role in oncology. Mol Imaging Biol 8:141–150PubMedCrossRef Shields AF (2006) Positron emission tomography measurement of tumor metabolism and growth: its expanding role in oncology. Mol Imaging Biol 8:141–150PubMedCrossRef
68.
go back to reference Buck AK, Schirrmeister H, Hetzel M et al (2002) 3-Deoxy-3-[18F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res 62:3331–3334PubMed Buck AK, Schirrmeister H, Hetzel M et al (2002) 3-Deoxy-3-[18F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res 62:3331–3334PubMed
69.
go back to reference Buck AK, Herrmann K, Buschenfelde CM et al (2008) Imaging bone and soft tissue tumors with the proliferation marker [18F]fluorothymidine. Clin Cancer Res 14(10):2970–2977PubMedCrossRef Buck AK, Herrmann K, Buschenfelde CM et al (2008) Imaging bone and soft tissue tumors with the proliferation marker [18F]fluorothymidine. Clin Cancer Res 14(10):2970–2977PubMedCrossRef
70.
go back to reference Chen W, Cloughesy T, Kamdar N et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46(6):945–952PubMed Chen W, Cloughesy T, Kamdar N et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46(6):945–952PubMed
71.
go back to reference Yue J, Chen L, Cabrera AR et al (2010) Measuring tumor cell proliferation with 18F-FLT PET during radiotherapy of esophageal squamous cell carcinoma: a pilot clinical study. J Nucl Med 51(4):528–534PubMedCrossRef Yue J, Chen L, Cabrera AR et al (2010) Measuring tumor cell proliferation with 18F-FLT PET during radiotherapy of esophageal squamous cell carcinoma: a pilot clinical study. J Nucl Med 51(4):528–534PubMedCrossRef
72.
go back to reference Francis DL, Visvikis D, Costa DC et al (2003) Potential impact of [18F]3’-deoxy-3’-fluorothymidine versus [18F]fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 30(7):988–994PubMedCrossRef Francis DL, Visvikis D, Costa DC et al (2003) Potential impact of [18F]3’-deoxy-3’-fluorothymidine versus [18F]fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 30(7):988–994PubMedCrossRef
73.
go back to reference Blau M, Nagler W, Bender MA (1962) A new isotope for bone scanning. J Nucl Med 3:332–334PubMed Blau M, Nagler W, Bender MA (1962) A new isotope for bone scanning. J Nucl Med 3:332–334PubMed
74.
go back to reference Vallabhajosula S (2007) 18F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 37:400–419PubMedCrossRef Vallabhajosula S (2007) 18F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin Nucl Med 37:400–419PubMedCrossRef
75.
go back to reference Hetzel M, Arslandemir C, Konig HH et al (2003) F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. J Bone Miner Res 18:2206–2214PubMedCrossRef Hetzel M, Arslandemir C, Konig HH et al (2003) F-18 NaF PET for detection of bone metastases in lung cancer: accuracy, cost-effectiveness, and impact on patient management. J Bone Miner Res 18:2206–2214PubMedCrossRef
76.
go back to reference Even-Sapir E, Metser U, Mishani E et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297PubMed Even-Sapir E, Metser U, Mishani E et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297PubMed
77.
go back to reference Groves AM, Win Th, Ben Haim S et al (2007) Non-[18F]FDG PET in clinical oncology. Lancet Oncol 8:822–830PubMedCrossRef Groves AM, Win Th, Ben Haim S et al (2007) Non-[18F]FDG PET in clinical oncology. Lancet Oncol 8:822–830PubMedCrossRef
78.
go back to reference Even-Sapir E, Metser U, Flusser G et al (2004) Assessment of malignant skeletal disease with 18F-fluoride PET/CT. J Nucl Med 45:272–278PubMed Even-Sapir E, Metser U, Flusser G et al (2004) Assessment of malignant skeletal disease with 18F-fluoride PET/CT. J Nucl Med 45:272–278PubMed
79.
