Skip to main content
Top
Published in: Journal of Mammary Gland Biology and Neoplasia 4/2008

01-12-2008

IGF Ligand and Receptor Regulation of Mammary Development

Authors: Anne M. Rowzee, Deborah A. Lazzarino, Lauren Rota, Zhaoyu Sun, Teresa L. Wood

Published in: Journal of Mammary Gland Biology and Neoplasia | Issue 4/2008

Login to get access

Abstract

The insulin-like growth factors, IGF-I and IGF-II, have endocrine as well as autocrine-paracrine actions on tissue growth. Both IGF ligands are expressed within developing mammary tissue throughout postnatal stages with specific sites of expression in the epithelial and stromal compartments. The elucidation of circulating versus local actions and of epithelial versus stromal actions of IGFs in stimulating mammary epithelial development has been the focus of several laboratories. The recent studies addressing IGF ligand function provide support for the hypotheses that (1) the diverse sites of IGF expression may mediate different cellular outcomes, and (2) IGF-I and IGF-II are distinctly regulated and have diverse functions in mammary development. The mechanisms for IGF function likely are mediated, in part, through diverse IGF signaling receptors. The local actions of the IGF ligands and receptors as revealed through recent publications are the focus of this review.
Literature
1.
2.
go back to reference LeRoith D. Clinical relevance of systemic and local IGF-I: lessons from animal models. Pediatr Endocrinol Rev 2008;5(Suppl 2):739–43.PubMed LeRoith D. Clinical relevance of systemic and local IGF-I: lessons from animal models. Pediatr Endocrinol Rev 2008;5(Suppl 2):739–43.PubMed
5.
go back to reference Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, et al. Insulin receptor isoform A, a newly recognized high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol 1999;19:3278–88.PubMed Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Costantino A, et al. Insulin receptor isoform A, a newly recognized high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol 1999;19:3278–88.PubMed
6.
go back to reference Benyoucef S, Surinya KH, Hadaschik D, Siddle K. Characterization of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. Biochem J 2007;403(3):603–13. doi:10.1042/BJ20061709.PubMedCrossRef Benyoucef S, Surinya KH, Hadaschik D, Siddle K. Characterization of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. Biochem J 2007;403(3):603–13. doi:10.​1042/​BJ20061709.PubMedCrossRef
7.
go back to reference Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A. Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem 2002;277(42):39684–95. doi:10.1074/jbc.M202766200.PubMedCrossRef Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A. Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem 2002;277(42):39684–95. doi:10.​1074/​jbc.​M202766200.PubMedCrossRef
8.
go back to reference Slaaby R, Schaffer L, Lautrup-Larsen I, Andersen AS, Shaw AC, Mathiasen IS, et al. Hybrid receptors formed by insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) have low insulin and high IGF-1 affinity irrespective of the IR splice variant. J Biol Chem 2006;281(36):25869–74. doi:10.1074/jbc.M605189200.PubMedCrossRef Slaaby R, Schaffer L, Lautrup-Larsen I, Andersen AS, Shaw AC, Mathiasen IS, et al. Hybrid receptors formed by insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) have low insulin and high IGF-1 affinity irrespective of the IR splice variant. J Biol Chem 2006;281(36):25869–74. doi:10.​1074/​jbc.​M605189200.PubMedCrossRef
10.
11.
go back to reference Baker J, Lie JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993;75:73–82.PubMed Baker J, Lie JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993;75:73–82.PubMed
12.
go back to reference Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 1993;75:59–72.PubMed Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 1993;75:59–72.PubMed
14.
go back to reference Roberts CT, Owens JA, Sferruzzi-Perri AN. Distinct actions of insulin-like growth factors (IGFs) on placental development and fetal growth: lessons from mice and guinea pigs. Placenta 2008;29(Suppl A):S42–4S7.PubMedCrossRef Roberts CT, Owens JA, Sferruzzi-Perri AN. Distinct actions of insulin-like growth factors (IGFs) on placental development and fetal growth: lessons from mice and guinea pigs. Placenta 2008;29(Suppl A):S42–4S7.PubMedCrossRef
16.
go back to reference Sjogren K, Liu JL, Blad K, Skrtic S, Vidal O, Wallenius V, et al. Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci U S A 1999;96(12):7088–92. doi:10.1073/pnas.96.12.7088.PubMedCrossRef Sjogren K, Liu JL, Blad K, Skrtic S, Vidal O, Wallenius V, et al. Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci U S A 1999;96(12):7088–92. doi:10.​1073/​pnas.​96.​12.​7088.PubMedCrossRef
18.
