Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2015

Open Access 01-12-2015 | Research

IL-4/10 prevents stress vulnerability following imipramine discontinuation

Authors: Arum Han, Hyelim Yeo, Min-Jung Park, Seung Hyun Kim, Hyun Jin Choi, Chang-Won Hong, Min-Soo Kwon

Published in: Journal of Neuroinflammation | Issue 1/2015

Login to get access

Abstract

Background

Identifying stress vulnerability after antidepressant discontinuation may be useful in treating relapses in depression. Previous studies have suggested significant effects of the immune system as well as the central nervous system (CNS) on progression and induction of major depression. In the present study, we hypothesized that the factors that are not rescued by a tricyclic antidepressant imipramine may be associated with stress vulnerability and relapses in depression.

Methods

To address this issue, mice were exposed to 2 h of restraint stress for 21 consecutive days (chronic restraint stress (CRS)) with or without co-treatment of imipramine. These groups were exposed to an electronic foot shock (FS) as additional stress after imipramine washout. Main targets of stress and antidepressants were analyzed in the hippocampus, lymph node, and serum after a series of depression-like behavior analysis.

Results

In this study, we found for the first time that mice exposed to CRS with a tricyclic antidepressant imipramine co-treatment, which did not show depressive-like behaviors, were vulnerable to subsequent stressful stimuli compared to the non-stressed mice after imipramine washout. CRS mice with imipramine co-treatment did not show any difference in BDNF, serotonin receptors, pro-inflammatory cytokines, or kynurenine pathway in the hippocampus compared to the controls. However, peripheral IL-4, IL-10, and alternatively activated microglial phenotypes in the hippocampus were not restored with sustained reduction in CRS mice despite chronic imipramine administration. Supplementing recombinant IL-4 and IL-10 in co-Imi+CRS mice prevented the stress vulnerability on additional stress and restored factors related to alternatively activated microglia (M2) in the hippocampus.

Conclusion

Thus, our results suggest that the reduced IL-4 and IL-10 levels in serum with hippocampal M2 markers may be involved in the stress vulnerability after imipramine discontinuation, and the restoration and modulation of these factors may be useful to some forms of depression-associated conditions.
Appendix
Available only for authorised users
Literature
2.
go back to reference Melfi CA, Chawla AJ, Croghan TW, Hanna MP, Kennedy S, Sredl K. The effects of adherence to antidepressant treatment guidelines on relapse and recurrence of depression. Arch Gen Psychiatry. 1998;55:1128–32.CrossRefPubMed Melfi CA, Chawla AJ, Croghan TW, Hanna MP, Kennedy S, Sredl K. The effects of adherence to antidepressant treatment guidelines on relapse and recurrence of depression. Arch Gen Psychiatry. 1998;55:1128–32.CrossRefPubMed
3.
go back to reference Teasdale JD, Segal ZV, Williams JMG, Ridgeway VA, Soulsby JM, Lau MA. Prevention of relapse/recurrence in major depression by mindfulness-based cognitive therapy. J Consult Clin Psychol. 2000;68:615–23.CrossRefPubMed Teasdale JD, Segal ZV, Williams JMG, Ridgeway VA, Soulsby JM, Lau MA. Prevention of relapse/recurrence in major depression by mindfulness-based cognitive therapy. J Consult Clin Psychol. 2000;68:615–23.CrossRefPubMed
5.
go back to reference Dantzer R, O’Connor JC, Lawson MA, Kelley KW. Inflammation-associated depression: From serotonin to kynurenine. Psychoneuroendocrinology. 2011;36:426–36.PubMedCentralCrossRefPubMed Dantzer R, O’Connor JC, Lawson MA, Kelley KW. Inflammation-associated depression: From serotonin to kynurenine. Psychoneuroendocrinology. 2011;36:426–36.PubMedCentralCrossRefPubMed
6.
go back to reference Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65:732–41.PubMedCentralCrossRefPubMed Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65:732–41.PubMedCentralCrossRefPubMed
7.
go back to reference Müller N, Schwarz MJ. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry. 2007;12:988–1000.CrossRefPubMed Müller N, Schwarz MJ. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry. 2007;12:988–1000.CrossRefPubMed
8.
go back to reference Myint AM, Kim YK. Cytokine–serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses. 2003;61:519–25.CrossRefPubMed Myint AM, Kim YK. Cytokine–serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses. 2003;61:519–25.CrossRefPubMed
9.
go back to reference Kubera M, Basta-Kaim A, Papp M. The effect of chronic treatment with imipramine on the immunoreactivity of animals subjected to a chronic mild stress model of depression. Immunopharmacology. 1995;30:225–30.CrossRefPubMed Kubera M, Basta-Kaim A, Papp M. The effect of chronic treatment with imipramine on the immunoreactivity of animals subjected to a chronic mild stress model of depression. Immunopharmacology. 1995;30:225–30.CrossRefPubMed
10.
go back to reference Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, et al. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry. 2013;19:699–709.CrossRefPubMed Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, et al. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry. 2013;19:699–709.CrossRefPubMed
11.
go back to reference Irwin MR, Miller AH. Depressive disorders and immunity: 20 years of progress and discovery. Brain Behav Immun. 2007;21:374–83.CrossRefPubMed Irwin MR, Miller AH. Depressive disorders and immunity: 20 years of progress and discovery. Brain Behav Immun. 2007;21:374–83.CrossRefPubMed
12.
go back to reference Kiecolt-Glaser JK, Glaser R. Depression and immune function: central pathways to morbidity and mortality. J Psychosom Res. 2002;53:873–6.CrossRefPubMed Kiecolt-Glaser JK, Glaser R. Depression and immune function: central pathways to morbidity and mortality. J Psychosom Res. 2002;53:873–6.CrossRefPubMed
13.
go back to reference Roque S, Correia-Neves M, Mesquita AR, Palha JA, Sousa N. Interleukin-10: a key cytokine in depression? Cardiovascular Psychiatry Neurology. 2009;2009:1–5.CrossRef Roque S, Correia-Neves M, Mesquita AR, Palha JA, Sousa N. Interleukin-10: a key cytokine in depression? Cardiovascular Psychiatry Neurology. 2009;2009:1–5.CrossRef
14.
go back to reference Kubera M, Lin A-H, Kenis G, Bosmans E, van Bockstaele D, Maes M. Anti-inflammatory effects of antidepressants through suppression of the interferon-[gamma]/interleukin-10 production ratio. J Clin Psychopharmacol. 2001;21:199–206.CrossRefPubMed Kubera M, Lin A-H, Kenis G, Bosmans E, van Bockstaele D, Maes M. Anti-inflammatory effects of antidepressants through suppression of the interferon-[gamma]/interleukin-10 production ratio. J Clin Psychopharmacol. 2001;21:199–206.CrossRefPubMed
15.
go back to reference Maes M, Song C, Lin AH, Bonaccorso S, Kenis G, De Jongh R, et al. Negative immunoregulatory effects of antidepressants: inhibition of interferon-gamma and stimulation of interleukin-10 secretion. Neuropsychopharmacology. 1999;20:370–9.CrossRefPubMed Maes M, Song C, Lin AH, Bonaccorso S, Kenis G, De Jongh R, et al. Negative immunoregulatory effects of antidepressants: inhibition of interferon-gamma and stimulation of interleukin-10 secretion. Neuropsychopharmacology. 1999;20:370–9.CrossRefPubMed
17.
go back to reference Walker FR, Nilsson M, Jones K. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets. 2013;14:1262–76.CrossRefPubMed Walker FR, Nilsson M, Jones K. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets. 2013;14:1262–76.CrossRefPubMed
19.
go back to reference Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol. 2011;11:775–87.CrossRefPubMed Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol. 2011;11:775–87.CrossRefPubMed
20.
go back to reference Olah M, Biber K, Vinet J, Boddeke HW. Microglia phenotype diversity. CNS Neurol Disord Drug Targets. 2011;10:108–18.CrossRefPubMed Olah M, Biber K, Vinet J, Boddeke HW. Microglia phenotype diversity. CNS Neurol Disord Drug Targets. 2011;10:108–18.CrossRefPubMed
21.
go back to reference Nair A, Bonneau RH. Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation. J Neuroendocrinol. 2006;171:72–85. Nair A, Bonneau RH. Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation. J Neuroendocrinol. 2006;171:72–85.
22.
go back to reference Tynan RJ, Naicker S, Hinwood M, Nalivaiko E, Buller KM, Pow DV, et al. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun. 2010;24:1058–68.CrossRefPubMed Tynan RJ, Naicker S, Hinwood M, Nalivaiko E, Buller KM, Pow DV, et al. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun. 2010;24:1058–68.CrossRefPubMed
23.
go back to reference Sugama S, Fujita M, Hashimoto M, Conti B. Stress induced morphological microglial activation in the rodent brain: involvement of interleukin-18. Neuroscience. 2007;146:1388–99.CrossRefPubMed Sugama S, Fujita M, Hashimoto M, Conti B. Stress induced morphological microglial activation in the rodent brain: involvement of interleukin-18. Neuroscience. 2007;146:1388–99.CrossRefPubMed
24.
go back to reference Dingell JV, Sulser F, Gillette JR. Species differences in the metabolism of imipramine and desmethylimipramine (DMI). J Pharmacol Exp Ther. 1964;143:14–22.PubMed Dingell JV, Sulser F, Gillette JR. Species differences in the metabolism of imipramine and desmethylimipramine (DMI). J Pharmacol Exp Ther. 1964;143:14–22.PubMed
25.
go back to reference Kwon MS, Seo YJ, Shim EJ, Lee JK, Jang JE, Park SH, et al. The differential effects of emotional or physical stress on pain behaviors or on c-Fos immunoreactivity in paraventricular nucleus or arcuate nucleus. Brain Res. 2008;1190:122–31.CrossRefPubMed Kwon MS, Seo YJ, Shim EJ, Lee JK, Jang JE, Park SH, et al. The differential effects of emotional or physical stress on pain behaviors or on c-Fos immunoreactivity in paraventricular nucleus or arcuate nucleus. Brain Res. 2008;1190:122–31.CrossRefPubMed
26.
go back to reference Willner P, Towell A, Sampson D, Sophokleous S, Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl). 1987;93:358–64.CrossRef Willner P, Towell A, Sampson D, Sophokleous S, Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl). 1987;93:358–64.CrossRef
27.
go back to reference Crawley J, Goodwin FK. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav. 1980;13:167–70.CrossRefPubMed Crawley J, Goodwin FK. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav. 1980;13:167–70.CrossRefPubMed
28.
go back to reference Pellow S, File SE. Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav. 1986;24:525–9.CrossRefPubMed Pellow S, File SE. Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: a novel test of anxiety in the rat. Pharmacol Biochem Behav. 1986;24:525–9.CrossRefPubMed
29.
go back to reference Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl). 1985;85:367–70.CrossRef Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl). 1985;85:367–70.CrossRef
30.
go back to reference Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266:730–2.CrossRefPubMed Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature. 1977;266:730–2.CrossRefPubMed
31.
go back to reference Kim K-S, Han P-L. Optimization of chronic stress paradigms using anxiety- and depression-like behavioral parameters. J Neurosci Res. 2006;83:497–507.CrossRefPubMed Kim K-S, Han P-L. Optimization of chronic stress paradigms using anxiety- and depression-like behavioral parameters. J Neurosci Res. 2006;83:497–507.CrossRefPubMed
32.
go back to reference Han A, Sung YB, Chung SY, Kwon MS. Possible additional antidepressant-like mechanism of sodium butyrate: targeting the hippocampus. Neuropharmacology. 2014;81:292–302.CrossRefPubMed Han A, Sung YB, Chung SY, Kwon MS. Possible additional antidepressant-like mechanism of sodium butyrate: targeting the hippocampus. Neuropharmacology. 2014;81:292–302.CrossRefPubMed
33.
go back to reference Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun. 2014;42:50–9. doi:10.1016/j.bbi.2014.05.007.CrossRefPubMed Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun. 2014;42:50–9. doi:10.​1016/​j.​bbi.​2014.​05.​007.CrossRefPubMed
35.
go back to reference Sheline YI, Gado MH, Kraemer HC. Untreated depression and hippocampal volume loss. Am J Psychiatry. 2003;160:1516–8.CrossRefPubMed Sheline YI, Gado MH, Kraemer HC. Untreated depression and hippocampal volume loss. Am J Psychiatry. 2003;160:1516–8.CrossRefPubMed
36.
38.
go back to reference Duman RS, Malberg J, Nakagawa S, D’Sa C. Neuronal plasticity and survival in mood disorders. Biol Psychiatry. 2000;48:732–9.CrossRefPubMed Duman RS, Malberg J, Nakagawa S, D’Sa C. Neuronal plasticity and survival in mood disorders. Biol Psychiatry. 2000;48:732–9.CrossRefPubMed
39.
go back to reference Maes M. The immunoregulatory effects of antidepressants. Hum Psychopharmacol Clin Exp. 2001;16:95–103.CrossRef Maes M. The immunoregulatory effects of antidepressants. Hum Psychopharmacol Clin Exp. 2001;16:95–103.CrossRef
40.
go back to reference Kenis G, Maes M. Effects of antidepressants on the production of cytokines. Int J Neuropsychopharmacol. 2002;5:401–12.CrossRefPubMed Kenis G, Maes M. Effects of antidepressants on the production of cytokines. Int J Neuropsychopharmacol. 2002;5:401–12.CrossRefPubMed
41.
go back to reference Sallusto F, Impellizzieri D, Basso C, Laroni A, Uccelli A, Lanzavecchia A, et al. T-cell trafficking in the central nervous system. Immunol Rev. 2012;248:216–27.CrossRefPubMed Sallusto F, Impellizzieri D, Basso C, Laroni A, Uccelli A, Lanzavecchia A, et al. T-cell trafficking in the central nervous system. Immunol Rev. 2012;248:216–27.CrossRefPubMed
42.
go back to reference Frick LR, Barreiro Arcos ML, Rapanelli M, Zappia MP, Brocco M, Mongini C, et al. Chronic restraint stress impairs T-cell immunity and promotes tumor progression in mice. Stress: Intl J Biology Stress. 2009;12:134–43.CrossRef Frick LR, Barreiro Arcos ML, Rapanelli M, Zappia MP, Brocco M, Mongini C, et al. Chronic restraint stress impairs T-cell immunity and promotes tumor progression in mice. Stress: Intl J Biology Stress. 2009;12:134–43.CrossRef
43.
go back to reference Cao G, Yang Q, Zhang S, Xu C, Roberts AI, Wang Y, et al. Mesenchymal stem cells prevent restraint stress-induced lymphocyte depletion via interleukin-4. Brain Behav Immun. 2014;38:125–32.CrossRefPubMed Cao G, Yang Q, Zhang S, Xu C, Roberts AI, Wang Y, et al. Mesenchymal stem cells prevent restraint stress-induced lymphocyte depletion via interleukin-4. Brain Behav Immun. 2014;38:125–32.CrossRefPubMed
44.
go back to reference Cohen H, Ziv Y, Cardon M, Kaplan Z, Matar MA, Gidron Y, et al. Maladaptation to mental stress mitigated by the adaptive immune system via depletion of naturally occurring regulatory CD4 + CD25+ cells. J Neurobiol. 2006;66:552–63.CrossRefPubMed Cohen H, Ziv Y, Cardon M, Kaplan Z, Matar MA, Gidron Y, et al. Maladaptation to mental stress mitigated by the adaptive immune system via depletion of naturally occurring regulatory CD4 + CD25+ cells. J Neurobiol. 2006;66:552–63.CrossRefPubMed
