Skip to main content
Top
Published in: Targeted Oncology 3/2009

01-09-2009 | Review

Imaging applications of nanotechnology in cancer

Authors: U. Ayanthi Gunasekera, Quentin A. Pankhurst, Michael Douek

Published in: Targeted Oncology | Issue 3/2009

Login to get access

Abstract

Consider a single agent capable of diagnosing cancer, treating it simultaneously and monitoring response to treatment. Particles of this agent would seek cancer cells accurately and destroy them without harming normal surrounding cells. Science fiction or reality? Nanotechnology and nanomedicine are rapidly growing fields that encompass the creation of materials and devices at atomic, molecular and supramolecular level, for potential clinical use. Advances in nanotechnology are bringing us closer to the development of dual and multi-functional nanoparticles that are challenging the traditional distinction between diagnostic and treatment agents. Examples include contrast agents capable of delivering targeted drugs to specific epithelial receptors. This opens the way for targeted chemotherapy which could minimise systemic side-effects, avoid damage to benign tissues and also reduce the therapeutic treatment dose of a drug required. Most of the current research is still at the pre-clinical stage, with very few instances of bench to bedside research. In order to encourage more translational research, a fundamental change is required to consider the current clinical challenges and then look at ways in which nanotechnology can address these.
Literature
2.
go back to reference Sanvicens N, Marco MP (2008) Multifunctional nanoparticles—properties and prospects for their use in human medicine. Trends Biotechnol 26(8):425–433CrossRefPubMed Sanvicens N, Marco MP (2008) Multifunctional nanoparticles—properties and prospects for their use in human medicine. Trends Biotechnol 26(8):425–433CrossRefPubMed
3.
go back to reference Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomed 3(5):703–717CrossRefPubMed Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomed 3(5):703–717CrossRefPubMed
4.
go back to reference Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207CrossRefPubMed Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207CrossRefPubMed
5.
go back to reference Jain RK (2008) Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nat Rev Cancer 8(4):309–316CrossRefPubMed Jain RK (2008) Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nat Rev Cancer 8(4):309–316CrossRefPubMed
6.
go back to reference Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O’Regan RM (2006) Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 7(8):657–667CrossRefPubMed Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O’Regan RM (2006) Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 7(8):657–667CrossRefPubMed
7.
go back to reference Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711CrossRefPubMed Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711CrossRefPubMed
8.
go back to reference McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60(11):1241–1251CrossRefPubMed McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60(11):1241–1251CrossRefPubMed
9.
go back to reference Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171CrossRefPubMed Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171CrossRefPubMed
10.
go back to reference Yang J, Lee CH, Ko HJ, Suh JS, Yoon HG, Lee K et al (2007) Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed Engl 46(46):8836–8839CrossRefPubMed Yang J, Lee CH, Ko HJ, Suh JS, Yoon HG, Lee K et al (2007) Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer. Angew Chem Int Ed Engl 46(46):8836–8839CrossRefPubMed
11.
go back to reference Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13(3):372–377CrossRefPubMed Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13(3):372–377CrossRefPubMed
12.
go back to reference Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ et al (2006) Metal nanoshells. Ann Biomed Eng 34(1):15–22CrossRefPubMed Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ et al (2006) Metal nanoshells. Ann Biomed Eng 34(1):15–22CrossRefPubMed
13.
go back to reference Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100(23):13549–13554CrossRefPubMed Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100(23):13549–13554CrossRefPubMed
14.