go back to reference Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, et al. Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest 2002;110(6):771–81.PubMed Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, et al. Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest 2002;110(6):771–81.PubMed
19.
go back to reference Richards RG, Klotz DM, Walker MP, Diaugustine RP. Mammary gland branching morphogenesis is diminished in mice with a deficiency of insulin-like growth factor-I (IGF-I), but not in mice with a liver-specific deletion of IGF-I. Endocrinology 2004;145(7):3106–10. doi:10.1210/en.2003-1112.PubMedCrossRef Richards RG, Klotz DM, Walker MP, Diaugustine RP. Mammary gland branching morphogenesis is diminished in mice with a deficiency of insulin-like growth factor-I (IGF-I), but not in mice with a liver-specific deletion of IGF-I. Endocrinology 2004;145(7):3106–10. doi:10.​1210/​en.​2003-1112.PubMedCrossRef
20.
go back to reference Lembo G, Rockman HA, Hunter JJ, Steinmetz H, Koch WJ, Ma L, et al. Elevated blood pressure and enhanced myocardial contractility in mice with severe IGF-1 deficiency. J Clin Invest 1996;98(11):2648–55. doi:10.1172/JCI119086.PubMedCrossRef Lembo G, Rockman HA, Hunter JJ, Steinmetz H, Koch WJ, Ma L, et al. Elevated blood pressure and enhanced myocardial contractility in mice with severe IGF-1 deficiency. J Clin Invest 1996;98(11):2648–55. doi:10.​1172/​JCI119086.PubMedCrossRef
22.
go back to reference Boutinaud M, Shand JH, Park MA, Phillips K, Beattie J, Flint DJ, et al. A quantitative RT-PCR study of the mRNA expression profile of the IGF axis during mammary gland development. J Mol Endocrinol 2004;33(1):195–207. doi:10.1677/jme.0.0330195.PubMedCrossRef Boutinaud M, Shand JH, Park MA, Phillips K, Beattie J, Flint DJ, et al. A quantitative RT-PCR study of the mRNA expression profile of the IGF axis during mammary gland development. J Mol Endocrinol 2004;33(1):195–207. doi:10.​1677/​jme.​0.​0330195.PubMedCrossRef
23.
go back to reference Modha G, Blanchard A, Iwasiow B, Mao XJ, Troup S, Adeyinka A, et al. Developmental changes in insulin-like growth factor I receptor gene expression in the mouse mammary gland. Endocr Res 2004;30(1):127–40. doi:10.1081/ERC-120029892.PubMedCrossRef Modha G, Blanchard A, Iwasiow B, Mao XJ, Troup S, Adeyinka A, et al. Developmental changes in insulin-like growth factor I receptor gene expression in the mouse mammary gland. Endocr Res 2004;30(1):127–40. doi:10.​1081/​ERC-120029892.PubMedCrossRef
24.
go back to reference Richert M, Wood T. Expression and regulation of insulin-like growth factors and their binding proteins in the normal breast. In: Manni A, editor. Endocrinology of breast cancer. Totowa, NJ: Humana; 1999. p. 39–52. Richert M, Wood T. Expression and regulation of insulin-like growth factors and their binding proteins in the normal breast. In: Manni A, editor. Endocrinology of breast cancer. Totowa, NJ: Humana; 1999. p. 39–52.
25.
go back to reference Richert M, Wood T. The insulin-like growth factors (IGF) and IGF type I receptor during postnatal growth of the murine mammary gland: sites of messenger ribonucleic acid expression and potential functions. Endocrinology 1999;140:454–61. doi:10.1210/en.140.1.454.PubMedCrossRef Richert M, Wood T. The insulin-like growth factors (IGF) and IGF type I receptor during postnatal growth of the murine mammary gland: sites of messenger ribonucleic acid expression and potential functions. Endocrinology 1999;140:454–61. doi:10.​1210/​en.​140.​1.​454.PubMedCrossRef
27.
