Skip to main content
Top
Published in: Current Osteoporosis Reports 1/2013

01-03-2013 | Male Osteoporosis (BL Clarke, Section Editor)

Imaging Technologies for Assessment of Skeletal Health in Men

Author: E. Michael Lewiecki

Published in: Current Osteoporosis Reports | Issue 1/2013

Login to get access

Abstract

Conventional radiography can detect most fractures, evaluate their healing, and visualize characteristic skeletal abnormalities for some metabolic bone diseases. Dual-energy X-ray absorptiometry (DXA) is used to measure areal bone mineral density (BMD) in order to diagnose osteoporosis, estimate fracture risk, and monitor changes in BMD over time. Vertebral fracture assessment by DXA can diagnose vertebral fractures with less ionizing radiation, greater patient convenience, and lower cost than conventional radiography. Quantitative computed tomography (QCT) measures volumetric BMD separately in cortical and trabecular bone compartments. High resolution peripheral QCT and high resolution magnetic resonance imaging are noninvasive research tools that assess the microarchitecture of bone. The use of these technologies and others has been associated with special challenges in men compared with women, provided insights into differences in the pathogenesis of osteoporosis in men and women, and enhanced understanding of the mechanisms of action of osteoporosis treatments.
Literature
1.
go back to reference Klibanski A, Adams-Campbell L, Bassford T, et al. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.CrossRef Klibanski A, Adams-Campbell L, Bassford T, et al. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.CrossRef
2.
go back to reference World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO: Geneva; 1994. World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO: Geneva; 1994.
3.
go back to reference Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–9.PubMedCrossRef Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–9.PubMedCrossRef
4.
go back to reference • Link TM. Osteoporosis imaging: state of the art and advanced imaging. Radiology. 2012;263(1):3–17. This is a comprehensive update of the state-of-the-art technologies for bone imaging.PubMedCrossRef • Link TM. Osteoporosis imaging: state of the art and advanced imaging. Radiology. 2012;263(1):3–17. This is a comprehensive update of the state-of-the-art technologies for bone imaging.PubMedCrossRef
5.
go back to reference Recker RR. Chapter 35. Bone Biopsy and Histomorphometry in Clinical Practice. Primer on the metabolic bone diseases and disorders of mineral metabolism. 2008;7(1):180–6. Recker RR. Chapter 35. Bone Biopsy and Histomorphometry in Clinical Practice. Primer on the metabolic bone diseases and disorders of mineral metabolism. 2008;7(1):180–6.
8.
go back to reference Lachmann E, Whelan M. The roentgen diagnosis of osteoporosis and its limitations. Radiology. 1936;26:165–77. Lachmann E, Whelan M. The roentgen diagnosis of osteoporosis and its limitations. Radiology. 1936;26:165–77.
9.
go back to reference Jergas M, Uffmann M, Escher H, et al. Interobserver variation in the detection of osteopenia by radiography and comparison with dual X-ray absorptiometry of the lumbar spine. Skeletal Radiol. 1994;23(3):195–9.PubMedCrossRef Jergas M, Uffmann M, Escher H, et al. Interobserver variation in the detection of osteopenia by radiography and comparison with dual X-ray absorptiometry of the lumbar spine. Skeletal Radiol. 1994;23(3):195–9.PubMedCrossRef
10.
go back to reference O'Neill TW, Felsenberg D, Varlow J, et al. The prevalence of vertebral deformity in european men and women.the European Vertebral Osteoporosis Study. J Bone Miner Res. 1996;11(7):1010–8.PubMedCrossRef O'Neill TW, Felsenberg D, Varlow J, et al. The prevalence of vertebral deformity in european men and women.the European Vertebral Osteoporosis Study. J Bone Miner Res. 1996;11(7):1010–8.PubMedCrossRef
11.
go back to reference Spitz J, Lauer I, Tittel K, Wiegand H. Scintimetric evaluation of remodeling after bone fractures in man. J Nucl Med. 1993;34(9):1403–9.PubMed Spitz J, Lauer I, Tittel K, Wiegand H. Scintimetric evaluation of remodeling after bone fractures in man. J Nucl Med. 1993;34(9):1403–9.PubMed