go back to reference McCarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Targeted delivery of multifunctional magnetic nanoparticles. Nanomed 2(2):153–167CrossRefPubMed McCarthy JR, Kelly KA, Sun EY, Weissleder R (2007) Targeted delivery of multifunctional magnetic nanoparticles. Nanomed 2(2):153–167CrossRefPubMed
15.
go back to reference Dinh P, Sotiriou C, Piccart MJ (2007) The evolution of treatment strategies: aiming at the target. Breast 16(Suppl 2):S10–S16CrossRefPubMed Dinh P, Sotiriou C, Piccart MJ (2007) The evolution of treatment strategies: aiming at the target. Breast 16(Suppl 2):S10–S16CrossRefPubMed
16.
go back to reference Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288CrossRefPubMed Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288CrossRefPubMed
17.
go back to reference Kumar R, Roy I, Ohulchanskyy TY, Goswami LN, Bonoiu AC, Bergey EJ et al (2008) Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2(3):449–456CrossRefPubMed Kumar R, Roy I, Ohulchanskyy TY, Goswami LN, Bonoiu AC, Bergey EJ et al (2008) Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2(3):449–456CrossRefPubMed
18.
go back to reference Menon U, Jacobs IJ (2000) Recent developments in ovarian cancer screening. Curr Opin Obstet Gynecol 12(1):39–42CrossRefPubMed Menon U, Jacobs IJ (2000) Recent developments in ovarian cancer screening. Curr Opin Obstet Gynecol 12(1):39–42CrossRefPubMed
19.
go back to reference Wang X, Yang L, Chen ZG, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58(2):97–110CrossRefPubMed Wang X, Yang L, Chen ZG, Shin DM (2008) Application of nanotechnology in cancer therapy and imaging. CA Cancer J Clin 58(2):97–110CrossRefPubMed
20.
go back to reference Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499CrossRefPubMed Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499CrossRefPubMed
21.
go back to reference Harisinghani MG, Weissleder R (2004) Sensitive, noninvasive detection of lymph node metastases. PLoSMed 1(3):e66 Harisinghani MG, Weissleder R (2004) Sensitive, noninvasive detection of lymph node metastases. PLoSMed 1(3):e66
22.
go back to reference Rhyner MN, Smith AM, Gao X, Mao H, Yang L, Nie S (2006) Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomed 1(2):209–217CrossRefPubMed Rhyner MN, Smith AM, Gao X, Mao H, Yang L, Nie S (2006) Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. Nanomed 1(2):209–217CrossRefPubMed
23.
go back to reference Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60(11):1226–1240CrossRefPubMed Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60(11):1226–1240CrossRefPubMed
24.
go back to reference Nagasaki Y, Ishii T, Sunaga Y, Watanabe Y, Otsuka H, Kataoka K (2004) Novel molecular recognition via fluorescent resonance energy transfer using a biotin-PEG/polyamine stabilized CdS quantum dot. Langmuir 20(15):6396–6400CrossRefPubMed Nagasaki Y, Ishii T, Sunaga Y, Watanabe Y, Otsuka H, Kataoka K (2004) Novel molecular recognition via fluorescent resonance energy transfer using a biotin-PEG/polyamine stabilized CdS quantum dot. Langmuir 20(15):6396–6400CrossRefPubMed
25.
go back to reference Fountaine TJ, Wincovitch SM, Geho DH, Garfield SH, Pittaluga S (2006) Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Mod Pathol 19(9):1181–1191CrossRefPubMed Fountaine TJ, Wincovitch SM, Geho DH, Garfield SH, Pittaluga S (2006) Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Mod Pathol 19(9):1181–1191CrossRefPubMed
26.
go back to reference Bentolila LA, Ebenstein Y, Weiss S (2009) Quantum dots for in vivo small-animal imaging. J Nucl Med 50(4):493–496CrossRefPubMed Bentolila LA, Ebenstein Y, Weiss S (2009) Quantum dots for in vivo small-animal imaging. J Nucl Med 50(4):493–496CrossRefPubMed
27.
go back to reference Mulder WJ, Koole R, Brandwijk RJ, Storm G, Chin PT, Strijkers GJ et al (2006) Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6(1):1–6CrossRefPubMed Mulder WJ, Koole R, Brandwijk RJ, Storm G, Chin PT, Strijkers GJ et al (2006) Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe. Nano Lett 6(1):1–6CrossRefPubMed
28.
go back to reference Santra S, Yang H, Stanley JT, Holloway PH, Moudgil BM, Walter G et al (2005) Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots. Chem Commun (Camb) 25:3144–3146CrossRef Santra S, Yang H, Stanley JT, Holloway PH, Moudgil BM, Walter G et al (2005) Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots. Chem Commun (Camb) 25:3144–3146CrossRef
29.
go back to reference Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN (2007) Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 18(5):1391–1396CrossRefPubMed Derfus AM, Chen AA, Min DH, Ruoslahti E, Bhatia SN (2007) Targeted quantum dot conjugates for siRNA delivery. Bioconjug Chem 18(5):1391–1396CrossRefPubMed
30.
go back to reference Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10(9):993–998CrossRefPubMed Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10(9):993–998CrossRefPubMed
31.
go back to reference Kirchner C, Liedl T, Kudera S, Pellegrino T, Munoz Javier A, Gaub HE et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338CrossRefPubMed Kirchner C, Liedl T, Kudera S, Pellegrino T, Munoz Javier A, Gaub HE et al (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5(2):331–338CrossRefPubMed
32.
go back to reference Yang RS, Chang LW, Wu JP, Tsai MH, Wang HJ, Kuo YC et al (2007) Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ Health Perspect 115(9):1339–1343PubMedCrossRef Yang RS, Chang LW, Wu JP, Tsai MH, Wang HJ, Kuo YC et al (2007) Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ Health Perspect 115(9):1339–1343PubMedCrossRef
33.
go back to reference Choi J, Burns AA, Williams RM, Zhou Z, Flesken-Nikitin A, Zipfel WR et al (2007) Core-shell silica nanoparticles as fluorescent labels for nanomedicine. J Biomed Opt 12(6):064007CrossRefPubMed Choi J, Burns AA, Williams RM, Zhou Z, Flesken-Nikitin A, Zipfel WR et al (2007) Core-shell silica nanoparticles as fluorescent labels for nanomedicine. J Biomed Opt 12(6):064007CrossRefPubMed
34.
go back to reference Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129(24):7661–7665CrossRefPubMed Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129(24):7661–7665CrossRefPubMed
35.
go back to reference Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X et al (2007) In vivo biodistribution and highly efficient tumor targeting of carbon nanotubes in mice. Nat Nanotechnol 2(1):47–52CrossRefPubMed Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X et al (2007) In vivo biodistribution and highly efficient tumor targeting of carbon nanotubes in mice. Nat Nanotechnol 2(1):47–52CrossRefPubMed
36.
go back to reference Hamoudeh M, Kamleh MA, Diab R, Fessi H (2008) Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev 60(12):1329–1346CrossRefPubMed Hamoudeh M, Kamleh MA, Diab R, Fessi H (2008) Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev 60(12):1329–1346CrossRefPubMed
37.
go back to reference Zoarski GH, Parker JR, Lufkin RB, Harnsberger HR, Rhoda CH (1992) Efficacy of gadoteridol for magnetic resonance imaging of extracranial head and neck pathology. Invest Radiol 27(Suppl 1):S53–S57PubMed Zoarski GH, Parker JR, Lufkin RB, Harnsberger HR, Rhoda CH (1992) Efficacy of gadoteridol for magnetic resonance imaging of extracranial head and neck pathology. Invest Radiol 27(Suppl 1):S53–S57PubMed
38.
go back to reference Vitols S (1991) Uptake of low-density lipoprotein by malignant cells—possible therapeutic applications. Cancer Cells 3(12):488–495PubMed Vitols S (1991) Uptake of low-density lipoprotein by malignant cells—possible therapeutic applications. Cancer Cells 3(12):488–495PubMed
39.
go back to reference Corbin IR, Li H, Chen J, Lund-Katz S, Zhou R, Glickson JD et al (2006) Low-density lipoprotein nanoparticles as magnetic resonance imaging contrast agents. Neoplasia 8(6):488–498CrossRefPubMed Corbin IR, Li H, Chen J, Lund-Katz S, Zhou R, Glickson JD et al (2006) Low-density lipoprotein nanoparticles as magnetic resonance imaging contrast agents. Neoplasia 8(6):488–498CrossRefPubMed
40.
go back to reference Tomalia DA, Reyna LA, Svenson S (2007) Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 35(Pt 1):61–67PubMed Tomalia DA, Reyna LA, Svenson S (2007) Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans 35(Pt 1):61–67PubMed
41.
go back to reference Kobayashi H, Kawamoto S, Sakai Y, Choyke PL, Star RA, Brechbiel MW et al (2004) Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent. J Natl Cancer Inst 96(9):703–708PubMedCrossRef Kobayashi H, Kawamoto S, Sakai Y, Choyke PL, Star RA, Brechbiel MW et al (2004) Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent. J Natl Cancer Inst 96(9):703–708PubMedCrossRef
42.