go back to reference Grimm SL, Seagroves TN, Kabotyanski EB, Hovey RC, Vonderhaar BK, Lydon JP, et al. Disruption of steroid and prolactin receptor patterning in the mammary gland correlates with a block in lobuloalveolar development. Mol Endocrinol 2002;16(12):2675–91. doi:10.1210/me.2002-0239.PubMedCrossRef Grimm SL, Seagroves TN, Kabotyanski EB, Hovey RC, Vonderhaar BK, Lydon JP, et al. Disruption of steroid and prolactin receptor patterning in the mammary gland correlates with a block in lobuloalveolar development. Mol Endocrinol 2002;16(12):2675–91. doi:10.​1210/​me.​2002-0239.PubMedCrossRef
28.
go back to reference Seagroves TN, Krnacik S, Raught B, Gay J, Burgess-Beusse B, Darlington GJ, et al. C/EBPβ, but not C/EBPα, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes Dev 1998;12:1917–28. doi:10.1101/gad.12.12.1917.PubMedCrossRef Seagroves TN, Krnacik S, Raught B, Gay J, Burgess-Beusse B, Darlington GJ, et al. C/EBPβ, but not C/EBPα, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes Dev 1998;12:1917–28. doi:10.​1101/​gad.​12.​12.​1917.PubMedCrossRef
29.
go back to reference Seagroves TN, Lydon JP, Hovey RC, Vonderhaar BK, Rosen JM. C/EBPbeta (CCAAT/enhancer binding protein) controls cell fate determination during mammary gland development. Mol Endocrinol 2000;14(3):359–68. doi:10.1210/me.14.3.359.PubMedCrossRef Seagroves TN, Lydon JP, Hovey RC, Vonderhaar BK, Rosen JM. C/EBPbeta (CCAAT/enhancer binding protein) controls cell fate determination during mammary gland development. Mol Endocrinol 2000;14(3):359–68. doi:10.​1210/​me.​14.​3.​359.PubMedCrossRef
30.
go back to reference Shyamala G, Barcellos-Hoff MH, Toft D, Yang X. In situ localization of progesterone receptors in normal mouse mammary glands: absence of receptors in the connective and adipose stroma and a heterogeneous distribution in the epithelium. J Steroid Biochem Mol Biol 1997;63:251–9. doi:10.1016/S0960-0760(97)00128-3.PubMedCrossRef Shyamala G, Barcellos-Hoff MH, Toft D, Yang X. In situ localization of progesterone receptors in normal mouse mammary glands: absence of receptors in the connective and adipose stroma and a heterogeneous distribution in the epithelium. J Steroid Biochem Mol Biol 1997;63:251–9. doi:10.​1016/​S0960-0760(97)00128-3.PubMedCrossRef
31.
go back to reference Silberstein GB, Van Horn K, Shyamala G, Daniel CW. Progesterone receptors in the mouse mammary duct: distribution and developmental regulation. Cell Growth Differ 1996;7:945–52.PubMed Silberstein GB, Van Horn K, Shyamala G, Daniel CW. Progesterone receptors in the mouse mammary duct: distribution and developmental regulation. Cell Growth Differ 1996;7:945–52.PubMed
32.
go back to reference Zeps N, Bentel JM, Papadimitriou JM, Dawkins HJ. Murine progesterone receptor expression in proliferating mammary epithelial cells during normal pubertal development and adult estrous cycle. Association with eralpha and erbeta status. J Histochem Cytochem 1999;47(10):1323–30.PubMed Zeps N, Bentel JM, Papadimitriou JM, Dawkins HJ. Murine progesterone receptor expression in proliferating mammary epithelial cells during normal pubertal development and adult estrous cycle. Association with eralpha and erbeta status. J Histochem Cytochem 1999;47(10):1323–30.PubMed
34.
go back to reference Hovey RC, Harris J, Hadsell DL, Lee AV, Ormandy CJ, Vonderhaar BK. Local insulin-like growth factor-II mediates prolactin-induced mammary gland development. Mol Endocrinol 2003;17(3):460–71. doi:10.1210/me.2002-0214.PubMedCrossRef Hovey RC, Harris J, Hadsell DL, Lee AV, Ormandy CJ, Vonderhaar BK. Local insulin-like growth factor-II mediates prolactin-induced mammary gland development. Mol Endocrinol 2003;17(3):460–71. doi:10.​1210/​me.​2002-0214.PubMedCrossRef
37.
go back to reference Loladze AV, Stull MA, Rowzee AM, Demarco J, Lantry JH 3rd, Rosen CJ, et al. Epithelial-specific and stage-specific functions of insulin-like growth factor-I during postnatal mammary development. Endocrinology 2006;147(11):5412–23. doi:10.1210/en.2006-0427.PubMedCrossRef Loladze AV, Stull MA, Rowzee AM, Demarco J, Lantry JH 3rd, Rosen CJ, et al. Epithelial-specific and stage-specific functions of insulin-like growth factor-I during postnatal mammary development. Endocrinology 2006;147(11):5412–23. doi:10.​1210/​en.​2006-0427.PubMedCrossRef
38.
