Skip to main content
Top
Published in: Radiation Oncology 1/2011

Open Access 01-12-2011 | Research

Image guidance using 3D-ultrasound (3D-US) for daily positioning of lumpectomy cavity for boost irradiation

Authors: Manjeet Chadha, Amy Young, Charles Geraghty, Robert Masino, Louis Harrison

Published in: Radiation Oncology | Issue 1/2011

Login to get access

Abstract

Purpose

The goal of this study was to evaluate the use of 3D ultrasound (3DUS) breast IGRT for electron and photon lumpectomy site boost treatments.

Materials and methods

20 patients with a prescribed photon or electron boost were enrolled in this study. 3DUS images were acquired both at time of simulation, to form a coregistered CT/3DUS dataset, and at the time of daily treatment delivery. Intrafractional motion between treatment and simulation 3DUS datasets were calculated to determine IGRT shifts. Photon shifts were evaluated isocentrically, while electron shifts were evaluated in the beam's-eye-view. Volume differences between simulation and first boost fraction were calculated. Further, to control for the effect of change in seroma/cavity volume due to time lapse between the 2 sets of images, interfraction IGRT shifts using the first boost fraction as reference for all subsequent treatment fractions were also calculated.

Results

For photon boosts, IGRT shifts were 1.1 ± 0.5 cm and 50% of fractions required a shift >1.0 cm. Volume change between simulation and boost was 49 ± 31%. Shifts when using the first boost fraction as reference were 0.8 ± 0.4 cm and 24% required a shift >1.0 cm. For electron boosts, shifts were 1.0 ± 0.5 cm and 52% fell outside the dosimetric penumbra. Interfraction analysis relative to the first fraction noted the shifts to be 0.8 ± 0.4 cm and 36% fell outside the penumbra.

Conclusion

The lumpectomy cavity can shift significantly during fractionated radiation therapy. 3DUS can be used to image the cavity and correct for interfractional motion. Further studies to better define the protocol for clinical application of IGRT in breast cancer is needed.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lattanzi J, McNeely S, Hanlon A, et al.: Daily CT localization for correcting portal errors in the treatment of prostate cancer. Int J Radiat Oncol Biol Phys 1998, 41: 1079-1086. 10.1016/S0360-3016(98)00156-4CrossRefPubMed Lattanzi J, McNeely S, Hanlon A, et al.: Daily CT localization for correcting portal errors in the treatment of prostate cancer. Int J Radiat Oncol Biol Phys 1998, 41: 1079-1086. 10.1016/S0360-3016(98)00156-4CrossRefPubMed
2.
go back to reference Poulsen PR, Muren LP, Hoyer M: Residual set-up errors and margins in on-line image-guided prostate localization in radiotherapy. Radiother Oncol 2007, 85: 201-206. 10.1016/j.radonc.2007.08.006CrossRefPubMed Poulsen PR, Muren LP, Hoyer M: Residual set-up errors and margins in on-line image-guided prostate localization in radiotherapy. Radiother Oncol 2007, 85: 201-206. 10.1016/j.radonc.2007.08.006CrossRefPubMed
3.
go back to reference Sorcini B, Tilikidis A: Clinical application of image-guided radiotherapy, IGRT (on the Varian OBI platform). Cancer Radiother 2006, 10: 252-257.CrossRefPubMed Sorcini B, Tilikidis A: Clinical application of image-guided radiotherapy, IGRT (on the Varian OBI platform). Cancer Radiother 2006, 10: 252-257.CrossRefPubMed
4.
go back to reference Willoughby TR, Kupelian PA, Pouliot J, et al.: Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys 2006, 65: 528-534. 10.1016/j.ijrobp.2006.01.050CrossRefPubMed Willoughby TR, Kupelian PA, Pouliot J, et al.: Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys 2006, 65: 528-534. 10.1016/j.ijrobp.2006.01.050CrossRefPubMed
5.
go back to reference Kupelian P, Willoughby T, Mahadevan A, et al.: Multi-institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys 2007, 67: 1088-1098. 10.1016/j.ijrobp.2006.10.026CrossRefPubMed Kupelian P, Willoughby T, Mahadevan A, et al.: Multi-institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys 2007, 67: 1088-1098. 10.1016/j.ijrobp.2006.10.026CrossRefPubMed
6.
go back to reference Lattanzi J, McNeeley S, Donnelly S, et al.: Ultrasound-based stereotactic guidance in prostate cancer--quantification of organ motion and set-up errors in external beam radiation therapy. Comput Aided Surg 2000, 5: 289-295.PubMed Lattanzi J, McNeeley S, Donnelly S, et al.: Ultrasound-based stereotactic guidance in prostate cancer--quantification of organ motion and set-up errors in external beam radiation therapy. Comput Aided Surg 2000, 5: 289-295.PubMed
7.
go back to reference Tome WA, Meeks SL, Orton N, et al.: Commissioning and quality assurance of an optically guided three-dimensional ultrasound target localization system for radiotherapy. Med Phys 2002, 29: 1781-1788. 10.1118/1.1494835CrossRefPubMed Tome WA, Meeks SL, Orton N, et al.: Commissioning and quality assurance of an optically guided three-dimensional ultrasound target localization system for radiotherapy. Med Phys 2002, 29: 1781-1788. 10.1118/1.1494835CrossRefPubMed
8.
go back to reference Cury FL, Shenouda G, Souhami L, et al.: Ultrasound-based image guided radiotherapy for prostate cancer: comparison of cross-modality and intramodality methods for daily localization during external beam radiotherapy. Int J Radiat Oncol Biol Phys 2006, 66: 1562-1567. 10.1016/j.ijrobp.2006.07.1375CrossRefPubMed Cury FL, Shenouda G, Souhami L, et al.: Ultrasound-based image guided radiotherapy for prostate cancer: comparison of cross-modality and intramodality methods for daily localization during external beam radiotherapy. Int J Radiat Oncol Biol Phys 2006, 66: 1562-1567. 10.1016/j.ijrobp.2006.07.1375CrossRefPubMed
9.
go back to reference Weed DW, Yan D, Martinez AA, et al.: The validity of surgical clips as a radiographic surrogate for the lumpectomy cavity in image-guided accelerated partial breast irradiation. Int J Radiat Oncol Biol Phys 2004, 60: 484-492. 10.1016/j.ijrobp.2004.03.012CrossRefPubMed Weed DW, Yan D, Martinez AA, et al.: The validity of surgical clips as a radiographic surrogate for the lumpectomy cavity in image-guided accelerated partial breast irradiation. Int J Radiat Oncol Biol Phys 2004, 60: 484-492. 10.1016/j.ijrobp.2004.03.012CrossRefPubMed
10.
go back to reference Wong P, Heimann R, Hard D, et al.: A multi-institutional comparison study evaluating the use of 3D-ultrasound for defining the breast tumor bed for IGRT in chemotherapy versus non-chemotherapy patients. Int J Radiat Oncol Biol Phys 2008, 72: S179-180.CrossRef Wong P, Heimann R, Hard D, et al.: A multi-institutional comparison study evaluating the use of 3D-ultrasound for defining the breast tumor bed for IGRT in chemotherapy versus non-chemotherapy patients. Int J Radiat Oncol Biol Phys 2008, 72: S179-180.CrossRef
11.
go back to reference Wong P, Audet V, Lachaine M, et al.: Validation of an intramodality 3D ultrasound system for breast IGRT. Proceedings of the American Radium Society 2008. Wong P, Audet V, Lachaine M, et al.: Validation of an intramodality 3D ultrasound system for breast IGRT. Proceedings of the American Radium Society 2008.
12.
go back to reference Powell SN, Doppke KP, Chen GT, et al.: Set-up uncertainty in accelerated partial-breast irradiation using 3D- conformal external beam radiotherapy: A companion study to a prospective phase I ongoing trial. Int J Radiat Oncol Biol Phys 2004, 60: S400-S401.CrossRef Powell SN, Doppke KP, Chen GT, et al.: Set-up uncertainty in accelerated partial-breast irradiation using 3D- conformal external beam radiotherapy: A companion study to a prospective phase I ongoing trial. Int J Radiat Oncol Biol Phys 2004, 60: S400-S401.CrossRef
13.
go back to reference Bedwinek J: Breast conserving surgery and irradiation: the importance of demarcating the excision cavity with surgical clips. Int J Radiat Oncol Biol Phys 1993, 26: 675-679. 10.1016/0360-3016(93)90287-6CrossRefPubMed Bedwinek J: Breast conserving surgery and irradiation: the importance of demarcating the excision cavity with surgical clips. Int J Radiat Oncol Biol Phys 1993, 26: 675-679. 10.1016/0360-3016(93)90287-6CrossRefPubMed
14.
go back to reference Machtay M, Lanciano R, Hoffman J, et al.: Inaccuracies in using the lumpectomy scar for planning electron boosts in primary breast carcinoma. Int J Radiat Oncol Biol Phys 1994, 30: 43-48.CrossRefPubMed Machtay M, Lanciano R, Hoffman J, et al.: Inaccuracies in using the lumpectomy scar for planning electron boosts in primary breast carcinoma. Int J Radiat Oncol Biol Phys 1994, 30: 43-48.CrossRefPubMed
15.
go back to reference Oh KS, Kong FM, Griffith KA, et al.: Planning the breast tumor bed boost: changes in the excision cavity volume and surgical scar location after breast-conserving surgery and whole-breast irradiation. Int J Radiat Oncol Biol Phys 2006, 66: 680-686. 10.1016/j.ijrobp.2006.04.042CrossRefPubMed Oh KS, Kong FM, Griffith KA, et al.: Planning the breast tumor bed boost: changes in the excision cavity volume and surgical scar location after breast-conserving surgery and whole-breast irradiation. Int J Radiat Oncol Biol Phys 2006, 66: 680-686. 10.1016/j.ijrobp.2006.04.042CrossRefPubMed
16.
go back to reference Benda RK, Yasuda G, Sethi A, et al.: Breast boost: are we missing the target? Cancer 2003, 97: 905-909. 10.1002/cncr.11142CrossRefPubMed Benda RK, Yasuda G, Sethi A, et al.: Breast boost: are we missing the target? Cancer 2003, 97: 905-909. 10.1002/cncr.11142CrossRefPubMed
17.
go back to reference Ringash J, Whelan T, Elliott E, et al.: Accuracy of ultrasound in localization of breast boost field. Radiother Oncol 2004, 72: 61-66. 10.1016/j.radonc.2004.03.013CrossRefPubMed Ringash J, Whelan T, Elliott E, et al.: Accuracy of ultrasound in localization of breast boost field. Radiother Oncol 2004, 72: 61-66. 10.1016/j.radonc.2004.03.013CrossRefPubMed
18.
go back to reference Berrang TS, Truong PT, Popescu C, et al.: 3D ultrasound can contribute to planning CT to define the target for partial breast radiotherapy. Int J Radiat Oncol Biol Phys 2009, 73: 375-383. 10.1016/j.ijrobp.2008.04.041CrossRefPubMed Berrang TS, Truong PT, Popescu C, et al.: 3D ultrasound can contribute to planning CT to define the target for partial breast radiotherapy. Int J Radiat Oncol Biol Phys 2009, 73: 375-383. 10.1016/j.ijrobp.2008.04.041CrossRefPubMed
19.
go back to reference Bert C, Metheany KG, Doppke KP, et al.: Clinical experience with a 3D surface patient setup system for alignment of partial-breast irradiation patients. Int J Radiat Oncol Biol Phys 2006, 64: 1265-1274. 10.1016/j.ijrobp.2005.11.008CrossRefPubMed Bert C, Metheany KG, Doppke KP, et al.: Clinical experience with a 3D surface patient setup system for alignment of partial-breast irradiation patients. Int J Radiat Oncol Biol Phys 2006, 64: 1265-1274. 10.1016/j.ijrobp.2005.11.008CrossRefPubMed
21.
go back to reference Hasan Y, Kim L, Weed DW, et al.: Image Guidance in External Beam Accelerated Partial Breast Irradiation: Comparison of Surrogates for the Lumpectomy Cavity. Int J Radiat Oncol Biol Phys 2005, 63: S138.CrossRef Hasan Y, Kim L, Weed DW, et al.: Image Guidance in External Beam Accelerated Partial Breast Irradiation: Comparison of Surrogates for the Lumpectomy Cavity. Int J Radiat Oncol Biol Phys 2005, 63: S138.CrossRef
22.
go back to reference Cash CJ, Coles CE, Treece GM, et al.: Breast cancers: noninvasive method of preoperative localization with three-dimensional US and surface contour mapping. Radiology 2007, 245: 556-566. 10.1148/radiol.2452060906CrossRefPubMed Cash CJ, Coles CE, Treece GM, et al.: Breast cancers: noninvasive method of preoperative localization with three-dimensional US and surface contour mapping. Radiology 2007, 245: 556-566. 10.1148/radiol.2452060906CrossRefPubMed
23.
go back to reference Coles CE, Cash CJ, Treece GM, et al.: High definition three-dimensional ultrasound to localise the tumour bed: a breast radiotherapy planning study. Radiother Oncol 2007, 84: 233-241. 10.1016/j.radonc.2007.06.016CrossRefPubMed Coles CE, Cash CJ, Treece GM, et al.: High definition three-dimensional ultrasound to localise the tumour bed: a breast radiotherapy planning study. Radiother Oncol 2007, 84: 233-241. 10.1016/j.radonc.2007.06.016CrossRefPubMed
24.
go back to reference Vrieling C, Collette L, Fourquet A, et al.: The influence of the boost in breast-conserving therapy on cosmetic outcome in the EORTC "boost versus no boost" trial. EORTC Radiotherapy and Breast Cancer Cooperative Groups. European Organization for Research and Treatment of Cancer. Int J Radiat Oncol Biol Phys 1999, 45: 677-685. 10.1016/S0360-3016(99)00211-4CrossRefPubMed Vrieling C, Collette L, Fourquet A, et al.: The influence of the boost in breast-conserving therapy on cosmetic outcome in the EORTC "boost versus no boost" trial. EORTC Radiotherapy and Breast Cancer Cooperative Groups. European Organization for Research and Treatment of Cancer. Int J Radiat Oncol Biol Phys 1999, 45: 677-685. 10.1016/S0360-3016(99)00211-4CrossRefPubMed
25.
go back to reference Fisher B, Anderson S, Redmond CK, et al.: Reanalysis and results after 12 years of follow-up in a randomized clinical trial comparing total mastectomy with lumpectomy with or without irradiation in the treatment of breast cancer. N Engl J Med 1995, 333: 1456-1461. 10.1056/NEJM199511303332203CrossRefPubMed Fisher B, Anderson S, Redmond CK, et al.: Reanalysis and results after 12 years of follow-up in a randomized clinical trial comparing total mastectomy with lumpectomy with or without irradiation in the treatment of breast cancer. N Engl J Med 1995, 333: 1456-1461. 10.1056/NEJM199511303332203CrossRefPubMed
26.
go back to reference Veronesi U, Banfi A, Salvadori B, et al.: Breast conservation is the treatment of choice in small breast cancer: long-term results of a randomized trial. Eur J Cancer 1990, 26: 668-670. 10.1016/0277-5379(90)90113-8CrossRefPubMed Veronesi U, Banfi A, Salvadori B, et al.: Breast conservation is the treatment of choice in small breast cancer: long-term results of a randomized trial. Eur J Cancer 1990, 26: 668-670. 10.1016/0277-5379(90)90113-8CrossRefPubMed
27.
go back to reference Bartelink H, Horiot JC, Poortmans PM, et al.: Impact of a higher radiation dose on local control and survival in breast-conserving therapy of early breast cancer: 10-year results of the randomized boost versus no boost EORTC 22881-10882 trial. J Clin Oncol 2007, 25: 3259-3265. 10.1200/JCO.2007.11.4991CrossRefPubMed Bartelink H, Horiot JC, Poortmans PM, et al.: Impact of a higher radiation dose on local control and survival in breast-conserving therapy of early breast cancer: 10-year results of the randomized boost versus no boost EORTC 22881-10882 trial. J Clin Oncol 2007, 25: 3259-3265. 10.1200/JCO.2007.11.4991CrossRefPubMed
28.
go back to reference NSABP B-39, RTOG 0413: A Randomized Phase III Study of conventional whole breast irradiation versus partial breast irradiation for women with stage 0, I, or II breast cancer Clin Adv Hematol Oncol 2006, 4: 719-721. NSABP B-39, RTOG 0413: A Randomized Phase III Study of conventional whole breast irradiation versus partial breast irradiation for women with stage 0, I, or II breast cancer Clin Adv Hematol Oncol 2006, 4: 719-721.
Metadata
Title
Image guidance using 3D-ultrasound (3D-US) for daily positioning of lumpectomy cavity for boost irradiation
Authors
Manjeet Chadha
Amy Young
Charles Geraghty
Robert Masino
Louis Harrison
Publication date
01-12-2011
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2011
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-6-45

Other articles of this Issue 1/2011

Radiation Oncology 1/2011 Go to the issue