go back to reference Iagaru A, Mittra E, Yaghoubi SS et al (2009) Novel strategy for cocktail 18F-flouride and 18F-FDG PET/CT scan for evaluation of malignancy: results of a pilot-phase study. J Nucl Med 50:501–505PubMedCrossRef Iagaru A, Mittra E, Yaghoubi SS et al (2009) Novel strategy for cocktail 18F-flouride and 18F-FDG PET/CT scan for evaluation of malignancy: results of a pilot-phase study. J Nucl Med 50:501–505PubMedCrossRef
80.
go back to reference Fischer DR, Maquieira GJ, Espinosa N et al (2010) Therapeutic impact of [(18)F]fluoride positron-emission tomography/computed tomography on patients with unclear foot pain. Skeletal Radiol 39(10):987–997PubMedCrossRef Fischer DR, Maquieira GJ, Espinosa N et al (2010) Therapeutic impact of [(18)F]fluoride positron-emission tomography/computed tomography on patients with unclear foot pain. Skeletal Radiol 39(10):987–997PubMedCrossRef
81.
go back to reference Lewis JS, Welch MJ (2001) PET imaging of hypoxia. Q J Nucl Med 45(2):183–188PubMed Lewis JS, Welch MJ (2001) PET imaging of hypoxia. Q J Nucl Med 45(2):183–188PubMed
82.
go back to reference Rasey JS, Grunbaum Z, Magee S et al (1987) Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiat Res 111:292–304PubMedCrossRef Rasey JS, Grunbaum Z, Magee S et al (1987) Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiat Res 111:292–304PubMedCrossRef
83.
go back to reference Hicks RJ, Rischin D, Fisher R et al (2005) Utility of FMISO PET in advanced head and neck cancer treated with chemoradiation incorporating a hypoxia-targeting chemotherapy agent. Eur J Nucl Med Mol Imaging 32:1384–1391PubMedCrossRef Hicks RJ, Rischin D, Fisher R et al (2005) Utility of FMISO PET in advanced head and neck cancer treated with chemoradiation incorporating a hypoxia-targeting chemotherapy agent. Eur J Nucl Med Mol Imaging 32:1384–1391PubMedCrossRef
84.
go back to reference Rajendran JG, Wilson DC, Conrad EU et al (2003) (18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging 30:695–704PubMedCrossRef Rajendran JG, Wilson DC, Conrad EU et al (2003) (18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging 30:695–704PubMedCrossRef
85.
go back to reference Piert M, Machulla HJ, Picchio M et al (2005) Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 46:106–113PubMed Piert M, Machulla HJ, Picchio M et al (2005) Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med 46:106–113PubMed
86.
go back to reference Komar G, Seppaenen M, Eskola O et al (2008) 18F-EF5: a new PET tracer for imaging hypoxia in head and neck cancer. J Nucl Med 49:1944–1951PubMedCrossRef Komar G, Seppaenen M, Eskola O et al (2008) 18F-EF5: a new PET tracer for imaging hypoxia in head and neck cancer. J Nucl Med 49:1944–1951PubMedCrossRef
88.
go back to reference Dehdashti F, Grigsby PW, Mintun MA et al (2003) Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response—a preliminary report. Int J Radiat Oncol Biol Phys 55:1233–1238PubMedCrossRef Dehdashti F, Grigsby PW, Mintun MA et al (2003) Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response—a preliminary report. Int J Radiat Oncol Biol Phys 55:1233–1238PubMedCrossRef
89.
go back to reference Dehdashti F, Mintun MA, Lewis JS et al (2003) In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging 30:844–850PubMedCrossRef Dehdashti F, Mintun MA, Lewis JS et al (2003) In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging 30:844–850PubMedCrossRef
Metadata
Title
Imaging with non-FDG PET tracers: outlook for current clinical applications
Authors
Egesta Lopci
Cristina Nanni
Paolo Castellucci
Gian Carlo Montini
Vincenzo Allegri
Domenico Rubello
Franca Chierichetti
Valentina Ambrosini
Stefano Fanti
Publication date
01-11-2010
Publisher
Springer Berlin Heidelberg
Published in
Insights into Imaging / Issue 5-6/2010
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1007/s13244-010-0040-9

Other articles of this Issue 5-6/2010

Insights into Imaging 5-6/2010 Go to the issue