go back to reference Shi X, Wang S, Meshinchi S, Van Antwerp ME, Bi X, Lee I et al (2007) Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 3(7):1245–1252CrossRefPubMed Shi X, Wang S, Meshinchi S, Van Antwerp ME, Bi X, Lee I et al (2007) Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 3(7):1245–1252CrossRefPubMed
43.
go back to reference Vogel A (1997) Nonlinear absorption: intraocular microsurgery and laser lithotripsy. Phys Med Biol 42(5):895–912CrossRefPubMed Vogel A (1997) Nonlinear absorption: intraocular microsurgery and laser lithotripsy. Phys Med Biol 42(5):895–912CrossRefPubMed
44.
go back to reference Thorek DL, Chen AK, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1):23–38CrossRefPubMed Thorek DL, Chen AK, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1):23–38CrossRefPubMed
45.
go back to reference Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ et al (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl 47(29):5362–5365CrossRefPubMed Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ et al (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl 47(29):5362–5365CrossRefPubMed
46.
go back to reference Landmark KJ, Dimaggio S, Ward J, Kelly C, Vogt S, Hong S et al (2008) Synthesis, characterization, and in vitro testing of superparamagnetic iron oxide nanoparticles targeted using folic Acid-conjugated dendrimers. ACS Nano 2(4):773–783CrossRefPubMed Landmark KJ, Dimaggio S, Ward J, Kelly C, Vogt S, Hong S et al (2008) Synthesis, characterization, and in vitro testing of superparamagnetic iron oxide nanoparticles targeted using folic Acid-conjugated dendrimers. ACS Nano 2(4):773–783CrossRefPubMed
47.
go back to reference Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomed 2(1):23–39CrossRefPubMed Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomed 2(1):23–39CrossRefPubMed
48.
go back to reference Lee H, Yu MK, Park S, Moon S, Min JJ, Jeong YY et al (2007) Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J Am Chem Soc 129(42):12739–12745CrossRefPubMed Lee H, Yu MK, Park S, Moon S, Min JJ, Jeong YY et al (2007) Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J Am Chem Soc 129(42):12739–12745CrossRefPubMed
49.
50.
go back to reference Pierschbacher MD, Ruoslahti E (1984) Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci USA 81(19):5985–5988CrossRefPubMed Pierschbacher MD, Ruoslahti E (1984) Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci USA 81(19):5985–5988CrossRefPubMed
51.
go back to reference Montet X, Montet-Abou K, Reynolds F, Weissleder R, Josephson L (2006) Nanoparticle imaging of integrins on tumor cells. Neoplasia 8(3):214–222CrossRefPubMed Montet X, Montet-Abou K, Reynolds F, Weissleder R, Josephson L (2006) Nanoparticle imaging of integrins on tumor cells. Neoplasia 8(3):214–222CrossRefPubMed
52.
go back to reference Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE et al (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896CrossRefPubMed Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE et al (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896CrossRefPubMed
53.
go back to reference Tallury P, Payton K, Santra S (2008) Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomed 3(4):579–592CrossRefPubMed Tallury P, Payton K, Santra S (2008) Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomed 3(4):579–592CrossRefPubMed
54.
go back to reference Lu CW, Hung Y, Hsiao JK, Yao M, Chung TH, Lin YS et al (2007) Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett 7(1):149–154CrossRefPubMed Lu CW, Hung Y, Hsiao JK, Yao M, Chung TH, Lin YS et al (2007) Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. Nano Lett 7(1):149–154CrossRefPubMed
55.
go back to reference Lee JH, Jun YW, Yeon SI, Shin JS, Cheon J (2006) Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem Int Ed Engl 45(48):8160–8162CrossRefPubMed Lee JH, Jun YW, Yeon SI, Shin JS, Cheon J (2006) Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew Chem Int Ed Engl 45(48):8160–8162CrossRefPubMed
56.
go back to reference Joshi T, Douek M, Pankhurst QA, Hattersley S, Brazdeikis A, Hall-Craggs M, De Vita E, Bainbridge A, Sainsbury R, Sharma A (2007) Magnetic nanoparticles for detecting sentinel lymph nodes. Eur J Surg Oncol 33(9):1135 Joshi T, Douek M, Pankhurst QA, Hattersley S, Brazdeikis A, Hall-Craggs M, De Vita E, Bainbridge A, Sainsbury R, Sharma A (2007) Magnetic nanoparticles for detecting sentinel lymph nodes. Eur J Surg Oncol 33(9):1135