go back to reference Stull MA, Richert MM, Loladze AV, Wood TL. Requirement for insulin-like growth factor-I in epidermal growth factor-mediated cell cycle progression of mammary epithelial cells. Endocrinology 2002;143:1872–9. doi:10.1210/en.143.5.1872.PubMedCrossRef Stull MA, Richert MM, Loladze AV, Wood TL. Requirement for insulin-like growth factor-I in epidermal growth factor-mediated cell cycle progression of mammary epithelial cells. Endocrinology 2002;143:1872–9. doi:10.​1210/​en.​143.​5.​1872.PubMedCrossRef
39.
41.
43.
go back to reference Fernandez AM, Dupont J, Farrar RP, Lee S, Stannard B, Le Roith D. Muscle-specific inactivation of the IGF-I receptor induces compensatory hyperplasia in skeletal muscle. J Clin Invest 2002;109(3):347–55.PubMed Fernandez AM, Dupont J, Farrar RP, Lee S, Stannard B, Le Roith D. Muscle-specific inactivation of the IGF-I receptor induces compensatory hyperplasia in skeletal muscle. J Clin Invest 2002;109(3):347–55.PubMed
44.
go back to reference DeChiara TM, Efstratiadis A, Robertson EJ. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by gene targeting. Nature 1990;345:78–80. doi:10.1038/345078a0.PubMedCrossRef DeChiara TM, Efstratiadis A, Robertson EJ. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by gene targeting. Nature 1990;345:78–80. doi:10.​1038/​345078a0.PubMedCrossRef
46.
go back to reference Korner C, Nurnberg B, Uhde M, Braulke T. Mannose 6-phosphate/insulin-like growth factor II receptor fails to interact with G-proteins. Analysis of mutant cytoplasmic receptor domains. J Biol Chem 1995;270(1):287–95. doi:10.1074/jbc.270.1.287.PubMedCrossRef Korner C, Nurnberg B, Uhde M, Braulke T. Mannose 6-phosphate/insulin-like growth factor II receptor fails to interact with G-proteins. Analysis of mutant cytoplasmic receptor domains. J Biol Chem 1995;270(1):287–95. doi:10.​1074/​jbc.​270.​1.​287.PubMedCrossRef
49.
go back to reference Bailyes EM, Nave BT, Soos MA, Orr SR, Hayward AC, Siddle K. Insulin receptor/IGF-I receptor hybrids are widely distributed in mammalian tissues: quantification of individual receptor species by selective immunoprecipitation and immunoblotting. Biochem J 1997;327(Pt 1):209–15.PubMed Bailyes EM, Nave BT, Soos MA, Orr SR, Hayward AC, Siddle K. Insulin receptor/IGF-I receptor hybrids are widely distributed in mammalian tissues: quantification of individual receptor species by selective immunoprecipitation and immunoblotting. Biochem J 1997;327(Pt 1):209–15.PubMed
50.
go back to reference Johansson GS, Arnqvist HJ. Insulin and IGF-I action on insulin receptors, IGF-I receptors and hybrid insulin/IGF-I receptors in vascular smooth muscle cells. Am J Physiol Endocrinol Metab 2006;291:E1124–1130.PubMedCrossRef Johansson GS, Arnqvist HJ. Insulin and IGF-I action on insulin receptors, IGF-I receptors and hybrid insulin/IGF-I receptors in vascular smooth muscle cells. Am J Physiol Endocrinol Metab 2006;291:E1124–1130.PubMedCrossRef
51.
go back to reference Moxham CP, Duronio V, Jacobs S. Insulin-like growth factor I receptor beta-subunit heterogeneity. Evidence for hybrid tetramers composed of insulin-like growth factor I and insulin receptor heterodimers. J Biol Chem 1989;264(22):13238–44.PubMed Moxham CP, Duronio V, Jacobs S. Insulin-like growth factor I receptor beta-subunit heterogeneity. Evidence for hybrid tetramers composed of insulin-like growth factor I and insulin receptor heterodimers. J Biol Chem 1989;264(22):13238–44.PubMed
52.