12.
go back to reference Fogelman I, Carr D. A comparison of bone scanning and radiology in the evaluation of patients with metabolic bone disease. Clin Radiol. 1980;31(3):321–6.PubMedCrossRef Fogelman I, Carr D. A comparison of bone scanning and radiology in the evaluation of patients with metabolic bone disease. Clin Radiol. 1980;31(3):321–6.PubMedCrossRef
13.
go back to reference Blake GM, Frost ML, Moore AE, et al. The assessment of regional skeletal metabolism: studies of osteoporosis treatments using quantitative radionuclide imaging. J Clin Densitom. 2011;14(3):263–71.PubMedCrossRef Blake GM, Frost ML, Moore AE, et al. The assessment of regional skeletal metabolism: studies of osteoporosis treatments using quantitative radionuclide imaging. J Clin Densitom. 2011;14(3):263–71.PubMedCrossRef
14.
go back to reference Blake GM, Frost ML, Fogelman I. Quantitative radionuclide studies of bone. J Nucl Med. 2009;50(11):1747–50.PubMedCrossRef Blake GM, Frost ML, Fogelman I. Quantitative radionuclide studies of bone. J Nucl Med. 2009;50(11):1747–50.PubMedCrossRef
15.
go back to reference Messa C, Goodman WG, Hoh CK, et al. Bone metabolic activity measured with positron emission tomography and [18F]fluoride ion in renal osteodystrophy: correlation with bone histomorphometry. J Clin Endocrinol Metab. 1993;77(4):949–55.PubMedCrossRef Messa C, Goodman WG, Hoh CK, et al. Bone metabolic activity measured with positron emission tomography and [18F]fluoride ion in renal osteodystrophy: correlation with bone histomorphometry. J Clin Endocrinol Metab. 1993;77(4):949–55.PubMedCrossRef
16.
go back to reference Piert M, Zittel TT, Becker GA, et al. Assessment of porcine bone metabolism by dynamic [18F]fluoride ion PET: correlation with bone histomorphometry. J Nucl Med. 2001;42(7):1091–100.PubMed Piert M, Zittel TT, Becker GA, et al. Assessment of porcine bone metabolism by dynamic [18F]fluoride ion PET: correlation with bone histomorphometry. J Nucl Med. 2001;42(7):1091–100.PubMed
17.
go back to reference Frost ML, Fogelman I, Blake GM, et al. Dissociation between global markers of bone formation and direct measurement of spinal bone formation in osteoporosis. J Bone Miner Res. 2004;19(11):1797–804.PubMedCrossRef Frost ML, Fogelman I, Blake GM, et al. Dissociation between global markers of bone formation and direct measurement of spinal bone formation in osteoporosis. J Bone Miner Res. 2004;19(11):1797–804.PubMedCrossRef
18.
go back to reference Lubushitzky R, Front D, Iosilevsky G, et al. Quantitative bone SPECT in young males with delayed puberty and hypogonadism: implications for treatment of low bone mineral density. J Nucl Med. 1998;39(1):104–7.PubMed Lubushitzky R, Front D, Iosilevsky G, et al. Quantitative bone SPECT in young males with delayed puberty and hypogonadism: implications for treatment of low bone mineral density. J Nucl Med. 1998;39(1):104–7.PubMed
19.
go back to reference Cook GJ, Blake GM, Marsden PK, et al. Quantification of skeletal kinetic indices in Paget's disease using dynamic 18F-fluoride positron emission tomography. J Bone Miner Res. 2002;17(5):854–9.PubMedCrossRef Cook GJ, Blake GM, Marsden PK, et al. Quantification of skeletal kinetic indices in Paget's disease using dynamic 18F-fluoride positron emission tomography. J Bone Miner Res. 2002;17(5):854–9.PubMedCrossRef
20.
go back to reference Riggs BL, Melton III LJ, Robb RA, et al. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res. 2004;19(12):1945–54.PubMedCrossRef Riggs BL, Melton III LJ, Robb RA, et al. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res. 2004;19(12):1945–54.PubMedCrossRef
21.
go back to reference Baim S, Binkley N, Bilezikian JP, et al. Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Position Development Conference. J Clin Densitom. 2008;11(1):75–91.PubMedCrossRef Baim S, Binkley N, Bilezikian JP, et al. Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Position Development Conference. J Clin Densitom. 2008;11(1):75–91.PubMedCrossRef
22.
go back to reference Albanese CV, Diessel E, Genant HK. Clinical applications of body composition measurements using DXA. J Clin Densitom. 2003;6(2):75–85.PubMedCrossRef Albanese CV, Diessel E, Genant HK. Clinical applications of body composition measurements using DXA. J Clin Densitom. 2003;6(2):75–85.PubMedCrossRef
23.
go back to reference Yang L, Peel N, Clowes JA, et al. Use of DXA-based structural engineering models of the proximal femur to discriminate hip fracture. J Bone Miner Res. 2009;24(1):33–42.PubMedCrossRef Yang L, Peel N, Clowes JA, et al. Use of DXA-based structural engineering models of the proximal femur to discriminate hip fracture. J Bone Miner Res. 2009;24(1):33–42.PubMedCrossRef
24.
go back to reference Pande I, O'Neill TW, Pritchard C, et al. Bone mineral density, hip axis length, and risk of hip fracture in men: results from the Cornwall Hip Fracture Study. Osteoporos Int. 2000;11(10):866–70.PubMedCrossRef Pande I, O'Neill TW, Pritchard C, et al. Bone mineral density, hip axis length, and risk of hip fracture in men: results from the Cornwall Hip Fracture Study. Osteoporos Int. 2000;11(10):866–70.PubMedCrossRef
25.
go back to reference Faulkner KG, Cummings SR, Nevitt MC, et al. Hip axis length and osteoporotic fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1995;10(3):506–8. erratum appears in J Bone Miner Res 1995 Sep;10(9):1429.PubMedCrossRef Faulkner KG, Cummings SR, Nevitt MC, et al. Hip axis length and osteoporotic fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1995;10(3):506–8. erratum appears in J Bone Miner Res 1995 Sep;10(9):1429.PubMedCrossRef
26.
go back to reference Bonnick SL. Noninvasive assessments of bone strength. Curr Opin Endocrinol Diabetes Obes. 2007;14(6):451–7.PubMedCrossRef Bonnick SL. Noninvasive assessments of bone strength. Curr Opin Endocrinol Diabetes Obes. 2007;14(6):451–7.PubMedCrossRef
27.
go back to reference Bousson V, Bergot C, Sutter B, et al. Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int. 2012;23(5):1489–501.PubMedCrossRef Bousson V, Bergot C, Sutter B, et al. Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int. 2012;23(5):1489–501.PubMedCrossRef
28.
go back to reference Lewiecki EM, Laster AJ. Clinical applications of vertebral fracture assessment by dual-energy X-ray absorptiometry. J Clin Endocrinol Metab. 2006;91(11):4215–22.PubMedCrossRef Lewiecki EM, Laster AJ. Clinical applications of vertebral fracture assessment by dual-energy X-ray absorptiometry. J Clin Endocrinol Metab. 2006;91(11):4215–22.PubMedCrossRef
29.
go back to reference Dasher LG, Newton CD, Lenchik L. Dual X-ray absorptiometry in today's clinical practice. Radiol Clin N Am. 2010;48(3):541–60.PubMedCrossRef Dasher LG, Newton CD, Lenchik L. Dual X-ray absorptiometry in today's clinical practice. Radiol Clin N Am. 2010;48(3):541–60.PubMedCrossRef
30.
31.
go back to reference Kanis JA, McCloskey EV, Johansson H, et al. A reference standard for the description of osteoporosis. Bone. 2008;42(3):467–75.PubMedCrossRef Kanis JA, McCloskey EV, Johansson H, et al. A reference standard for the description of osteoporosis. Bone. 2008;42(3):467–75.PubMedCrossRef
32.
go back to reference Kanis JA, Gluer CC. An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int. 2000;11(3):192–202.PubMedCrossRef Kanis JA, Gluer CC. An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int. 2000;11(3):192–202.PubMedCrossRef
33.
go back to reference Langsetmo L, Leslie WD, Zhou W, et al. Using the same bone density reference database for men and women provides a simpler estimation of fracture risk. J Bone Miner Res. 2010;25(10):2108–14.PubMedCrossRef Langsetmo L, Leslie WD, Zhou W, et al. Using the same bone density reference database for men and women provides a simpler estimation of fracture risk. J Bone Miner Res. 2010;25(10):2108–14.PubMedCrossRef
34.
go back to reference Kanis JA, Bianchi G, Bilezikian JP, et al. Towards a diagnostic and therapeutic consensus in male osteoporosis. Osteoporos Int. 2011;22(11):2789–98.PubMedCrossRef Kanis JA, Bianchi G, Bilezikian JP, et al. Towards a diagnostic and therapeutic consensus in male osteoporosis. Osteoporos Int. 2011;22(11):2789–98.PubMedCrossRef
35.
go back to reference Lewiecki EM, Borges JL. Bone density testing in clinical practice. Arq Bras Endocrinol Metabol. 2006;50(4):586–95.PubMed Lewiecki EM, Borges JL. Bone density testing in clinical practice. Arq Bras Endocrinol Metabol. 2006;50(4):586–95.PubMed
36.
37.
go back to reference Moayyeri A, Adams JE, Adler RA, et al. Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis. Osteoporos Int. 2012;23(1):143–53.PubMedCrossRef Moayyeri A, Adams JE, Adler RA, et al. Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis. Osteoporos Int. 2012;23(1):143–53.PubMedCrossRef
38.
go back to reference Krieg MA, Barkmann R, Gonnelli S, et al. Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom. 2008;11(1):163–87.PubMedCrossRef Krieg MA, Barkmann R, Gonnelli S, et al. Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom. 2008;11(1):163–87.PubMedCrossRef
39.
go back to reference Guglielmi G, Lang TF. Quantitative computed tomography. Semin Musculoskelet Radiol. 2002;6(3):219–27.PubMedCrossRef Guglielmi G, Lang TF. Quantitative computed tomography. Semin Musculoskelet Radiol. 2002;6(3):219–27.PubMedCrossRef
40.
go back to reference Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res. 2011;469(8):2128–38.PubMedCrossRef Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res. 2011;469(8):2128–38.PubMedCrossRef
41.
go back to reference MacNeil JA, Boyd SK. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. 2007;29(10):1096–105.PubMedCrossRef MacNeil JA, Boyd SK. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. 2007;29(10):1096–105.PubMedCrossRef
42.
go back to reference Cohen A, Dempster DW, Muller R, et al. Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos Int. 2010;21(2):263–73.PubMedCrossRef Cohen A, Dempster DW, Muller R, et al. Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos Int. 2010;21(2):263–73.PubMedCrossRef
43.
go back to reference Ostertag A, Collet C, Chappard C, et al. A case–control study of fractures in men with idiopathic osteoporosis: Fractures are associated with older age and low cortical bone density. Bone. 2013;52(1):48–55. Ostertag A, Collet C, Chappard C, et al. A case–control study of fractures in men with idiopathic osteoporosis: Fractures are associated with older age and low cortical bone density. Bone. 2013;52(1):48–55.
44.
go back to reference Szulc P, Blaizot S, Boutroy S, et al. Impaired bone microachitecture at the distal radius in older men with low muscle mass and grip strength - the STRAMBO study. J Bone Miner Res 2013;28(1):169–178. Szulc P, Blaizot S, Boutroy S, et al. Impaired bone microachitecture at the distal radius in older men with low muscle mass and grip strength - the STRAMBO study. J Bone Miner Res 2013;28(1):169–178.
45.
go back to reference Keyak JH, Sigurdsson S, Karlsdottir G, et al. Male–female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone. 2011;48(6):1239–45.PubMedCrossRef Keyak JH, Sigurdsson S, Karlsdottir G, et al. Male–female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone. 2011;48(6):1239–45.PubMedCrossRef
46.
go back to reference •• Wang X, Sanyal A, Cawthon PM, et al. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res. 2012;27(4):808–16. This is a study with QCT-derived FEA modeling of vertebral bodies in men age 65 years and older in the MrOS study. Compared with aBMD by DXA, vBMD and vertebral compressive strength improved vertebral fracture risk assessment.PubMedCrossRef •• Wang X, Sanyal A, Cawthon PM, et al. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res. 2012;27(4):808–16. This is a study with QCT-derived FEA modeling of vertebral bodies in men age 65 years and older in the MrOS study. Compared with aBMD by DXA, vBMD and vertebral compressive strength improved vertebral fracture risk assessment.PubMedCrossRef
47.
go back to reference Faulkner KG, Cann CE, Hasegawa BH. Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. Radiology. 1991;179(3):669–74.PubMed Faulkner KG, Cann CE, Hasegawa BH. Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. Radiology. 1991;179(3):669–74.PubMed
48.
go back to reference Melton LJ III, Riggs BL, Keaveny TM, et al. Relation of vertebral deformities to bone density, structure, and strength. J Bone Miner Res. 2010;Epub. Melton LJ III, Riggs BL, Keaveny TM, et al. Relation of vertebral deformities to bone density, structure, and strength. J Bone Miner Res. 2010;Epub.
49.
go back to reference Yang L, Burton AC, Bradburn M, et al. Distribution of bone density in the proximal femur and its association with hip fracture risk in older men: The osteoporotic fractures in men (MrOS) study. J Bone Miner Res. 2012;27(11):2314–24.PubMedCrossRef Yang L, Burton AC, Bradburn M, et al. Distribution of bone density in the proximal femur and its association with hip fracture risk in older men: The osteoporotic fractures in men (MrOS) study. J Bone Miner Res. 2012;27(11):2314–24.PubMedCrossRef
50.
go back to reference Christiansen BA, Kopperdahl DL, Kiel DP, et al. Mechanical contributions of the cortical and trabecular compartments contribute to differences in age-related changes in vertebral body strength in men and women assessed by QCT-based finite element analysis. J Bone Miner Res. 2011;26(5):974–83.PubMedCrossRef Christiansen BA, Kopperdahl DL, Kiel DP, et al. Mechanical contributions of the cortical and trabecular compartments contribute to differences in age-related changes in vertebral body strength in men and women assessed by QCT-based finite element analysis. J Bone Miner Res. 2011;26(5):974–83.PubMedCrossRef
51.
go back to reference • Macdonald HM, Nishiyama KK, Kang J, et al. Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res. 2011;26(1):50–62. In this Canadian cross-sectional study with HR-pQCT, important skeletal site- and sex-specific differences in patterns of age-related bone loss are reported. Women were found to have less periosteal expansion and more porous cortices in the distal radius compared with men.PubMedCrossRef • Macdonald HM, Nishiyama KK, Kang J, et al. Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res. 2011;26(1):50–62. In this Canadian cross-sectional study with HR-pQCT, important skeletal site- and sex-specific differences in patterns of age-related bone loss are reported. Women were found to have less periosteal expansion and more porous cortices in the distal radius compared with men.PubMedCrossRef
52.
go back to reference Dalzell N, Kaptoge S, Morris N, et al. Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT. Osteoporos Int. 2009;20(10):1683–94.PubMedCrossRef Dalzell N, Kaptoge S, Morris N, et al. Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT. Osteoporos Int. 2009;20(10):1683–94.PubMedCrossRef
53.
go back to reference Khosla S, Riggs BL, Atkinson EJ, et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res. 2006;21(1):124–31.PubMedCrossRef Khosla S, Riggs BL, Atkinson EJ, et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res. 2006;21(1):124–31.PubMedCrossRef
54.
go back to reference Vilayphiou N, Boutroy S, Szulc P, et al. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men. J Bone Miner Res. 2011;26(5):965–73.PubMedCrossRef Vilayphiou N, Boutroy S, Szulc P, et al. Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men. J Bone Miner Res. 2011;26(5):965–73.PubMedCrossRef
55.
go back to reference Srinivasan B, Kopperdahl DL, Amin S, et al. Relationship of femoral neck areal bone mineral density to volumetric bone mineral density, bone size, and femoral strength in men and women. Osteoporos Int. 2012;23(1):155–62.PubMedCrossRef Srinivasan B, Kopperdahl DL, Amin S, et al. Relationship of femoral neck areal bone mineral density to volumetric bone mineral density, bone size, and femoral strength in men and women. Osteoporos Int. 2012;23(1):155–62.PubMedCrossRef
56.
go back to reference Chappard D, Basle MF, Legrand E, Audran M. Trabecular bone microarchitecture: a review. Morphologie. 2008;92(299):162–70.PubMedCrossRef Chappard D, Basle MF, Legrand E, Audran M. Trabecular bone microarchitecture: a review. Morphologie. 2008;92(299):162–70.PubMedCrossRef
57.
go back to reference Carballido-Gamio J, Majumdar S. Clinical utility of microarchitecture measurements of trabecular bone. Curr Osteoporos Rep. 2006;4(2):64–70.PubMedCrossRef Carballido-Gamio J, Majumdar S. Clinical utility of microarchitecture measurements of trabecular bone. Curr Osteoporos Rep. 2006;4(2):64–70.PubMedCrossRef
58.
go back to reference Chung HW, Wehrli FW, Williams JL, et al. Quantitative analysis of trabecular microstructure by 400 MHz nuclear magnetic resonance imaging. J Bone Miner Res. 1995;10(5):803–11.PubMedCrossRef Chung HW, Wehrli FW, Williams JL, et al. Quantitative analysis of trabecular microstructure by 400 MHz nuclear magnetic resonance imaging. J Bone Miner Res. 1995;10(5):803–11.PubMedCrossRef
59.
go back to reference Kazakia GJ, Majumdar S. New imaging technologies in the diagnosis of osteoporosis. Rev Endocr Metab Disord. 2006;7(1–2):67–74.PubMed Kazakia GJ, Majumdar S. New imaging technologies in the diagnosis of osteoporosis. Rev Endocr Metab Disord. 2006;7(1–2):67–74.PubMed
60.
go back to reference Hwang SN, Wehrli FW. Subvoxel processing: a method for reducing partial volume blurring with application to in vivo MR images of trabecular bone. Magn Reson Med. 2002;47(5):948–57.PubMedCrossRef Hwang SN, Wehrli FW. Subvoxel processing: a method for reducing partial volume blurring with application to in vivo MR images of trabecular bone. Magn Reson Med. 2002;47(5):948–57.PubMedCrossRef
61.
go back to reference Magland JF, Wehrli FW. Trabecular bone structure analysis in the limited spatial resolution regime of in vivo MRI. Acad Radiol. 2008;15(12):1482–93.PubMedCrossRef Magland JF, Wehrli FW. Trabecular bone structure analysis in the limited spatial resolution regime of in vivo MRI. Acad Radiol. 2008;15(12):1482–93.PubMedCrossRef
62.
go back to reference Hwang SN, Wehrli FW, Williams JL. Probability-based structural parameters from three-dimensional nuclear magnetic resonance images as predictors of trabecular bone strength. Med Phys. 1997;24(8):1255–61.PubMedCrossRef Hwang SN, Wehrli FW, Williams JL. Probability-based structural parameters from three-dimensional nuclear magnetic resonance images as predictors of trabecular bone strength. Med Phys. 1997;24(8):1255–61.PubMedCrossRef
63.
go back to reference Majumdar S, Newitt D, Mathur A, et al. Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int. 1996;6(5):376–85.PubMedCrossRef Majumdar S, Newitt D, Mathur A, et al. Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int. 1996;6(5):376–85.PubMedCrossRef
64.
go back to reference Majumdar S, Link TM, Augat P, et al. Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int. 1999;10(3):231–9.PubMedCrossRef Majumdar S, Link TM, Augat P, et al. Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int. 1999;10(3):231–9.PubMedCrossRef
65.
go back to reference Link TM, Vieth V, Langenberg R, et al. Structure analysis of high resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD. Calcif Tissue Int. 2003;72(2):156–65.PubMedCrossRef Link TM, Vieth V, Langenberg R, et al. Structure analysis of high resolution magnetic resonance imaging of the proximal femur: in vitro correlation with biomechanical strength and BMD. Calcif Tissue Int. 2003;72(2):156–65.PubMedCrossRef
66.
go back to reference Link TM, Majumdar S, Lin JC, et al. A comparative study of trabecular bone properties in the spine and femur using high resolution MRI and CT. J Bone Miner Res. 1998;13(1):122–32.PubMedCrossRef Link TM, Majumdar S, Lin JC, et al. A comparative study of trabecular bone properties in the spine and femur using high resolution MRI and CT. J Bone Miner Res. 1998;13(1):122–32.PubMedCrossRef
67.
go back to reference Majumdar S, Kothari M, Augat P, et al. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone. 1998;22(5):445–54.PubMedCrossRef Majumdar S, Kothari M, Augat P, et al. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone. 1998;22(5):445–54.PubMedCrossRef
68.
go back to reference Benito M, Gomberg B, Wehrli FW, et al. Deterioration of trabecular architecture in hypogonadal men. J Clin Endocrinol Metab. 2003;88(4):1497–502.PubMedCrossRef Benito M, Gomberg B, Wehrli FW, et al. Deterioration of trabecular architecture in hypogonadal men. J Clin Endocrinol Metab. 2003;88(4):1497–502.PubMedCrossRef
69.
go back to reference Benito M, Vasilic B, Wehrli FW, et al. Effect of testosterone replacement on trabecular architecture in hypogonadal men. J Bone Miner Res. 2005;20(10):1785–91.PubMedCrossRef Benito M, Vasilic B, Wehrli FW, et al. Effect of testosterone replacement on trabecular architecture in hypogonadal men. J Bone Miner Res. 2005;20(10):1785–91.PubMedCrossRef
70.
go back to reference Zhang XH, Liu XS, Vasilic B, et al. In vivo microMRI-based finite element and morphological analyses of tibial trabecular bone in eugonadal and hypogonadal men before and after testosterone treatment. J Bone Miner Res. 2008;23(9):1426–34.PubMedCrossRef Zhang XH, Liu XS, Vasilic B, et al. In vivo microMRI-based finite element and morphological analyses of tibial trabecular bone in eugonadal and hypogonadal men before and after testosterone treatment. J Bone Miner Res. 2008;23(9):1426–34.PubMedCrossRef
71.
go back to reference •• Greenspan SL, Wagner J, Nelson JB, et al. Vertebral fractures and trabecular microstructure in men with prostate cancer on androgen deprivation therapy. J Bone Miner Res. 2012;Epub. HR-MRI of the radius improves prediction of vertebral fractures compared with DXA in men on androgen deprivation therapy for prostate cancer. •• Greenspan SL, Wagner J, Nelson JB, et al. Vertebral fractures and trabecular microstructure in men with prostate cancer on androgen deprivation therapy. J Bone Miner Res. 2012;Epub. HR-MRI of the radius improves prediction of vertebral fractures compared with DXA in men on androgen deprivation therapy for prostate cancer.
72.
go back to reference Dos Reis LM, Batalha JR, Munoz DR, et al. Brazilian normal static bone histomorphometry: effects of age, sex, and race. J Bone Miner Metab. 2007;25(6):400–6.PubMedCrossRef Dos Reis LM, Batalha JR, Munoz DR, et al. Brazilian normal static bone histomorphometry: effects of age, sex, and race. J Bone Miner Metab. 2007;25(6):400–6.PubMedCrossRef
73.
go back to reference Beck TJ. Extending DXA, beyond bone mineral density: understanding hip structure analysis. Curr Osteoporos Rep. 2007;5(2):49–55.PubMedCrossRef Beck TJ. Extending DXA, beyond bone mineral density: understanding hip structure analysis. Curr Osteoporos Rep. 2007;5(2):49–55.PubMedCrossRef
74.
go back to reference Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol. 2010;20(11):2707–14.PubMedCrossRef Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol. 2010;20(11):2707–14.PubMedCrossRef
75.
go back to reference Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res. 2011;469(8):2179–93.PubMedCrossRef Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res. 2011;469(8):2179–93.PubMedCrossRef
76.
go back to reference Patsch JM, Burghardt AJ, Kazakia G, Majumdar S. Noninvasive imaging of bone microarchitecture. Ann N Y Acad Sci. 2011;1240:77–87.PubMedCrossRef Patsch JM, Burghardt AJ, Kazakia G, Majumdar S. Noninvasive imaging of bone microarchitecture. Ann N Y Acad Sci. 2011;1240:77–87.PubMedCrossRef
Metadata
Title
Imaging Technologies for Assessment of Skeletal Health in Men
Author
E. Michael Lewiecki
Publication date
01-03-2013
Publisher
Current Science Inc.
Published in
Current Osteoporosis Reports / Issue 1/2013
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-012-0128-x

Other articles of this Issue 1/2013

Current Osteoporosis Reports 1/2013 Go to the issue

Current Therapeutics (SL Silverman, Section Editor)

Bisphosphonate Drug Holiday: Choosing Appropriate Candidates

Current Therapeutics (SL Silverman, Section Editor)

Adherence with Medications Used to Treat Osteoporosis: Behavioral Insights

Current Therapeutics (SL Silverman, Section Editor)

Best Practices in Secondary Fracture Prevention: Fracture Liaison Services

Current Therapeutics (SL Silverman, Section Editor)

Obesity and Bone

Male Osteoporosis (BL Clarke, Section Editor)

Prostate Cancer and Osteoporosis