58.
go back to reference Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22(1):93–97CrossRefPubMed Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22(1):93–97CrossRefPubMed
59.
go back to reference Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99CrossRefPubMed Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT et al (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13(1):95–99CrossRefPubMed
60.
go back to reference Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R et al (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070CrossRefPubMed Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R et al (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070CrossRefPubMed
61.
go back to reference Wang C, Chen J, Talavage T, Irudayaraj J (2009) Gold nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew Chem Int Ed Engl 48(15):2759–2763CrossRefPubMed Wang C, Chen J, Talavage T, Irudayaraj J (2009) Gold nanorod/Fe3O4 nanoparticle “nano-pearl-necklaces” for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells. Angew Chem Int Ed Engl 48(15):2759–2763CrossRefPubMed
62.
go back to reference Medarova Z, Rashkovetsky L, Pantazopoulos P, Moore A (2009) Multiparametric monitoring of tumor response to chemotherapy by noninvasive imaging. Cancer Res 69(3):1182–1189CrossRefPubMed Medarova Z, Rashkovetsky L, Pantazopoulos P, Moore A (2009) Multiparametric monitoring of tumor response to chemotherapy by noninvasive imaging. Cancer Res 69(3):1182–1189CrossRefPubMed
63.
go back to reference Fortina P, Kricka LJ, Graves DJ, Park J, Hyslop T, Tam F et al (2007) Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol 25(4):145–152CrossRefPubMed Fortina P, Kricka LJ, Graves DJ, Park J, Hyslop T, Tam F et al (2007) Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol 25(4):145–152CrossRefPubMed
64.
go back to reference Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L (2005) Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 23(11):1418–1423CrossRefPubMed Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L (2005) Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 23(11):1418–1423CrossRefPubMed
65.
go back to reference Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378CrossRefPubMed Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378CrossRefPubMed
66.
go back to reference Thomas TP, Patri AK, Myc A, Myaing MT, Ye JY, Norris TB et al (2004) In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. Biomacromolecules 5(6):2269–2274CrossRefPubMed Thomas TP, Patri AK, Myc A, Myaing MT, Ye JY, Norris TB et al (2004) In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. Biomacromolecules 5(6):2269–2274CrossRefPubMed
67.
go back to reference Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D et al (2005) Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 5(6):1003–1008CrossRefPubMed Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D et al (2005) Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 5(6):1003–1008CrossRefPubMed
68.
go back to reference Montet X, Weissleder R, Josephson L (2006) Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug Chem 17(4):905–911CrossRefPubMed Montet X, Weissleder R, Josephson L (2006) Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug Chem 17(4):905–911CrossRefPubMed
69.
go back to reference Tanaka T, Decuzzi P, Cristofanilli M, Sakamoto JH, Tasciotti E, Robertson FM et al (2009) Nanotechnology for breast cancer therapy. Biomed Microdevices 11(1):49–63CrossRefPubMed Tanaka T, Decuzzi P, Cristofanilli M, Sakamoto JH, Tasciotti E, Robertson FM et al (2009) Nanotechnology for breast cancer therapy. Biomed Microdevices 11(1):49–63CrossRefPubMed
70.
go back to reference Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580CrossRefPubMed Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580CrossRefPubMed
Metadata
Title
Imaging applications of nanotechnology in cancer
Authors
U. Ayanthi Gunasekera
Quentin A. Pankhurst
Michael Douek
Publication date
01-09-2009
Publisher
Springer-Verlag
Published in
Targeted Oncology / Issue 3/2009
Print ISSN: 1776-2596
Electronic ISSN: 1776-260X
DOI
https://doi.org/10.1007/s11523-009-0118-9

Other articles of this Issue 3/2009

Targeted Oncology 3/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine