Skip to main content
Top
Published in: Molecular Imaging and Biology 4/2007

01-07-2007 | Review Article

Imaging of Cholinergic and Monoaminergic Neurochemical Changes in Neurodegenerative Disorders

Authors: Nicolaas I. Bohnen, Kirk A. Frey

Published in: Molecular Imaging and Biology | Issue 4/2007

Login to get access

Abstract

Positron emission tomography (PET) or single photon emission computer tomography (SPECT) imaging provides the means to study neurochemical processes in vivo. These methods have been applied to examine monoaminergic and cholinergic changes in neurodegenerative disorders. These investigations have provided important insights into disorders, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). The most intensely studied monoaminergic transmitter is dopamine. The extent of presynaptic nigrostriatal dopaminergic denervation can be quantified in PD and may serve as a diagnostic biomarker. Dopaminergic receptor imaging may help to distinguish idiopathic PD from atypical parkinsonian disorders. Cholinergic denervation has been identified not only in AD but also in PD and more severely in parkinsonian dementia. PET or SPECT can also provide biomarkers to follow progression of disease or evaluate the effects of therapeutic interventions. Cholinergic receptor imaging is expected to play a major role in new drug development for dementing disorders.
Literature
1.
go back to reference Mesulam MM, Mufson EJ, Wainer BH, Levy AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (CH1-CH-6). Neurosci 10:1185–1201CrossRef Mesulam MM, Mufson EJ, Wainer BH, Levy AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (CH1-CH-6). Neurosci 10:1185–1201CrossRef
2.
go back to reference Mesulam M, Mash D, Hersh L, Bothwell M, Geula C (1992) Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. J Comp Neurol 323:252–268PubMedCrossRef Mesulam M, Mash D, Hersh L, Bothwell M, Geula C (1992) Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. J Comp Neurol 323:252–268PubMedCrossRef
3.
go back to reference Heckers S, Geula C, Mesulam M (1992) Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 325:68–82PubMedCrossRef Heckers S, Geula C, Mesulam M (1992) Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 325:68–82PubMedCrossRef
4.
go back to reference de Lacalle S, Lim C, Sobreviela T, Mufson E, Hersh L, Saper C (1994) Cholinergic innervation in the human hippocampal formation including the entorhinal cortex. J Comp Neurol 345:321–344PubMedCrossRef de Lacalle S, Lim C, Sobreviela T, Mufson E, Hersh L, Saper C (1994) Cholinergic innervation in the human hippocampal formation including the entorhinal cortex. J Comp Neurol 345:321–344PubMedCrossRef
5.
go back to reference Oakman S, Faris P, Kerr P, Cozzari C, Hartman B (1995) Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 15:5859–5869PubMed Oakman S, Faris P, Kerr P, Cozzari C, Hartman B (1995) Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 15:5859–5869PubMed
6.
go back to reference de Lacalle S, Hersh L, Saper C (1993) Cholinergic innervation of the human cerebellum. J Comp Neurol 328:364–376PubMedCrossRef de Lacalle S, Hersh L, Saper C (1993) Cholinergic innervation of the human cerebellum. J Comp Neurol 328:364–376PubMedCrossRef
7.
go back to reference Fibiger H (1982) The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res Rev 4:327–388CrossRef Fibiger H (1982) The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res Rev 4:327–388CrossRef
8.
go back to reference Mesulam MM, Geula C (1992) Overlap between acetylcholinesterase-rich and choline acetyltransferase-positive (cholinergic) axons in human cerebral cortex. Brain Res 577:112–120PubMedCrossRef Mesulam MM, Geula C (1992) Overlap between acetylcholinesterase-rich and choline acetyltransferase-positive (cholinergic) axons in human cerebral cortex. Brain Res 577:112–120PubMedCrossRef
9.
go back to reference Weihe E, Tao-Cheng JH, Schafer MK, Erickson JD, Eiden LE (1996) Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles. Proc Natl Acad Sci USA 93:3547–3552PubMedCrossRef Weihe E, Tao-Cheng JH, Schafer MK, Erickson JD, Eiden LE (1996) Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles. Proc Natl Acad Sci USA 93:3547–3552PubMedCrossRef
10.
go back to reference Kuhl DE, Koeppe RA, Fessler JA, et al. (1994) In vivo mapping of cholinergic neurons in the human brain using SPECT and IBVM. J Nucl Med 35:405–410PubMed Kuhl DE, Koeppe RA, Fessler JA, et al. (1994) In vivo mapping of cholinergic neurons in the human brain using SPECT and IBVM. J Nucl Med 35:405–410PubMed
11.
go back to reference Kuhl D, Minoshima S, Fessler J, et al. (1996) In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol 40:399–410PubMedCrossRef Kuhl D, Minoshima S, Fessler J, et al. (1996) In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol 40:399–410PubMedCrossRef
12.
go back to reference Mulholland GK, Wieland DM, Kilbourn MR, et al. (1998) [18F]fluoroethoxy-benzovesamicol, a PET radiotracer for the vesicular acetylcholine transporter and cholinergic synapses. Synapse 30:263–274PubMedCrossRef Mulholland GK, Wieland DM, Kilbourn MR, et al. (1998) [18F]fluoroethoxy-benzovesamicol, a PET radiotracer for the vesicular acetylcholine transporter and cholinergic synapses. Synapse 30:263–274PubMedCrossRef
13.
go back to reference Wright CI, Geula C, Mesulam MM (1993) Neurological cholinesterases in the normal brain and in Alzheimer’s disease: relationship to plaques, tangles, and patterns of selective vulnerability. Ann Neurol 34:373–384PubMedCrossRef Wright CI, Geula C, Mesulam MM (1993) Neurological cholinesterases in the normal brain and in Alzheimer’s disease: relationship to plaques, tangles, and patterns of selective vulnerability. Ann Neurol 34:373–384PubMedCrossRef
14.
go back to reference Mesulam MM, Guillozet A, Shaw P, Levey A, Duysen EG, Lockridge O (2002) Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 110:627–639PubMedCrossRef Mesulam MM, Guillozet A, Shaw P, Levey A, Duysen EG, Lockridge O (2002) Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 110:627–639PubMedCrossRef
15.
go back to reference Shute CC, Lewis PR (1966) Electron microscopy of cholinergic terminals and acetylcholinesterase-containing neurones in the hippocampal formation of the rat. Z Zellforsch Mikrosk Anat 69:334–343PubMedCrossRef Shute CC, Lewis PR (1966) Electron microscopy of cholinergic terminals and acetylcholinesterase-containing neurones in the hippocampal formation of the rat. Z Zellforsch Mikrosk Anat 69:334–343PubMedCrossRef
16.
go back to reference Selden NR, Gitelman DR, Salamon-Murayama N, Parrish TB, Mesulam MM (1988) Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 121:2249–2257CrossRef Selden NR, Gitelman DR, Salamon-Murayama N, Parrish TB, Mesulam MM (1988) Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 121:2249–2257CrossRef
17.
go back to reference Heckers S, Geula C, Mesulam MM (1992) Acetylcholinesterase-rich pyramidal neurons in Alzheimer’s disease. Neurobiol Aging 13:455–460PubMedCrossRef Heckers S, Geula C, Mesulam MM (1992) Acetylcholinesterase-rich pyramidal neurons in Alzheimer’s disease. Neurobiol Aging 13:455–460PubMedCrossRef
18.
go back to reference Mesulam MM, Geula C (1991) Acetylcholinesterase-rich neurons of the human cerebral cortex: cytoarchitectonic and ontogenetic patterns of distribution. J Comp Neurol 306:193–220PubMedCrossRef Mesulam MM, Geula C (1991) Acetylcholinesterase-rich neurons of the human cerebral cortex: cytoarchitectonic and ontogenetic patterns of distribution. J Comp Neurol 306:193–220PubMedCrossRef
19.
go back to reference Atack JR, Perry EK, Bonham JR, Candy JM, Perry RH (1986) Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system. J Neurochem 47:263–277PubMedCrossRef Atack JR, Perry EK, Bonham JR, Candy JM, Perry RH (1986) Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system. J Neurochem 47:263–277PubMedCrossRef
20.
go back to reference Reed BR, Jagust WJ (1999) Opening a window on cerebral cholinergic function. PET imaging of acetylcholinesterase. Neurology 52:680–682PubMed Reed BR, Jagust WJ (1999) Opening a window on cerebral cholinergic function. PET imaging of acetylcholinesterase. Neurology 52:680–682PubMed
21.
go back to reference Pappata S, Tavitian B, Traykov L, et al. (1996) In vivo imaging of human cerebral acetylcholinesterase. J Neurochem 67:876–879PubMedCrossRef Pappata S, Tavitian B, Traykov L, et al. (1996) In vivo imaging of human cerebral acetylcholinesterase. J Neurochem 67:876–879PubMedCrossRef
22.
go back to reference Finkelstein Y, Wolff M, Biegon A (1988) Brain acetylcholinesterase after acute Parathion poisoning: a comparative quantitative histochemical analysis post mortem. Ann Neurol 24:252–257PubMedCrossRef Finkelstein Y, Wolff M, Biegon A (1988) Brain acetylcholinesterase after acute Parathion poisoning: a comparative quantitative histochemical analysis post mortem. Ann Neurol 24:252–257PubMedCrossRef
23.
go back to reference Mesulam MM, Geula C, Moran MA (1987) Anatomy of cholinesterase inhibition in Alzheimer’s disease: effect of physostigmine and tetrahydroaminoacridine on plaques and tangles. Ann Neurol 22:683–691PubMedCrossRef Mesulam MM, Geula C, Moran MA (1987) Anatomy of cholinesterase inhibition in Alzheimer’s disease: effect of physostigmine and tetrahydroaminoacridine on plaques and tangles. Ann Neurol 22:683–691PubMedCrossRef
24.
go back to reference Irie T, Fukushi K, Akimoto Y, Tamagami H, Nozaki T (1994) Design and evaluation of radioactive acetylcholine analogs for mapping brain acetylcholinesterase (AChE) in vivo. Nucl Med Biol 21(6):801–808PubMedCrossRef Irie T, Fukushi K, Akimoto Y, Tamagami H, Nozaki T (1994) Design and evaluation of radioactive acetylcholine analogs for mapping brain acetylcholinesterase (AChE) in vivo. Nucl Med Biol 21(6):801–808PubMedCrossRef
25.
go back to reference Irie T, Fukushi K, Namba H, et al. (1996) Brain acetylcholinesterase activity: validation of a PET tracer in a rat model of Alzheimer’s disease. J Nucl Med 37:649–655PubMed Irie T, Fukushi K, Namba H, et al. (1996) Brain acetylcholinesterase activity: validation of a PET tracer in a rat model of Alzheimer’s disease. J Nucl Med 37:649–655PubMed
26.
go back to reference Kilbourn M, Snyder S, Sherman P, Kuhl D (1996) In vivo studies of acetylcholinesterase activity using a labeled substrate, N-[11C]methylpiperdinyl-4-propionate ([11C]PMP). Synapse 22:123–131PubMedCrossRef Kilbourn M, Snyder S, Sherman P, Kuhl D (1996) In vivo studies of acetylcholinesterase activity using a labeled substrate, N-[11C]methylpiperdinyl-4-propionate ([11C]PMP). Synapse 22:123–131PubMedCrossRef
27.
go back to reference Kuhl D, Koeppe R, Snyder S, Minoshima S, Frey K, Kilbourn M (1996) Mapping acetylcholinesterase activity in human brain using PET and N-[11C]Methylpiperidinyl propionate (PMP). J Nucl Med 37(Suppl):21P Kuhl D, Koeppe R, Snyder S, Minoshima S, Frey K, Kilbourn M (1996) Mapping acetylcholinesterase activity in human brain using PET and N-[11C]Methylpiperidinyl propionate (PMP). J Nucl Med 37(Suppl):21P
28.
go back to reference Kuhl DE, Koeppe RA, Minoshima S, et al. (1999) In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 52:691–699PubMed Kuhl DE, Koeppe RA, Minoshima S, et al. (1999) In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 52:691–699PubMed
29.
go back to reference Iyo M, Namba H, Fukushi K, et al. (1997) Measurement of acetylcholinesterase by positron emission tomography in the brain of healthy controls and patients with Alzheimer’s disease. Lancet 349:1805–1809PubMedCrossRef Iyo M, Namba H, Fukushi K, et al. (1997) Measurement of acetylcholinesterase by positron emission tomography in the brain of healthy controls and patients with Alzheimer’s disease. Lancet 349:1805–1809PubMedCrossRef
30.
go back to reference Namba H, Iyo M, Fukushi K, et al. (1999) Human cerebral acetylcholinesterase activity measured with positron emission tomography: procedure, normal values and effect of age. Eur J Nucl Med 26:135–143PubMedCrossRef Namba H, Iyo M, Fukushi K, et al. (1999) Human cerebral acetylcholinesterase activity measured with positron emission tomography: procedure, normal values and effect of age. Eur J Nucl Med 26:135–143PubMedCrossRef
31.
go back to reference Snyder SE, Gunupudi N, Sherman PS, et al. (2001) Radiolabeled cholinesterase substrates: in vitro methods for determining structure–activity relationships and identification of a positron emission tomography radiopharmaceutical for in vivo measurement of butyrylcholinesterase activity. J Cereb Blood Flow Metab 21:132–143PubMedCrossRef Snyder SE, Gunupudi N, Sherman PS, et al. (2001) Radiolabeled cholinesterase substrates: in vitro methods for determining structure–activity relationships and identification of a positron emission tomography radiopharmaceutical for in vivo measurement of butyrylcholinesterase activity. J Cereb Blood Flow Metab 21:132–143PubMedCrossRef
32.
go back to reference Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111PubMedCrossRef Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111PubMedCrossRef
33.
go back to reference Conroy WG, Vernallis AB, Berg DK (1992) The alpha 5 gene product assembles with multiple acetylcholine receptor subunits to form distinctive receptor subtypes in brain. Neuron 9:679–691PubMedCrossRef Conroy WG, Vernallis AB, Berg DK (1992) The alpha 5 gene product assembles with multiple acetylcholine receptor subunits to form distinctive receptor subtypes in brain. Neuron 9:679–691PubMedCrossRef
34.
go back to reference Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 41:31–37PubMed Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 41:31–37PubMed
35.
go back to reference Nordberg A (2001) Nicotinic receptor abnormalities of Alzheimer’s disease: therapeutic implications. Biol Psychiatry 49:200–210PubMedCrossRef Nordberg A (2001) Nicotinic receptor abnormalities of Alzheimer’s disease: therapeutic implications. Biol Psychiatry 49:200–210PubMedCrossRef
36.
go back to reference Benwell ME, Balfour DJ, Anderson JM (1988) Evidence that tobacco smoking increases the density of (−)-[3H]nicotine binding sites in human brain. J Neurochem 50:1243–1247PubMedCrossRef Benwell ME, Balfour DJ, Anderson JM (1988) Evidence that tobacco smoking increases the density of (−)-[3H]nicotine binding sites in human brain. J Neurochem 50:1243–1247PubMedCrossRef
37.
go back to reference Nordberg A (1994) Human nicotinic receptors—their role in aging and dementia. Neurochem Int 25:93–97PubMedCrossRef Nordberg A (1994) Human nicotinic receptors—their role in aging and dementia. Neurochem Int 25:93–97PubMedCrossRef
38.
go back to reference Sihver W, Langstrom B, Nordberg A (2000) Ligands for in vivo imaging of nicotinic receptor subtypes in Alzheimer brain. Acta Neurol Scand Suppl 176:27–33 Sihver W, Langstrom B, Nordberg A (2000) Ligands for in vivo imaging of nicotinic receptor subtypes in Alzheimer brain. Acta Neurol Scand Suppl 176:27–33
39.
go back to reference Nordberg A, Hartvig P, Lundqvist H, Antoni G, Ulin J, Langstrom B (1989) Uptake and regional distribution of (+)-(R)- and (−)-(S)-N-[Methyl-11C]-nicotine in the brains of rhesus monkey. An attempt to study nicotinic receptors in vivo. J Neural Transm Park Dis Dement Sect 1:195–205PubMedCrossRef Nordberg A, Hartvig P, Lundqvist H, Antoni G, Ulin J, Langstrom B (1989) Uptake and regional distribution of (+)-(R)- and (−)-(S)-N-[Methyl-11C]-nicotine in the brains of rhesus monkey. An attempt to study nicotinic receptors in vivo. J Neural Transm Park Dis Dement Sect 1:195–205PubMedCrossRef
40.
go back to reference Maziere M, Delforge J (1995) PET imaging [11C]nicotine: historical aspects. In: Domino E (ed) Brain imaging of nicotine and tobacco smoking. Ann Arbor: NPP Books, p 13–28 Maziere M, Delforge J (1995) PET imaging [11C]nicotine: historical aspects. In: Domino E (ed) Brain imaging of nicotine and tobacco smoking. Ann Arbor: NPP Books, p 13–28
41.
go back to reference Kadir A, Almkvist O, Wall A, Langstrom B, Nordberg A (2006) PET imaging of cortical (11)C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology (Berl) 188(4):509–520CrossRef Kadir A, Almkvist O, Wall A, Langstrom B, Nordberg A (2006) PET imaging of cortical (11)C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology (Berl) 188(4):509–520CrossRef
42.
go back to reference Warpman U, Nordberg A (1995) Epibatidine and ABT 418 reveal selective losses of alpha 4 beta 2 nicotinic receptors in Alzheimer brains. Neuroreport 6:2419–2423PubMedCrossRef Warpman U, Nordberg A (1995) Epibatidine and ABT 418 reveal selective losses of alpha 4 beta 2 nicotinic receptors in Alzheimer brains. Neuroreport 6:2419–2423PubMedCrossRef
43.
go back to reference Ding YS, Gatley SJ, Fowler JS, et al. (1996) Mapping nicotinic acetylcholine receptors with PET. Synapse 24:403–407PubMedCrossRef Ding YS, Gatley SJ, Fowler JS, et al. (1996) Mapping nicotinic acetylcholine receptors with PET. Synapse 24:403–407PubMedCrossRef
44.
go back to reference Volkow ND, Ding YS, Fowler JS, Gatley SJ (2001) Imaging brain cholinergic activity with positron emission tomography: its role in the evaluation of cholinergic treatments in Alzheimer’s dementia. Biol Psychiatry 49:211–220PubMedCrossRef Volkow ND, Ding YS, Fowler JS, Gatley SJ (2001) Imaging brain cholinergic activity with positron emission tomography: its role in the evaluation of cholinergic treatments in Alzheimer’s dementia. Biol Psychiatry 49:211–220PubMedCrossRef
45.
go back to reference Sihver W, Fasth KJ, Horti AG, et al. (1999) Synthesis and characterization of binding of 5-[76Br]bromo-3-[[2(S)-azetidinyl]methoxy]pyridine, a novel nicotinic acetylcholine receptor ligand, in rat brain. J Neurochem 73:1264–1272PubMedCrossRef Sihver W, Fasth KJ, Horti AG, et al. (1999) Synthesis and characterization of binding of 5-[76Br]bromo-3-[[2(S)-azetidinyl]methoxy]pyridine, a novel nicotinic acetylcholine receptor ligand, in rat brain. J Neurochem 73:1264–1272PubMedCrossRef
46.
go back to reference Gundisch D, Koren AO, Horti AG, et al. (2005) In vitro characterization of 6-[18F]fluoro-A-85380, a high-affinity ligand for alpha4beta2* nicotinic acetylcholine receptors. Synapse 55:89–97PubMedCrossRef Gundisch D, Koren AO, Horti AG, et al. (2005) In vitro characterization of 6-[18F]fluoro-A-85380, a high-affinity ligand for alpha4beta2* nicotinic acetylcholine receptors. Synapse 55:89–97PubMedCrossRef
47.
go back to reference Chefer SI, Horti AG, Koren AO, et al. (1999) 2-[18F]F-A-85380: a PET radioligand for alpha4beta2 nicotinic acetylcholine receptors. Neuroreport 10:2715–2721PubMedCrossRef Chefer SI, Horti AG, Koren AO, et al. (1999) 2-[18F]F-A-85380: a PET radioligand for alpha4beta2 nicotinic acetylcholine receptors. Neuroreport 10:2715–2721PubMedCrossRef
48.
go back to reference Mogg AJ, Jones FA, Pullar IA, Sharples CG, Wonnacott S (2004) Functional responses and subunit composition of presynaptic nicotinic receptor subtypes explored using the novel agonist 5-iodo-A-85380. Neuropharmacology 47:848–859PubMedCrossRef Mogg AJ, Jones FA, Pullar IA, Sharples CG, Wonnacott S (2004) Functional responses and subunit composition of presynaptic nicotinic receptor subtypes explored using the novel agonist 5-iodo-A-85380. Neuropharmacology 47:848–859PubMedCrossRef
49.
go back to reference Pichika R, Easwaramoorthy B, Collins D, et al. (2006) Nicotinic alpha4beta2 receptor imaging agents: part II. Synthesis and biological evaluation of 2-[18F]fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (18F-nifene) in rodents and imaging by PET in nonhuman primate. Nucl Med Biol 33:295–304PubMedCrossRef Pichika R, Easwaramoorthy B, Collins D, et al. (2006) Nicotinic alpha4beta2 receptor imaging agents: part II. Synthesis and biological evaluation of 2-[18F]fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (18F-nifene) in rodents and imaging by PET in nonhuman primate. Nucl Med Biol 33:295–304PubMedCrossRef
50.
go back to reference Musachio JL, Villemagne VL, Scheffel UA, et al. (1999) Synthesis of an I-123 analog of A-85380 and preliminary SPECT imaging of nicotinic receptors in baboon. Nucl Med Biol 26:201–207PubMedCrossRef Musachio JL, Villemagne VL, Scheffel UA, et al. (1999) Synthesis of an I-123 analog of A-85380 and preliminary SPECT imaging of nicotinic receptors in baboon. Nucl Med Biol 26:201–207PubMedCrossRef
51.
go back to reference Pomper MG, Phillips E, Fan H, et al. (2005) Synthesis and biodistribution of radiolabeled alpha 7 nicotinic acetylcholine receptor ligands. J Nucl Med 46:326–334PubMed Pomper MG, Phillips E, Fan H, et al. (2005) Synthesis and biodistribution of radiolabeled alpha 7 nicotinic acetylcholine receptor ligands. J Nucl Med 46:326–334PubMed
52.
go back to reference Eglen RM (2006) Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol 26:219–233PubMedCrossRef Eglen RM (2006) Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol 26:219–233PubMedCrossRef
53.
go back to reference Kobayashi R, Palkovits M, Hruska R, Rothschild R, Yamamura H (1978) Regional distribution of muscarinic cholinergic receptors in rat brain. Brain Res 154:13–23PubMedCrossRef Kobayashi R, Palkovits M, Hruska R, Rothschild R, Yamamura H (1978) Regional distribution of muscarinic cholinergic receptors in rat brain. Brain Res 154:13–23PubMedCrossRef
54.
go back to reference Frey K, Ehrenkaufer R, Beaucage S, Agranoff B (1985) Quantitative in vivo receptor binding I. Theory and application to the muscarinic cholinergic receptor. J Neurosci 5:421–428PubMed Frey K, Ehrenkaufer R, Beaucage S, Agranoff B (1985) Quantitative in vivo receptor binding I. Theory and application to the muscarinic cholinergic receptor. J Neurosci 5:421–428PubMed
55.
go back to reference Mash DC, White WF, Mesulam MM (1988) Distribution of muscarinic receptor subtypes within architectonic subregions of the primate cerebral cortex. J Comp Neurol 278:265–274PubMedCrossRef Mash DC, White WF, Mesulam MM (1988) Distribution of muscarinic receptor subtypes within architectonic subregions of the primate cerebral cortex. J Comp Neurol 278:265–274PubMedCrossRef
56.
go back to reference Molchan SE, Martinez RA, Hill JL, et al. (1992) Increased cognitive sensitivity to scopolamine with age and a perspective on the scopolamine model. Brain Res Brain Res Rev 17:215–226PubMedCrossRef Molchan SE, Martinez RA, Hill JL, et al. (1992) Increased cognitive sensitivity to scopolamine with age and a perspective on the scopolamine model. Brain Res Brain Res Rev 17:215–226PubMedCrossRef
57.
go back to reference Giacobini E (1990) Cholinergic receptors in human brain: effects of aging and Alzheimer disease. J Neurosci Res 27:548–560PubMedCrossRef Giacobini E (1990) Cholinergic receptors in human brain: effects of aging and Alzheimer disease. J Neurosci Res 27:548–560PubMedCrossRef
58.
go back to reference Nordberg A, Alafuzoff I, Winblad B (1992) Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res 31:103–111PubMedCrossRef Nordberg A, Alafuzoff I, Winblad B (1992) Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res 31:103–111PubMedCrossRef
59.
go back to reference Eckelman WC, Reba RC, Rzeszotarski WJ, et al. (1984) External imaging of cerebral muscarinic acetylcholine receptors. Science 223:291–293PubMedCrossRef Eckelman WC, Reba RC, Rzeszotarski WJ, et al. (1984) External imaging of cerebral muscarinic acetylcholine receptors. Science 223:291–293PubMedCrossRef
60.
go back to reference Dewey SL, Volkow ND, Logan J, et al. (1990) Age-related decreases in muscarinic cholinergic receptor binding in the human brain measured with positron emission tomography (PET). J Neurosci Res 27:569–575PubMedCrossRef Dewey SL, Volkow ND, Logan J, et al. (1990) Age-related decreases in muscarinic cholinergic receptor binding in the human brain measured with positron emission tomography (PET). J Neurosci Res 27:569–575PubMedCrossRef
61.
go back to reference Zubieta JK, Koeppe RA, Frey KA, et al. (2001) Assessment of muscarinic receptor concentrations in aging and Alzheimer disease with [11C]NMPB and PET. Synapse 39:275–287PubMedCrossRef Zubieta JK, Koeppe RA, Frey KA, et al. (2001) Assessment of muscarinic receptor concentrations in aging and Alzheimer disease with [11C]NMPB and PET. Synapse 39:275–287PubMedCrossRef
62.
go back to reference Drayer B, Jaszczak R, Coleman E, et al. (1982) Muscarinic cholinergic receptor binding: in vivo depiction using single photon emission computed tomography and radioiodinated quinuclidinyl benzilate. J Comput Assist Tomogr 6:536–543PubMedCrossRef Drayer B, Jaszczak R, Coleman E, et al. (1982) Muscarinic cholinergic receptor binding: in vivo depiction using single photon emission computed tomography and radioiodinated quinuclidinyl benzilate. J Comput Assist Tomogr 6:536–543PubMedCrossRef
63.
go back to reference Weinberger DR, Gibson R, Coppola R, et al. (1991) The distribution of cerebral muscarinic acetylcholine receptors in vivo in patients with dementia. A controlled study with 123IQNB and single photon emission computed tomography. Arch Neurol 48:169–176PubMed Weinberger DR, Gibson R, Coppola R, et al. (1991) The distribution of cerebral muscarinic acetylcholine receptors in vivo in patients with dementia. A controlled study with 123IQNB and single photon emission computed tomography. Arch Neurol 48:169–176PubMed
64.
go back to reference Carson RE, Kiesewetter DO, Jagoda E, Der MG, Herscovitch P, Eckelman WC (1998) Muscarinic cholinergic receptor measurements with [18F]FP-TZTP: control and competition studies. J Cereb Blood Flow Metab 18:1130–1142PubMedCrossRef Carson RE, Kiesewetter DO, Jagoda E, Der MG, Herscovitch P, Eckelman WC (1998) Muscarinic cholinergic receptor measurements with [18F]FP-TZTP: control and competition studies. J Cereb Blood Flow Metab 18:1130–1142PubMedCrossRef
65.
go back to reference Linvall O, Bjorklund A (1978) Organization of catecholamine neurons in the rat central nervous system. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of Psychopharmacology, vol 9. New York: Plenum, p 139–231 Linvall O, Bjorklund A (1978) Organization of catecholamine neurons in the rat central nervous system. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of Psychopharmacology, vol 9. New York: Plenum, p 139–231
66.
go back to reference Moore RY, Bloom FE (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci 2:113–168PubMedCrossRef Moore RY, Bloom FE (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci 2:113–168PubMedCrossRef
67.
go back to reference Erickson JD, Eiden LE (1993) Functional identification and molecular cloning of a human brain vescile monoamine transporter. J Neurochem 61:2314–2317PubMedCrossRef Erickson JD, Eiden LE (1993) Functional identification and molecular cloning of a human brain vescile monoamine transporter. J Neurochem 61:2314–2317PubMedCrossRef
68.
go back to reference Niznik HB (1994) Dopamine receptors and transporters. Pharmacology, structure, and function. New York: Marcel Dekker Niznik HB (1994) Dopamine receptors and transporters. Pharmacology, structure, and function. New York: Marcel Dekker
69.
go back to reference Masuo Y, Pelaprat D, Scherman D, Rostene W (1990) [3H]Dihydrotetrabenazine, a new marker for the visualization of dopaminergic denervation in the rat striatum. Neurosci Lett 114:45–50PubMedCrossRef Masuo Y, Pelaprat D, Scherman D, Rostene W (1990) [3H]Dihydrotetrabenazine, a new marker for the visualization of dopaminergic denervation in the rat striatum. Neurosci Lett 114:45–50PubMedCrossRef
70.
go back to reference Vander Borght TM, Sima AA, Kilbourn MR, Desmond TJ, Kuhl DE, Frey KA (1995) [3H]methoxytetrabenazine: a high specific activity ligand for estimating monoaminergic neuronal integrity. Neuroscience 68:955–962PubMedCrossRef Vander Borght TM, Sima AA, Kilbourn MR, Desmond TJ, Kuhl DE, Frey KA (1995) [3H]methoxytetrabenazine: a high specific activity ligand for estimating monoaminergic neuronal integrity. Neuroscience 68:955–962PubMedCrossRef
71.
go back to reference Frey K, Kilbourn M, Robinson T (1997) Reduced striatal vesicular monoamine transporters after neurotoxic but not after behaviorally-sensitizing doses of methamphetamine. Eur J Pharmacol 334:273–279PubMedCrossRef Frey K, Kilbourn M, Robinson T (1997) Reduced striatal vesicular monoamine transporters after neurotoxic but not after behaviorally-sensitizing doses of methamphetamine. Eur J Pharmacol 334:273–279PubMedCrossRef
72.
go back to reference Naudon L, Leroux-Nicollet I, Costentin J (1994) Short-term treatments with haloperidol or bromocryptine do not alter the density of the monoamine vesicular transporter. Neurosci Lett 173:1–4PubMedCrossRef Naudon L, Leroux-Nicollet I, Costentin J (1994) Short-term treatments with haloperidol or bromocryptine do not alter the density of the monoamine vesicular transporter. Neurosci Lett 173:1–4PubMedCrossRef
73.
go back to reference Vander Borght T, Kilbourn M, Desmond T, Kuhl D, Frey K (1995) The vesicular monoamine transporter is not regulated by dopaminergic drug treatments. Eur J Pharmacol 294:577–583PubMedCrossRef Vander Borght T, Kilbourn M, Desmond T, Kuhl D, Frey K (1995) The vesicular monoamine transporter is not regulated by dopaminergic drug treatments. Eur J Pharmacol 294:577–583PubMedCrossRef
74.
go back to reference Kemmerer ES, Desmond TJ, Albin RL, Kilbourn MR, Frey KA (2003) Treatment effects on nigrostriatal projection integrity in partial 6-OHDA lesions: comparison of l-DOPA and pramipexole. Exp Neurol 183:81–86PubMedCrossRef Kemmerer ES, Desmond TJ, Albin RL, Kilbourn MR, Frey KA (2003) Treatment effects on nigrostriatal projection integrity in partial 6-OHDA lesions: comparison of l-DOPA and pramipexole. Exp Neurol 183:81–86PubMedCrossRef
75.
go back to reference Masson J, Sagne C, Hamon M, El Mestikawy S (1999) Neurotransmitter transporters in the central nervous system. Pharmacol Rev 51:439–464PubMed Masson J, Sagne C, Hamon M, El Mestikawy S (1999) Neurotransmitter transporters in the central nervous system. Pharmacol Rev 51:439–464PubMed
76.
go back to reference Nirenberg MJ, Chan J, Pohorille A, et al. (1997) The dopamine transporter: comparative ultrastructure of dopaminergic axons in limbic and motor compartments of the nucleus accumbens. J Neurosci 17:6899–6907PubMed Nirenberg MJ, Chan J, Pohorille A, et al. (1997) The dopamine transporter: comparative ultrastructure of dopaminergic axons in limbic and motor compartments of the nucleus accumbens. J Neurosci 17:6899–6907PubMed
77.
go back to reference Strader CD, Fong TM, Tota MR, Underwood D, Dixon RA (1994) Structure and function of G protein-coupled receptors. Annu Rev Biochem 63:101–132PubMedCrossRef Strader CD, Fong TM, Tota MR, Underwood D, Dixon RA (1994) Structure and function of G protein-coupled receptors. Annu Rev Biochem 63:101–132PubMedCrossRef
78.
go back to reference Sibley DR, Monsma FJ, Jr (1992) Molecular biology of dopamine receptors. Trends Pharmacol Sci 13:61–69PubMedCrossRef Sibley DR, Monsma FJ, Jr (1992) Molecular biology of dopamine receptors. Trends Pharmacol Sci 13:61–69PubMedCrossRef
79.
80.
go back to reference Hieble JP, Bondinell WE, Ruffolo RR, Jr (1995) Alpha- and beta-adrenoceptors: from the gene to the clinic. 1. Molecular biology and adrenoceptor subclassification. J Med Chem 38:3415–3444PubMedCrossRef Hieble JP, Bondinell WE, Ruffolo RR, Jr (1995) Alpha- and beta-adrenoceptors: from the gene to the clinic. 1. Molecular biology and adrenoceptor subclassification. J Med Chem 38:3415–3444PubMedCrossRef
81.
go back to reference Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137–138PubMedCrossRef Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137–138PubMedCrossRef
82.
go back to reference Gjedde A, Reith J, Dyve S, et al. (1991) Dopa decarboxylase activity of the living human brain. Proc Natl Acad Sci USA 88:2721–2725PubMedCrossRef Gjedde A, Reith J, Dyve S, et al. (1991) Dopa decarboxylase activity of the living human brain. Proc Natl Acad Sci USA 88:2721–2725PubMedCrossRef
83.
go back to reference Nishizawa S, Leyton M, Okazawa H, Benkelfat C, Mzengeza S, Diksic M (1998) Validation of a less-invasive method for measurement of serotonin synthesis rate with alpha-[11C]methyl-tryptophan. J Cereb Blood Flow Metab 18:1121–1129PubMedCrossRef Nishizawa S, Leyton M, Okazawa H, Benkelfat C, Mzengeza S, Diksic M (1998) Validation of a less-invasive method for measurement of serotonin synthesis rate with alpha-[11C]methyl-tryptophan. J Cereb Blood Flow Metab 18:1121–1129PubMedCrossRef
84.
go back to reference Shoaf SE, Carson RE, Hommer D, et al. (2000) The suitability of [11C]-alpha-methyl-l-tryptophan as a tracer for serotonin synthesis: studies with dual administration of [11C] and [14C] labeled tracer. J Cereb Blood Flow Metab 20:244–252PubMedCrossRef Shoaf SE, Carson RE, Hommer D, et al. (2000) The suitability of [11C]-alpha-methyl-l-tryptophan as a tracer for serotonin synthesis: studies with dual administration of [11C] and [14C] labeled tracer. J Cereb Blood Flow Metab 20:244–252PubMedCrossRef
85.
go back to reference Frey KA, Koeppe RA, Kilbourn MR, et al. (1996) Presynaptic monoaminergic vesicles in Parkinson’s disease and normal aging. Ann Neurol 40:873–884PubMedCrossRef Frey KA, Koeppe RA, Kilbourn MR, et al. (1996) Presynaptic monoaminergic vesicles in Parkinson’s disease and normal aging. Ann Neurol 40:873–884PubMedCrossRef
86.
go back to reference Bohnen NI, Albin RL, Koeppe RA, et al. (2006) Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cereb Blood Flow Metab 26:1198–1212PubMed Bohnen NI, Albin RL, Koeppe RA, et al. (2006) Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cereb Blood Flow Metab 26:1198–1212PubMed
87.
go back to reference Farde L, Eriksson L, Blomquist G, Halldin C (1989) Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studied by PET—a comparison to the equilibrium analysis. J Cereb Blood Flow Metab 9:696–708PubMed Farde L, Eriksson L, Blomquist G, Halldin C (1989) Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studied by PET—a comparison to the equilibrium analysis. J Cereb Blood Flow Metab 9:696–708PubMed
88.
go back to reference Mukherjee J, Christian BT, Dunigan KA, et al. (2002) Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse 46:170–188PubMedCrossRef Mukherjee J, Christian BT, Dunigan KA, et al. (2002) Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse 46:170–188PubMedCrossRef
89.
go back to reference Innis RB, Malison RT, al-Tikriti M, et al. (1992) Amphetamine-stimulated dopamine release competes in vivo for [123I]IBZM binding to the D2 receptor in nonhuman primates. Synapse 10:177–184PubMedCrossRef Innis RB, Malison RT, al-Tikriti M, et al. (1992) Amphetamine-stimulated dopamine release competes in vivo for [123I]IBZM binding to the D2 receptor in nonhuman primates. Synapse 10:177–184PubMedCrossRef
90.
go back to reference Volkow ND, Wang GJ, Fowler JS, et al. (1994) Imaging endogenous dopamine competition with [11C]raclopride in the human brain. Synapse 16:255–262PubMedCrossRef Volkow ND, Wang GJ, Fowler JS, et al. (1994) Imaging endogenous dopamine competition with [11C]raclopride in the human brain. Synapse 16:255–262PubMedCrossRef
91.
go back to reference Endres CJ, Kolachana BS, Saunders RC, et al. (1997) Kinetic modeling of [11C]raclopride: combined PET-microdialysis studies. J Cereb Blood Flow Metab 17:932–942PubMedCrossRef Endres CJ, Kolachana BS, Saunders RC, et al. (1997) Kinetic modeling of [11C]raclopride: combined PET-microdialysis studies. J Cereb Blood Flow Metab 17:932–942PubMedCrossRef
92.
go back to reference Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451PubMedCrossRef Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451PubMedCrossRef
93.
go back to reference Chan GL, Holden JE, Stoessl AJ, et al. (1998) Reproducibility of the distribution of carbon-11-SCH 23390, a dopamine D1 receptor tracer, in normal subjects. J Nucl Med 39:792–797PubMed Chan GL, Holden JE, Stoessl AJ, et al. (1998) Reproducibility of the distribution of carbon-11-SCH 23390, a dopamine D1 receptor tracer, in normal subjects. J Nucl Med 39:792–797PubMed
94.
go back to reference Abi-Dargham A, Martinez D, Mawlawi O, et al. (2000) Measurement of striatal and extrastriatal dopamine D1 receptor binding potential with [11C]NNC 112 in humans: validation and reproducibility. J Cereb Blood Flow Metab 20:225–243PubMedCrossRef Abi-Dargham A, Martinez D, Mawlawi O, et al. (2000) Measurement of striatal and extrastriatal dopamine D1 receptor binding potential with [11C]NNC 112 in humans: validation and reproducibility. J Cereb Blood Flow Metab 20:225–243PubMedCrossRef
95.
go back to reference Sargent PA, Kjaer KH, Bench CJ, et al. (2000) Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Arch Gen Psychiatry 57:174–180PubMedCrossRef Sargent PA, Kjaer KH, Bench CJ, et al. (2000) Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Arch Gen Psychiatry 57:174–180PubMedCrossRef
96.
go back to reference Carson RE, Lang L, Watabe H, et al. (2000) PET evaluation of [(18)F]FCWAY, an analog of the 5-HT(1A) receptor antagonist, WAY-100635. Nucl Med Biol 27:493–497PubMedCrossRef Carson RE, Lang L, Watabe H, et al. (2000) PET evaluation of [(18)F]FCWAY, an analog of the 5-HT(1A) receptor antagonist, WAY-100635. Nucl Med Biol 27:493–497PubMedCrossRef
97.
go back to reference Watabe H, Channing MA, Der MG, et al. (2000) Kinetic analysis of the 5-HT2A ligand [11C]MDL 100,907. J Cereb Blood Flow Metab 20:899–909PubMed Watabe H, Channing MA, Der MG, et al. (2000) Kinetic analysis of the 5-HT2A ligand [11C]MDL 100,907. J Cereb Blood Flow Metab 20:899–909PubMed
98.
go back to reference Staley JK, Van Dyck CH, Tan PZ, et al. (2001) Comparison of [(18)F]altanserin and [(18)F]deuteroaltanserin for PET imaging of serotonin(2A) receptors in baboon brain: pharmacological studies. Nucl Med Biol 28:271–279PubMedCrossRef Staley JK, Van Dyck CH, Tan PZ, et al. (2001) Comparison of [(18)F]altanserin and [(18)F]deuteroaltanserin for PET imaging of serotonin(2A) receptors in baboon brain: pharmacological studies. Nucl Med Biol 28:271–279PubMedCrossRef
99.
go back to reference Fowler JS, Volkow ND, Wolf AP, et al. (1989) Mapping cocaine binding sites in human and baboon brain in vivo. Synapse 4:371–377PubMedCrossRef Fowler JS, Volkow ND, Wolf AP, et al. (1989) Mapping cocaine binding sites in human and baboon brain in vivo. Synapse 4:371–377PubMedCrossRef
100.
go back to reference Frost JJ, Rosier AJ, Reich SG, et al. (1993) Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson’s disease. Ann Neurol 34:423–431PubMedCrossRef Frost JJ, Rosier AJ, Reich SG, et al. (1993) Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson’s disease. Ann Neurol 34:423–431PubMedCrossRef
101.
go back to reference Volkow ND, Ding YS, Fowler JS, et al. (1995) A new PET ligand for the dopamine transporter: studies in the human brain. J Nucl Med 36:2162–2168PubMed Volkow ND, Ding YS, Fowler JS, et al. (1995) A new PET ligand for the dopamine transporter: studies in the human brain. J Nucl Med 36:2162–2168PubMed
102.
go back to reference Szabo Z, Kao PF, Scheffel U, et al. (1995) Positron emission tomography imaging of serotonin transporters in the human brain using [11C](+)McN5652. Synapse 20:37–43PubMedCrossRef Szabo Z, Kao PF, Scheffel U, et al. (1995) Positron emission tomography imaging of serotonin transporters in the human brain using [11C](+)McN5652. Synapse 20:37–43PubMedCrossRef
103.
go back to reference Houle S, Ginovart N, Hussey D, Meyer JH, Wilson AA (2000) Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB. Eur J Nucl Med 27:1719–1722PubMedCrossRef Houle S, Ginovart N, Hussey D, Meyer JH, Wilson AA (2000) Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB. Eur J Nucl Med 27:1719–1722PubMedCrossRef
104.
go back to reference Aubert I, Araujo D, Cecyre D, Robitaille Y, Gauthier S, Quirion R (1992) Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. J Neurochem 58:529–541PubMedCrossRef Aubert I, Araujo D, Cecyre D, Robitaille Y, Gauthier S, Quirion R (1992) Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. J Neurochem 58:529–541PubMedCrossRef
105.
go back to reference Davies P, Maloney A (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet II:1403CrossRef Davies P, Maloney A (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet II:1403CrossRef
106.
go back to reference Bowen DM, Smith CB, White P, Davison AN (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99:459–496PubMedCrossRef Bowen DM, Smith CB, White P, Davison AN (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99:459–496PubMedCrossRef
107.
go back to reference Whitehouse PJ, Hedreen JC, White CL, Price DL (1983) Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol 13:243–248PubMedCrossRef Whitehouse PJ, Hedreen JC, White CL, Price DL (1983) Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol 13:243–248PubMedCrossRef
108.
go back to reference Candy JM, Perry RH, Perry EK, et al. (1983) Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 59:277–289PubMedCrossRef Candy JM, Perry RH, Perry EK, et al. (1983) Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 59:277–289PubMedCrossRef
109.
go back to reference Perry E, Martin-Ruiz C, Lee M, et al. (2000) Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur J Pharmacol 393:215–222PubMedCrossRef Perry E, Martin-Ruiz C, Lee M, et al. (2000) Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur J Pharmacol 393:215–222PubMedCrossRef
110.
go back to reference Yu WF, Guan ZZ, Bogdanovic N, Nordberg A (2005) High selective expression of alpha7 nicotinic receptors on astrocytes in the brains of patients with sporadic Alzheimer’s disease and patients carrying Swedish APP 670/671 mutation: a possible association with neuritic plaques. Exp Neurol 192:215–225PubMedCrossRef Yu WF, Guan ZZ, Bogdanovic N, Nordberg A (2005) High selective expression of alpha7 nicotinic receptors on astrocytes in the brains of patients with sporadic Alzheimer’s disease and patients carrying Swedish APP 670/671 mutation: a possible association with neuritic plaques. Exp Neurol 192:215–225PubMedCrossRef
111.
go back to reference Davies P, Verth AH (1977) Regional distribution of muscarinic acetylcholine receptor in normal and Alzheimer’s-type dementia brains. Brain Res 138:385–392PubMedCrossRef Davies P, Verth AH (1977) Regional distribution of muscarinic acetylcholine receptor in normal and Alzheimer’s-type dementia brains. Brain Res 138:385–392PubMedCrossRef
112.
go back to reference DeKosky ST, Harbaugh RE, Schmitt FA, et al. (1992) Cortical biopsy in Alzheimer’s disease: diagnostic accuracy and neurochemical, neuropathological, and cognitive correlations. Ann Neurol 32:625–632PubMedCrossRef DeKosky ST, Harbaugh RE, Schmitt FA, et al. (1992) Cortical biopsy in Alzheimer’s disease: diagnostic accuracy and neurochemical, neuropathological, and cognitive correlations. Ann Neurol 32:625–632PubMedCrossRef
113.
go back to reference Ogawa M, Iida Y, Nakagawa M, et al. (2006) Change of central cholinergic receptors following lesions of nucleus basalis magnocellularis in rats: search for an imaging index suitable for the early detection of Alzheimer’s disease. Nucl Med Biol 33:249–254PubMedCrossRef Ogawa M, Iida Y, Nakagawa M, et al. (2006) Change of central cholinergic receptors following lesions of nucleus basalis magnocellularis in rats: search for an imaging index suitable for the early detection of Alzheimer’s disease. Nucl Med Biol 33:249–254PubMedCrossRef
114.
go back to reference Araujo D, Lapchak P, Robitaille Y, Gauthier S, Quirion R (1988) Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer’s disease. J Neurochem 50:1914–1923PubMedCrossRef Araujo D, Lapchak P, Robitaille Y, Gauthier S, Quirion R (1988) Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer’s disease. J Neurochem 50:1914–1923PubMedCrossRef
115.
go back to reference Rossor MN, Iversen LL, Reynolds GP, Mountjoy CQ, Roth M (1984) Neurochemical characteristics of early and late onset types of Alzheimer’s disease. Br Med J 288:961–964 Rossor MN, Iversen LL, Reynolds GP, Mountjoy CQ, Roth M (1984) Neurochemical characteristics of early and late onset types of Alzheimer’s disease. Br Med J 288:961–964
116.
go back to reference Geula C, Mesulam MM (1996) Systematic regional variations in the loss of cortical cholinergic fibers in Alzheimer’s disease. Cereb Cortex 6:165–177PubMedCrossRef Geula C, Mesulam MM (1996) Systematic regional variations in the loss of cortical cholinergic fibers in Alzheimer’s disease. Cereb Cortex 6:165–177PubMedCrossRef
117.
go back to reference Bohnen NI, Kaufer DI, Ivanco L, et al. (2003) Cortical cholinergic function is more severely affected in Parkinsonian dementia than in Alzheimer’s Disease: an in vivo PET Study. Arch Neurol 60:1745–1748PubMedCrossRef Bohnen NI, Kaufer DI, Ivanco L, et al. (2003) Cortical cholinergic function is more severely affected in Parkinsonian dementia than in Alzheimer’s Disease: an in vivo PET Study. Arch Neurol 60:1745–1748PubMedCrossRef
118.
go back to reference Davis K, Mohs R, Marin D, et al. (1999) Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 281:1401–1406PubMedCrossRef Davis K, Mohs R, Marin D, et al. (1999) Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 281:1401–1406PubMedCrossRef
119.
go back to reference Tiraboschi P, Hansen LA, Alford M, Masliah E, Thal LJ, Corey-Bloom J (2000) The decline in synapses and cholinergic activity is asynchronous in Alzheimer’s disease. Neurology 55:1278–1283PubMed Tiraboschi P, Hansen LA, Alford M, Masliah E, Thal LJ, Corey-Bloom J (2000) The decline in synapses and cholinergic activity is asynchronous in Alzheimer’s disease. Neurology 55:1278–1283PubMed
120.
go back to reference DeKosky ST, Ikonomovic MD, Styren SD, et al. (2002) Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 51:145–155PubMedCrossRef DeKosky ST, Ikonomovic MD, Styren SD, et al. (2002) Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 51:145–155PubMedCrossRef
121.
go back to reference Kuhl DE, Koeppe RA, Snyder SE, Minoshima S, Frey KA, Kilbourn MR (2006) In vivo butyrylcholinesterase activity is not increased in Alzheimer’s disease synapses. Ann Neurol 59:13–20PubMedCrossRef Kuhl DE, Koeppe RA, Snyder SE, Minoshima S, Frey KA, Kilbourn MR (2006) In vivo butyrylcholinesterase activity is not increased in Alzheimer’s disease synapses. Ann Neurol 59:13–20PubMedCrossRef
122.
go back to reference Koeppe R, Frey K, Snyder S, Kilbourn M, Kuhl D (1997) Evaluation of two distinct kinetic analyses for use with [C-11]PMP: an irreversible tracer for mapping AChE activity. J Cereb Blood Flow Metab 17(Suppl. 1):S329 Koeppe R, Frey K, Snyder S, Kilbourn M, Kuhl D (1997) Evaluation of two distinct kinetic analyses for use with [C-11]PMP: an irreversible tracer for mapping AChE activity. J Cereb Blood Flow Metab 17(Suppl. 1):S329
123.
go back to reference Kuhl DE, Minoshima S, Frey KA, Foster NL, Kilbourn MR, Koeppe RA (2000) Limited donepezil inhibition of acetylcholinesterase measured with positron emission tomography in living Alzheimer cerebral cortex. Ann Neurol 48:391–395PubMedCrossRef Kuhl DE, Minoshima S, Frey KA, Foster NL, Kilbourn MR, Koeppe RA (2000) Limited donepezil inhibition of acetylcholinesterase measured with positron emission tomography in living Alzheimer cerebral cortex. Ann Neurol 48:391–395PubMedCrossRef
124.
go back to reference Shinotoh H, Aotsuka A, Fukushi K, et al. (2001) Effect of donepezil on brain acetylcholinesterase activity in patients with AD measured by PET. Neurology 56:408–410PubMed Shinotoh H, Aotsuka A, Fukushi K, et al. (2001) Effect of donepezil on brain acetylcholinesterase activity in patients with AD measured by PET. Neurology 56:408–410PubMed
125.
go back to reference Bohnen NI, Kaufer DI, Hendrickson R, et al. (2005) Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 76:315–319PubMedCrossRef Bohnen NI, Kaufer DI, Hendrickson R, et al. (2005) Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 76:315–319PubMedCrossRef
126.
go back to reference Yoshida T, Kuwabara Y, Ichiya Y, et al. (1998) Cerebral muscarinic acetylcholinergic receptor measurement in Alzheimer’s disease patients on 11C-N-methyl-4-piperidyl benzilate—comparison with cerebral blood flow and cerebral glucose metabolism. Ann Nucl Med 12:35–42PubMed Yoshida T, Kuwabara Y, Ichiya Y, et al. (1998) Cerebral muscarinic acetylcholinergic receptor measurement in Alzheimer’s disease patients on 11C-N-methyl-4-piperidyl benzilate—comparison with cerebral blood flow and cerebral glucose metabolism. Ann Nucl Med 12:35–42PubMed
127.
go back to reference Boundy KL, Barnden LR, Katsifis AG, Rowe CC (2005) Reduced posterior cingulate binding of I-123 iodo-dexetimide to muscarinic receptors in mild Alzheimer’s disease. J Clin Neurosci 12:421–425PubMedCrossRef Boundy KL, Barnden LR, Katsifis AG, Rowe CC (2005) Reduced posterior cingulate binding of I-123 iodo-dexetimide to muscarinic receptors in mild Alzheimer’s disease. J Clin Neurosci 12:421–425PubMedCrossRef
128.
go back to reference Nordberg A, Lundqvist H, Hartvig P, et al. (1997) Imaging of nicotinic and muscarinic receptors in Alzheimer’s disease: effect of tacrine treatment. Dement Geriatr Cogn Disord 8:78–84PubMed Nordberg A, Lundqvist H, Hartvig P, et al. (1997) Imaging of nicotinic and muscarinic receptors in Alzheimer’s disease: effect of tacrine treatment. Dement Geriatr Cogn Disord 8:78–84PubMed
129.
go back to reference Nordberg A, Hartvig P, Lilja A, et al. (1990) Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm Park Dis Dement Sect 2:215–224PubMedCrossRef Nordberg A, Hartvig P, Lilja A, et al. (1990) Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm Park Dis Dement Sect 2:215–224PubMedCrossRef
130.
go back to reference Nordberg A, Lundqvist H, Hartvig P, Lilja A, Langstrom B (1995) Kinetic analysis of regional (S)(-)11C-nicotine binding in normal and Alzheimer brains—in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 9:21–27PubMedCrossRef Nordberg A, Lundqvist H, Hartvig P, Lilja A, Langstrom B (1995) Kinetic analysis of regional (S)(-)11C-nicotine binding in normal and Alzheimer brains—in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 9:21–27PubMedCrossRef
131.
go back to reference Zaccai J, McCracken C, Brayne C (2005) A systematic review of prevalence and incidence studies of dementia with Lewy bodies. Age Ageing 34:561–566PubMedCrossRef Zaccai J, McCracken C, Brayne C (2005) A systematic review of prevalence and incidence studies of dementia with Lewy bodies. Age Ageing 34:561–566PubMedCrossRef
132.
go back to reference McKeith IG, Dickson DW, Lowe J, et al. (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872PubMedCrossRef McKeith IG, Dickson DW, Lowe J, et al. (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872PubMedCrossRef
133.
go back to reference Walker Z, Costa DC, Walker RW, et al. (2004) Striatal dopamine transporter in dementia with Lewy bodies and Parkinson disease: a comparison. Neurology 62:1568–1572PubMed Walker Z, Costa DC, Walker RW, et al. (2004) Striatal dopamine transporter in dementia with Lewy bodies and Parkinson disease: a comparison. Neurology 62:1568–1572PubMed
134.
go back to reference Koeppe RA, Gilman S, Joshi A, et al. (2005) 11C-DTBZ and 18F-FDG PET measures in differentiating dementias. J Nucl Med 46:936–944PubMed Koeppe RA, Gilman S, Joshi A, et al. (2005) 11C-DTBZ and 18F-FDG PET measures in differentiating dementias. J Nucl Med 46:936–944PubMed
135.
go back to reference Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. New Engl J Med 318:876–880PubMedCrossRef Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. New Engl J Med 318:876–880PubMedCrossRef
136.
go back to reference Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134PubMedCrossRef Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134PubMedCrossRef
137.
go back to reference Nahmias C, Garnett ES, Firnau G, Lang A (1985) Striatal dopamine distribution in parkinsonian patients during life. J Neurol Sci 69:223–230PubMedCrossRef Nahmias C, Garnett ES, Firnau G, Lang A (1985) Striatal dopamine distribution in parkinsonian patients during life. J Neurol Sci 69:223–230PubMedCrossRef
138.
go back to reference Leenders KL, Salmon EP, Tyrrell P, et al. (1990) The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease. Arch Neurol 47:1290–1298PubMed Leenders KL, Salmon EP, Tyrrell P, et al. (1990) The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease. Arch Neurol 47:1290–1298PubMed
139.
go back to reference Ilgin N, Zubieta J, Reich SG, Dannals RF, Ravert HT, Frost JJ (1999) PET imaging of the dopamine transporter in progressive supranuclear palsy and Parkinson’s disease. Neurology 52:1221–1226PubMed Ilgin N, Zubieta J, Reich SG, Dannals RF, Ravert HT, Frost JJ (1999) PET imaging of the dopamine transporter in progressive supranuclear palsy and Parkinson’s disease. Neurology 52:1221–1226PubMed
140.
go back to reference Lee CS, Samii A, Sossi V, et al. (2000) In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 47:493–503PubMedCrossRef Lee CS, Samii A, Sossi V, et al. (2000) In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 47:493–503PubMedCrossRef
141.
go back to reference Brooks DJ, Ibanez V, Sawle GV, et al. (1992) Striatal D2 receptor status in patients with Parkinson’s disease, striatonigral degeneration, and progressive supranuclear palsy, measured with 11C-raclopride and positron emission tomography. Ann Neurol 31:184–192PubMedCrossRef Brooks DJ, Ibanez V, Sawle GV, et al. (1992) Striatal D2 receptor status in patients with Parkinson’s disease, striatonigral degeneration, and progressive supranuclear palsy, measured with 11C-raclopride and positron emission tomography. Ann Neurol 31:184–192PubMedCrossRef
142.
go back to reference de la Fuente-Fernandez R, Lu JQ, Sossi V, et al. (2001) Biochemical variations in the synaptic level of dopamine precede motor fluctuations in Parkinson’s disease: PET evidence of increased dopamine turnover. Ann Neurol 49:298–303PubMedCrossRef de la Fuente-Fernandez R, Lu JQ, Sossi V, et al. (2001) Biochemical variations in the synaptic level of dopamine precede motor fluctuations in Parkinson’s disease: PET evidence of increased dopamine turnover. Ann Neurol 49:298–303PubMedCrossRef
143.
go back to reference de la Fuente-Fernandez R, Ruth TJ, Sossi V, Schulzer M, Calne DB, Stoessl AJ (2001) Expectation and dopamine release: mechanism of the placebo effect in Parkinson’s disease. Science 293:1164–1166PubMedCrossRef de la Fuente-Fernandez R, Ruth TJ, Sossi V, Schulzer M, Calne DB, Stoessl AJ (2001) Expectation and dopamine release: mechanism of the placebo effect in Parkinson’s disease. Science 293:1164–1166PubMedCrossRef
144.
go back to reference Rapier C, Lunt GG, Wonnacott S (1990) Nicotinic modulation of [3H]dopamine release from striatal synaptosomes: pharmacological characterisation. J Neurochem 54:937–945PubMedCrossRef Rapier C, Lunt GG, Wonnacott S (1990) Nicotinic modulation of [3H]dopamine release from striatal synaptosomes: pharmacological characterisation. J Neurochem 54:937–945PubMedCrossRef
145.
go back to reference Schneider JS, Van Velson M, Menzaghi F, Lloyd GK (1998) Effects of the nicotinic acetylcholine receptor agonist SIB-1508Y on object retrieval performance in MPTP-treated monkeys: comparison with levodopa treatment. Ann Neurol 43:311–317PubMedCrossRef Schneider JS, Van Velson M, Menzaghi F, Lloyd GK (1998) Effects of the nicotinic acetylcholine receptor agonist SIB-1508Y on object retrieval performance in MPTP-treated monkeys: comparison with levodopa treatment. Ann Neurol 43:311–317PubMedCrossRef
146.
go back to reference Pimlott SL, Piggott M, Owens J, et al. (2004) Nicotinic acetylcholine receptor distribution in Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease, and vascular dementia: in vitro binding study using 5-[(125)i]-a-85380. Neuropsychopharmacology 29:108–116PubMedCrossRef Pimlott SL, Piggott M, Owens J, et al. (2004) Nicotinic acetylcholine receptor distribution in Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease, and vascular dementia: in vitro binding study using 5-[(125)i]-a-85380. Neuropsychopharmacology 29:108–116PubMedCrossRef
147.
go back to reference Fujita M, Ichise M, Zoghbi SS, et al. (2006) Widespread decrease of nicotinic acetylcholine receptors in Parkinson’s disease. Ann Neurol 59:174–177PubMedCrossRef Fujita M, Ichise M, Zoghbi SS, et al. (2006) Widespread decrease of nicotinic acetylcholine receptors in Parkinson’s disease. Ann Neurol 59:174–177PubMedCrossRef
148.
go back to reference Mahler ME, Cummings JL (1990) Alzheimer disease and the dementia of Parkinson disease: comparative investigations. Alzheimer Dis Assoc Disord 4:133–149PubMedCrossRef Mahler ME, Cummings JL (1990) Alzheimer disease and the dementia of Parkinson disease: comparative investigations. Alzheimer Dis Assoc Disord 4:133–149PubMedCrossRef
149.
go back to reference Mattila PM, Roytta M, Lonnberg P, Marjamaki P, Helenius H, Rinne JO (2001) Choline acetytransferase activity and striatal dopamine receptors in Parkinson’s disease in relation to cognitive impairment. Acta Neuropathol (Berl) 102:160–166 Mattila PM, Roytta M, Lonnberg P, Marjamaki P, Helenius H, Rinne JO (2001) Choline acetytransferase activity and striatal dopamine receptors in Parkinson’s disease in relation to cognitive impairment. Acta Neuropathol (Berl) 102:160–166
150.
go back to reference Perry EK, Curtis M, Dick DJ, et al. (1985) Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 48:413–421PubMed Perry EK, Curtis M, Dick DJ, et al. (1985) Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 48:413–421PubMed
151.
go back to reference Arendt T, Bigl V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s disease. Acta Neuropathol (Berl) 61:101–108CrossRef Arendt T, Bigl V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s disease. Acta Neuropathol (Berl) 61:101–108CrossRef
152.
go back to reference Whitehouse PJ, Martino AM, Wagster MV, et al. (1988) Reductions in [3H]nicotinic acetylcholine binding in Alzheimer’s disease and Parkinson’s disease: an autoradiographic study. Neurology 38:720–723PubMed Whitehouse PJ, Martino AM, Wagster MV, et al. (1988) Reductions in [3H]nicotinic acetylcholine binding in Alzheimer’s disease and Parkinson’s disease: an autoradiographic study. Neurology 38:720–723PubMed
153.
go back to reference Asahina M, Suhara T, Shinotoh H, Inoue O, Suzuki K, Hattori T (1998) Brain muscarinic receptors in progressive supranuclear palsy and Parkinson’s disease: a positron emission tomographic study. J Neurol Neurosurg Psychiatry 65:155–163PubMed Asahina M, Suhara T, Shinotoh H, Inoue O, Suzuki K, Hattori T (1998) Brain muscarinic receptors in progressive supranuclear palsy and Parkinson’s disease: a positron emission tomographic study. J Neurol Neurosurg Psychiatry 65:155–163PubMed
154.
go back to reference Shinotoh H, Namba H, Yamaguchi M, et al. (1999) Positron emission tomographic measurement of acetylcholinesterase activity reveals differential loss of ascending cholinergic systems in Parkinson’s disease and progressive supranuclear palsy. Ann Neurol 46:62–69PubMedCrossRef Shinotoh H, Namba H, Yamaguchi M, et al. (1999) Positron emission tomographic measurement of acetylcholinesterase activity reveals differential loss of ascending cholinergic systems in Parkinson’s disease and progressive supranuclear palsy. Ann Neurol 46:62–69PubMedCrossRef
155.
go back to reference Namba H, Shinotoh H, Iyo M (1998) In vivo measurement of acetylcholinesterase activity of the brains of Alzheimer’s disease and Parkinson’s disease. J Nucl Med 39(Suppl.):95P–96P Namba H, Shinotoh H, Iyo M (1998) In vivo measurement of acetylcholinesterase activity of the brains of Alzheimer’s disease and Parkinson’s disease. J Nucl Med 39(Suppl.):95P–96P
156.
go back to reference Hilker R, Thomas AV, Klein JC, et al. (2005) Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 65:1716–1722PubMedCrossRef Hilker R, Thomas AV, Klein JC, et al. (2005) Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 65:1716–1722PubMedCrossRef
157.
go back to reference Bohnen NI, Kaufer DI, Hendrickson R, et al. (2006) Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol 253:242–247PubMedCrossRef Bohnen NI, Kaufer DI, Hendrickson R, et al. (2006) Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol 253:242–247PubMedCrossRef
158.
go back to reference Dubois B, Danze F, Pillon B, Cusimano G, Lhermitte F, Agid Y (1987) Cholinergic-dependent cognitive deficits in Parkinson’s disease. Ann Neurol 22:26–30PubMedCrossRef Dubois B, Danze F, Pillon B, Cusimano G, Lhermitte F, Agid Y (1987) Cholinergic-dependent cognitive deficits in Parkinson’s disease. Ann Neurol 22:26–30PubMedCrossRef
159.
go back to reference Ruberg M, Ploska A, Javoy-Agid F, Agid Y (1982) Muscarinic binding and choline acetyltransferase activity in Parkinsonian subjects with reference to dementia. Brain Res 232:129–139PubMedCrossRef Ruberg M, Ploska A, Javoy-Agid F, Agid Y (1982) Muscarinic binding and choline acetyltransferase activity in Parkinsonian subjects with reference to dementia. Brain Res 232:129–139PubMedCrossRef
160.
go back to reference Quinn N (1995) Parkinsonism—recognition and differential diagnosis. BMJ 310:447–452PubMed Quinn N (1995) Parkinsonism—recognition and differential diagnosis. BMJ 310:447–452PubMed
161.
go back to reference Steele JC, Richardson JC, Olszewski J (1964) Progressive supranuclear palsy: a heterogeneous degeneration involving the brainstem, basal ganglia, and cerebellum, with vertical gaze and pseudobulbar palsy. Arch Neurol 10:333–359PubMed Steele JC, Richardson JC, Olszewski J (1964) Progressive supranuclear palsy: a heterogeneous degeneration involving the brainstem, basal ganglia, and cerebellum, with vertical gaze and pseudobulbar palsy. Arch Neurol 10:333–359PubMed
162.
go back to reference Suzuki M, Desmond TJ, Albin RL, Frey KA (2002) Cholinergic vesicular transporters in progressive supranuclear palsy. Neurology 58:1013–1018PubMed Suzuki M, Desmond TJ, Albin RL, Frey KA (2002) Cholinergic vesicular transporters in progressive supranuclear palsy. Neurology 58:1013–1018PubMed
163.
go back to reference Papp MI, Lantos PL (1994) The distribution of oligodendroglial inclusions in multiple system atrophy and its relevance to clinical symptomatology. Brain 117:235–243PubMedCrossRef Papp MI, Lantos PL (1994) The distribution of oligodendroglial inclusions in multiple system atrophy and its relevance to clinical symptomatology. Brain 117:235–243PubMedCrossRef
164.
go back to reference Feany MB, Ksiezak-Reding H, Liu WK, Vincent I, Yen SH, Dickson DW (1995) Epitope expression and hyperphosphorylation of tau protein in corticobasal degeneration: differentiation from progressive supranuclear palsy. Acta Neuropathol (Berl) 90:37–43 Feany MB, Ksiezak-Reding H, Liu WK, Vincent I, Yen SH, Dickson DW (1995) Epitope expression and hyperphosphorylation of tau protein in corticobasal degeneration: differentiation from progressive supranuclear palsy. Acta Neuropathol (Berl) 90:37–43
165.
go back to reference Gilman S, Chervin RD, Koeppe RA, et al. (2003) Obstructive sleep apnea is related to a thalamic cholinergic deficit in MSA. Neurology 61:35–39PubMed Gilman S, Chervin RD, Koeppe RA, et al. (2003) Obstructive sleep apnea is related to a thalamic cholinergic deficit in MSA. Neurology 61:35–39PubMed
166.
go back to reference Shinotoh H (2006) Neuroimaging of PD, PSP, CBD and MSA-PET and SPECT studies. J Neurol 253 Suppl 3:iii30–iii34PubMedCrossRef Shinotoh H (2006) Neuroimaging of PD, PSP, CBD and MSA-PET and SPECT studies. J Neurol 253 Suppl 3:iii30–iii34PubMedCrossRef
167.
go back to reference Brooks DJ, Ibanez V, Sawle GV, et al. (1990) Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 28:547–555PubMedCrossRef Brooks DJ, Ibanez V, Sawle GV, et al. (1990) Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 28:547–555PubMedCrossRef
168.
go back to reference Burn DJ, Sawle GV, Brooks DJ (1994) Differential diagnosis of Parkinson’s disease, multiple system atrophy, and Steele–Richardson–Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data. J Neurol Neurosurg Psychiatry 57:278–284PubMedCrossRef Burn DJ, Sawle GV, Brooks DJ (1994) Differential diagnosis of Parkinson’s disease, multiple system atrophy, and Steele–Richardson–Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data. J Neurol Neurosurg Psychiatry 57:278–284PubMedCrossRef
169.
go back to reference Pirker W, Asenbaum S, Bencsits G, et al. (2000) [123I]beta-CIT SPECT in multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration. Mov Disord 15:1158–1167PubMedCrossRef Pirker W, Asenbaum S, Bencsits G, et al. (2000) [123I]beta-CIT SPECT in multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration. Mov Disord 15:1158–1167PubMedCrossRef
170.
go back to reference Sawle GV, Brooks DJ, Marsden CD, Frackowiak RS (1991) Corticobasal degeneration. A unique pattern of regional cortical oxygen hypometabolism and striatal fluorodopa uptake demonstrated by positron emission tomography. Brain 114 (Pt 1B):541–556PubMedCrossRef Sawle GV, Brooks DJ, Marsden CD, Frackowiak RS (1991) Corticobasal degeneration. A unique pattern of regional cortical oxygen hypometabolism and striatal fluorodopa uptake demonstrated by positron emission tomography. Brain 114 (Pt 1B):541–556PubMedCrossRef
171.
go back to reference Rinne JO, Burn DJ, Mathias CJ, Quinn NP, Marsden CD, Brooks DJ (1995) Positron emission tomography studies on the dopaminergic system and striatal opioid binding in the olivopontocerebellar atrophy variant of multiple system atrophy. Ann Neurol 37:568–573PubMedCrossRef Rinne JO, Burn DJ, Mathias CJ, Quinn NP, Marsden CD, Brooks DJ (1995) Positron emission tomography studies on the dopaminergic system and striatal opioid binding in the olivopontocerebellar atrophy variant of multiple system atrophy. Ann Neurol 37:568–573PubMedCrossRef
172.
go back to reference Gilman S, Frey KA, Koeppe RA, et al. (1996) Decreased striatal monoaminergic terminals in olivopontocerebellar atrophy and multiple system atrophy demonstrated with positron emission tomography. Ann Neurol 40:885–892PubMedCrossRef Gilman S, Frey KA, Koeppe RA, et al. (1996) Decreased striatal monoaminergic terminals in olivopontocerebellar atrophy and multiple system atrophy demonstrated with positron emission tomography. Ann Neurol 40:885–892PubMedCrossRef
173.
go back to reference Antonini A, Leenders KL, Vontobel P, et al. (1997) Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson’s disease. Brain 120(Pt 12):2187–2195PubMedCrossRef Antonini A, Leenders KL, Vontobel P, et al. (1997) Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson’s disease. Brain 120(Pt 12):2187–2195PubMedCrossRef
174.
go back to reference Gilman S, Koeppe RA, Junck L, et al. (1999) Decreased striatal monoaminergic terminals in multiple system atrophy detected with positron emission tomography. Ann Neurol 45:769–777PubMedCrossRef Gilman S, Koeppe RA, Junck L, et al. (1999) Decreased striatal monoaminergic terminals in multiple system atrophy detected with positron emission tomography. Ann Neurol 45:769–777PubMedCrossRef
175.
go back to reference Laureys S, Salmon E, Garraux G, et al. (1999) Fluorodopa uptake and glucose metabolism in early stages of corticobasal degeneration. J Neurol 246:1151–1158PubMedCrossRef Laureys S, Salmon E, Garraux G, et al. (1999) Fluorodopa uptake and glucose metabolism in early stages of corticobasal degeneration. J Neurol 246:1151–1158PubMedCrossRef
Metadata
Title
Imaging of Cholinergic and Monoaminergic Neurochemical Changes in Neurodegenerative Disorders
Authors
Nicolaas I. Bohnen
Kirk A. Frey
Publication date
01-07-2007
Publisher
Springer-Verlag
Published in
Molecular Imaging and Biology / Issue 4/2007
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-007-0083-6

Other articles of this Issue 4/2007

Molecular Imaging and Biology 4/2007 Go to the issue