go back to reference Soos MA, Field CE, Siddle K. Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochem J 1993;290(Pt 2):419–26.PubMed Soos MA, Field CE, Siddle K. Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochem J 1993;290(Pt 2):419–26.PubMed
53.
go back to reference Kasuya J, Paz IB, Maddux BA, Goldfine ID, Hefta SA, Fujita-Yamaguchi Y. Characterization of human placental insulin-like growth factor-I/insulin hybrid receptors by protein microsequencing and purification. Biochemistry 1993;32(49):13531–6. doi:10.1021/bi00212a019.PubMedCrossRef Kasuya J, Paz IB, Maddux BA, Goldfine ID, Hefta SA, Fujita-Yamaguchi Y. Characterization of human placental insulin-like growth factor-I/insulin hybrid receptors by protein microsequencing and purification. Biochemistry 1993;32(49):13531–6. doi:10.​1021/​bi00212a019.PubMedCrossRef
54.
go back to reference Soos MA, Siddle K. Immunological relationships between receptors for insulin and insulin-like growth factor I. Evidence for structural heterogeneity of insulin-like growth factor I receptors involving hybrids with insulin receptors. Biochem J 1989;263(2):553–63.PubMed Soos MA, Siddle K. Immunological relationships between receptors for insulin and insulin-like growth factor I. Evidence for structural heterogeneity of insulin-like growth factor I receptors involving hybrids with insulin receptors. Biochem J 1989;263(2):553–63.PubMed
55.
go back to reference Frattali AL, Pessin JE. Relationship between alpha subunit ligand occupancy and beta subunit autophosphorylation in insulin/insulin-like growth factor-1 hybrid receptors. J Biol Chem 1993;268(10):7393–400.PubMed Frattali AL, Pessin JE. Relationship between alpha subunit ligand occupancy and beta subunit autophosphorylation in insulin/insulin-like growth factor-1 hybrid receptors. J Biol Chem 1993;268(10):7393–400.PubMed
56.
go back to reference Pandini G, Vigneri R, Costantino A, Frasca F, Ippolito A, Fujita-Yamaguchi Y, et al. Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: evidence for a second mechanism of IGF-I signaling. Clin Cancer Res 1999;5(7):1935–44.PubMed Pandini G, Vigneri R, Costantino A, Frasca F, Ippolito A, Fujita-Yamaguchi Y, et al. Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: evidence for a second mechanism of IGF-I signaling. Clin Cancer Res 1999;5(7):1935–44.PubMed
59.
go back to reference Jones RA, Campbell CI, Gunther EJ, Chodosh LA, Petrik JJ, Khokha R, et al. Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation. Oncogene 2007;26(11):1636–44. doi:10.1038/sj.onc.1209955.PubMedCrossRef Jones RA, Campbell CI, Gunther EJ, Chodosh LA, Petrik JJ, Khokha R, et al. Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation. Oncogene 2007;26(11):1636–44. doi:10.​1038/​sj.​onc.​1209955.PubMedCrossRef
60.
go back to reference Robinson G, Accili D, Hennighausen L. Rescue of mammary epithelium of early lethal phenotypes by embryonic mammary gland transplantation as exemplified with insulin receptor null mice. In: Ip N, Asch B, editors. Methods in mammary gland biology and breast cancer research. New York: Kluwer; 2000. p. 307–16. Robinson G, Accili D, Hennighausen L. Rescue of mammary epithelium of early lethal phenotypes by embryonic mammary gland transplantation as exemplified with insulin receptor null mice. In: Ip N, Asch B, editors. Methods in mammary gland biology and breast cancer research. New York: Kluwer; 2000. p. 307–16.
62.
go back to reference Kondo T, Hafezi-Moghadam A, Thomas K, Wagner DD, Kahn CR. Mice lacking insulin or insulin-like growth factor 1 receptors in vascular endothelial cells maintain normal blood-brain barrier. Biochem Biophys Res Commun 2004;317:315–20. doi:10.1016/j.bbrc.2004.03.043.PubMedCrossRef Kondo T, Hafezi-Moghadam A, Thomas K, Wagner DD, Kahn CR. Mice lacking insulin or insulin-like growth factor 1 receptors in vascular endothelial cells maintain normal blood-brain barrier. Biochem Biophys Res Commun 2004;317:315–20. doi:10.​1016/​j.​bbrc.​2004.​03.​043.PubMedCrossRef
63.
go back to reference Cullen K, Smith H, Hill S, Rosen N, Lippman M. Growth factor messenger RNA expression by human breast fibroblasts from benign and malignant lesions. Cancer Res 1991;51:4978–85.PubMed Cullen K, Smith H, Hill S, Rosen N, Lippman M. Growth factor messenger RNA expression by human breast fibroblasts from benign and malignant lesions. Cancer Res 1991;51:4978–85.PubMed
64.