45.
go back to reference Voorhees JL, Tarr AJ, Wohleb ES, Godbout JP, Mo X, Sheridan JF, et al. Prolonged restraint stress increases IL-6, reduces IL-10, and causes persistent depressive-like behavior that is reversed by recombinant IL-10. PLoS ONE. 2013;8, e58488.PubMedCentralCrossRefPubMed Voorhees JL, Tarr AJ, Wohleb ES, Godbout JP, Mo X, Sheridan JF, et al. Prolonged restraint stress increases IL-6, reduces IL-10, and causes persistent depressive-like behavior that is reversed by recombinant IL-10. PLoS ONE. 2013;8, e58488.PubMedCentralCrossRefPubMed
46.
go back to reference Mesquita AR, Correia-Neves M, Roque S, Castro AG, Vieira P, Pedrosa J, et al. IL-10 modulates depressive-like behavior. J Psychiatr Res. 2008;43:89–97.CrossRefPubMed Mesquita AR, Correia-Neves M, Roque S, Castro AG, Vieira P, Pedrosa J, et al. IL-10 modulates depressive-like behavior. J Psychiatr Res. 2008;43:89–97.CrossRefPubMed
47.
go back to reference Quan N, Herkenham M. Connecting cytokines and brain: a review of current issues. Histol Histopathol. 2002;17:273–88.PubMed Quan N, Herkenham M. Connecting cytokines and brain: a review of current issues. Histol Histopathol. 2002;17:273–88.PubMed
48.
go back to reference Yarlagadda A, Alfson E, Clayton AH. The blood brain barrier and the role of cytokines in neuropsychiatry. Psychiatry (Edgmont). 2009;6:18–22. Yarlagadda A, Alfson E, Clayton AH. The blood brain barrier and the role of cytokines in neuropsychiatry. Psychiatry (Edgmont). 2009;6:18–22.
49.
go back to reference Banks WA. Blood–brain barrier transport of cytokines: a mechanism for neuropathology. Curr Pharm Des. 2005;11:973–84.CrossRefPubMed Banks WA. Blood–brain barrier transport of cytokines: a mechanism for neuropathology. Curr Pharm Des. 2005;11:973–84.CrossRefPubMed
50.
go back to reference Ataka K, Asakawa A, Nagaishi K, Kaimoto K, Sawada A, Hayakawa Y, et al. Bone marrow-derived microglia infiltrate into the paraventricular nucleus of chronic psychological stress-loaded mice. PLoS One. 2013;8, e81744.PubMedCentralCrossRefPubMed Ataka K, Asakawa A, Nagaishi K, Kaimoto K, Sawada A, Hayakawa Y, et al. Bone marrow-derived microglia infiltrate into the paraventricular nucleus of chronic psychological stress-loaded mice. PLoS One. 2013;8, e81744.PubMedCentralCrossRefPubMed
51.
go back to reference Reader BF, Jarrett BL, McKim DB, Wohleb ES, Godbout JP, Sheridan JF. Peripheral and central effects of repeated social defeat stress: monocyte trafficking, microglial activation, and anxiety. NSC. 2015;289:429–42. Reader BF, Jarrett BL, McKim DB, Wohleb ES, Godbout JP, Sheridan JF. Peripheral and central effects of repeated social defeat stress: monocyte trafficking, microglial activation, and anxiety. NSC. 2015;289:429–42.
52.
go back to reference Kronfol Z, Remick DG. Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry. 2000;157:683–94.CrossRefPubMed Kronfol Z, Remick DG. Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry. 2000;157:683–94.CrossRefPubMed
53.
go back to reference Ponomarev ED, Maresz K, Tan Y, Dittel BN. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci. 2007;27:10714–21.CrossRefPubMed Ponomarev ED, Maresz K, Tan Y, Dittel BN. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci. 2007;27:10714–21.CrossRefPubMed
54.
go back to reference Melief J, Koning N, Schuurman KG, Van De Garde MD, Smolders J, Hoek RM, et al. Phenotyping primary human microglia: tight regulation of LPS responsiveness. Glia. 2012;60:1506–17.CrossRefPubMed Melief J, Koning N, Schuurman KG, Van De Garde MD, Smolders J, Hoek RM, et al. Phenotyping primary human microglia: tight regulation of LPS responsiveness. Glia. 2012;60:1506–17.CrossRefPubMed
55.
go back to reference Butovsky O, Bukshpan S, Kunis G, Jung S, Schwartz M. Microglia can be induced by IFN-γ or IL-4 to express neural or dendritic-like markers. Mol Cell Neurosci. 2007;35:490–500.CrossRefPubMed Butovsky O, Bukshpan S, Kunis G, Jung S, Schwartz M. Microglia can be induced by IFN-γ or IL-4 to express neural or dendritic-like markers. Mol Cell Neurosci. 2007;35:490–500.CrossRefPubMed
56.
go back to reference Shechter R, London A, Schwartz M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol. 2013;13:206–18.CrossRefPubMed Shechter R, London A, Schwartz M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol. 2013;13:206–18.CrossRefPubMed
57.
go back to reference Engelhardt B, Ransohoff RM. The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol. 2005;26:485–95.CrossRefPubMed Engelhardt B, Ransohoff RM. The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol. 2005;26:485–95.CrossRefPubMed
58.
go back to reference Ransohoff RM, Kivisakk P, Kidd G. Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol. 2003;3:569–81.CrossRefPubMed Ransohoff RM, Kivisakk P, Kidd G. Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol. 2003;3:569–81.CrossRefPubMed
59.
60.
go back to reference Ramirez K, Shea DT, McKim DB, Reader BF, Sheridan JF. Imipramine attenuates neuroinflammatory signaling and reverses stress-induced social avoidance. Brain Behav Immun. 2015;46:212–20.CrossRefPubMed Ramirez K, Shea DT, McKim DB, Reader BF, Sheridan JF. Imipramine attenuates neuroinflammatory signaling and reverses stress-induced social avoidance. Brain Behav Immun. 2015;46:212–20.CrossRefPubMed
61.
go back to reference Schwartz M, Butovsky O, Bruck W, Hanisch UK. Microglial phenotype: is the commitment reversible? Trends Neurosci. 2006;29:68–74.CrossRefPubMed Schwartz M, Butovsky O, Bruck W, Hanisch UK. Microglial phenotype: is the commitment reversible? Trends Neurosci. 2006;29:68–74.CrossRefPubMed
62.
go back to reference Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci. 2006;9:917–24.CrossRefPubMed Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci. 2006;9:917–24.CrossRefPubMed
63.
go back to reference Corona AW, Huang Y, O’Connor JC, Dantzer R, Kelley KW, Popovich PG, et al. Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide. J Neuroinflammation. 2010;7:93.PubMedCentralCrossRefPubMed Corona AW, Huang Y, O’Connor JC, Dantzer R, Kelley KW, Popovich PG, et al. Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide. J Neuroinflammation. 2010;7:93.PubMedCentralCrossRefPubMed
64.
go back to reference Wynne AM, Henry CJ, Huang Y, Cleland A, Godbout JP. Protracted downregulation of CX3CR1 on microglia of aged mice after lipopolysaccharide challenge. Brain Behav Immun. 2010;24:1190–201.PubMedCentralCrossRefPubMed Wynne AM, Henry CJ, Huang Y, Cleland A, Godbout JP. Protracted downregulation of CX3CR1 on microglia of aged mice after lipopolysaccharide challenge. Brain Behav Immun. 2010;24:1190–201.PubMedCentralCrossRefPubMed
65.
go back to reference Anisman H, Merali Z. Cytokines, stress, and depressive illness. Brain Behav Immun. 2002;16:513–24.CrossRefPubMed Anisman H, Merali Z. Cytokines, stress, and depressive illness. Brain Behav Immun. 2002;16:513–24.CrossRefPubMed
66.
go back to reference Steptoe A, Kunz-Ebrecht SR, Owen N. Lack of association between depressive symptoms and markers of immune and vascular inflammation in middle-aged men and women. Psychol Med. 2003;33:667–74.CrossRefPubMed Steptoe A, Kunz-Ebrecht SR, Owen N. Lack of association between depressive symptoms and markers of immune and vascular inflammation in middle-aged men and women. Psychol Med. 2003;33:667–74.CrossRefPubMed
67.
go back to reference de Beaurepaire R. Questions raised by the cytokine hypothesis of depression. Brain Behav Immun. 2002;16:610–7.CrossRefPubMed de Beaurepaire R. Questions raised by the cytokine hypothesis of depression. Brain Behav Immun. 2002;16:610–7.CrossRefPubMed
68.
go back to reference Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci. 2012;109:5995–9.PubMedCentralCrossRefPubMed Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci. 2012;109:5995–9.PubMedCentralCrossRefPubMed
Metadata
Title
IL-4/10 prevents stress vulnerability following imipramine discontinuation
Authors
Arum Han
Hyelim Yeo
Min-Jung Park
Seung Hyun Kim
Hyun Jin Choi
Chang-Won Hong
Min-Soo Kwon
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2015
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-015-0416-3

Other articles of this Issue 1/2015

Journal of Neuroinflammation 1/2015 Go to the issue