66.
go back to reference Singer C, Rasmussen A, Smith HS, Lippman ME, Lynch HT, Cullen KJ. Malignant breast epithelium selects for insulin-like growth factor II expression in breast stroma: evidence for paracrine function. Cancer Res 1995;55(11):2448–54.PubMed Singer C, Rasmussen A, Smith HS, Lippman ME, Lynch HT, Cullen KJ. Malignant breast epithelium selects for insulin-like growth factor II expression in breast stroma: evidence for paracrine function. Cancer Res 1995;55(11):2448–54.PubMed
70.
71.
73.
75.
go back to reference Lee AV, Zhang P, Ivanova M, Bonnette S, Oesterreich S, Rosen JM, et al. Developmental and hormonal signals dramatically alter the localization and abundance of insulin receptor substrate proteins in the mammary gland. Endocrinology 2003;144(6):2683–94. doi:10.1210/en.2002-221103.PubMedCrossRef Lee AV, Zhang P, Ivanova M, Bonnette S, Oesterreich S, Rosen JM, et al. Developmental and hormonal signals dramatically alter the localization and abundance of insulin receptor substrate proteins in the mammary gland. Endocrinology 2003;144(6):2683–94. doi:10.​1210/​en.​2002-221103.PubMedCrossRef
76.
go back to reference Arsenijevic Y, Weiss S, Schneider B, Aebischer P. Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J Neurosci 2001;21(18):7194–202.PubMed Arsenijevic Y, Weiss S, Schneider B, Aebischer P. Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J Neurosci 2001;21(18):7194–202.PubMed
77.
go back to reference Bendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 2007;448(7157):1015–21. doi:10.1038/nature06027.PubMedCrossRef Bendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 2007;448(7157):1015–21. doi:10.​1038/​nature06027.PubMedCrossRef
78.
go back to reference Wang L, Schulz TC, Sherrer ES, Dauphin DS, Shin S, Nelson AM, et al. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 2007;110(12):4111–9. doi:10.1182/blood-2007-03-082586.PubMedCrossRef Wang L, Schulz TC, Sherrer ES, Dauphin DS, Shin S, Nelson AM, et al. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 2007;110(12):4111–9. doi:10.​1182/​blood-2007-03-082586.PubMedCrossRef
80.
go back to reference Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003;17(10):1253–70. doi:10.1101/gad.1061803.PubMedCrossRef Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003;17(10):1253–70. doi:10.​1101/​gad.​1061803.PubMedCrossRef
81.
83.
go back to reference Kiess W, Blickenstaff GD, Sklar MM, Thomas CL, Nissley SP, Sahagian GG. Biochemical evidence that the type II insulin-like growth factor receptor is identical to the cation-independent mannose 6-phosphate receptor. J Biol Chem 1988;263(19):9339–44.PubMed Kiess W, Blickenstaff GD, Sklar MM, Thomas CL, Nissley SP, Sahagian GG. Biochemical evidence that the type II insulin-like growth factor receptor is identical to the cation-independent mannose 6-phosphate receptor. J Biol Chem 1988;263(19):9339–44.PubMed
84.
go back to reference Tong PY, Tollefsen SE, Kornfeld S. The cation-independent mannose 6-phosphate receptor binds insulin-like growth factor II. J Biol Chem 1988;263(6):2585–8.PubMed Tong PY, Tollefsen SE, Kornfeld S. The cation-independent mannose 6-phosphate receptor binds insulin-like growth factor II. J Biol Chem 1988;263(6):2585–8.PubMed
Metadata
Title
IGF Ligand and Receptor Regulation of Mammary Development
Authors
Anne M. Rowzee
Deborah A. Lazzarino
Lauren Rota
Zhaoyu Sun
Teresa L. Wood
Publication date
01-12-2008
Publisher
Springer US
Published in
Journal of Mammary Gland Biology and Neoplasia / Issue 4/2008
Print ISSN: 1083-3021
Electronic ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-008-9102-8

Other articles of this Issue 4/2008

Journal of Mammary Gland Biology and Neoplasia 4/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine