Skip to main content
Top
Published in: Osteoporosis International 11/2006

01-11-2006 | Original Article

Idiopathic juvenile osteoporosis – an analysis of the muscle-bone relationship

Authors: P. Płudowski, M. Lebiedowski, M. Olszaniecka, J. Marowska, H. Matusik, R. S. Lorenc

Published in: Osteoporosis International | Issue 11/2006

Login to get access

Abstract

Introduction

Idiopathic Juvenile Osteoporosis (IJO), a disease of unknown etiology, manifests typically by pain, bone deformities and fractures. Due to limits in BMD data interpretation, evaluation of the muscle-bone functional unit has recently been proposed as a means to assess the general competence of the skeleton. The aim of this study was to evaluate skeletal status during the acute phase of IJO and during recovery from the disease in relation to muscles.

Materials and methods

The study population comprised 61 IJO children, including 34 girls (mean age: 13.6±3.1 years; range: 7–18) and 27 boys (14.3±3.3; 5–18 years). DXA total body (TB) and lumbar spine (S) bone mineral content (BMC) and density (BMD) were measured. Lean body mass (LBM) was employed to calculate SBMC/LBM, TBBMC/LBM, body height (BH)/LBM and LBM/body weight (BW) ratios. Previously established references for healthy controls were utilized for the calculation of Z-score values in IJO cases in respect to phase of the disease.

Results

IJO patients had significantly decreased Z-score values for TBBMD, SBMD, SBMC/LBM and TBBMC/LBM ratios but not for the LBM and BH/LBM or LBM/BW ratios. During the acute phase IJO girls had mean Z-scores for TBBMD and SBMD of −2.49±0.61 and −3.27±1.03, respectively, which were significantly lower than Z-scores during the recovery phase: −0.90±0.66, −1.38±0.95 (p<0.0001). IJO boys during the acute phase had Z-scores of −2.08±0.65 and −2.75±1.19 for TBBMD and SBMD, respectively, which were significantly lower than those during the recovery phase (−0.51±1.04 and −1.39±1.49; p<0.0001). Further, during the acute phase, TBBMC/LBM Z-scores of −2.95±1.15 and −2.56±1.49 were noted in girls and boys, respectively; the corresponding SBMC/LBM Z-scores were −2.66±1.07 and −2.22±1.62. During the recovery from IJO, TBBMC/LBM and SBMC/LBM Z-scores of −1.07±0.99 and −0.91±1.16 and of −1.15±1.40 and −0.68±1.45 were noted in girls and boys, respectively, and all were significantly higher than those during the acute phase (p<0.0001).

Conclusions

The results of this study indicate that IJO is a bone disorder characterized by an imbalanced muscle-bone relationship and fractures at onset and during the acute phase and by at least a partial recovery without bone pain and new fractures. Implementation of the BH/LBM, TBBMC/LBM and SBMC/LBM ratios to the armamentarium of pediatricians diagnosing bone disorders will provide mechanically meaningful data for diagnostic purposes and, hopefully, for proper therapeutic decisions.
Literature
1.
go back to reference Dent CE, Friedman M (1965) Idiopathic juvenile osteoporosis. Q J Med 34:177–210PubMed Dent CE, Friedman M (1965) Idiopathic juvenile osteoporosis. Q J Med 34:177–210PubMed
2.
go back to reference Smith R (1995) Idiopathic juvenile osteoporosis: experience of twenty-one patients. Br J Rheumatol 34:68–77PubMed Smith R (1995) Idiopathic juvenile osteoporosis: experience of twenty-one patients. Br J Rheumatol 34:68–77PubMed
3.
go back to reference Prószyñska K, Wieczorek E, Olszaniecka M et al (1996) Collagen peptides in osteogenesis imperfecta, idiopathic juvenile osteoporosis and Ehlers-Danlos syndrome. Acta Paediatr 85:688–691PubMed Prószyñska K, Wieczorek E, Olszaniecka M et al (1996) Collagen peptides in osteogenesis imperfecta, idiopathic juvenile osteoporosis and Ehlers-Danlos syndrome. Acta Paediatr 85:688–691PubMed
4.
go back to reference Boivin G, Lorenc RS, Wieczorek E et al (2000) Idiopathic juvenile osteoporosis in Polish children documented by bone histomorphometry and x-ray microanalysis. Osteoporos Int 11[Suppl 4]:14 Boivin G, Lorenc RS, Wieczorek E et al (2000) Idiopathic juvenile osteoporosis in Polish children documented by bone histomorphometry and x-ray microanalysis. Osteoporos Int 11[Suppl 4]:14
5.
go back to reference Rauch F, Travers R, Norman ME et al (2000) Deficient bone formation in idiopathic juvenile osteoporosis: a histomorphometric study of cancellous iliac bone. J Bone Miner Res 15:957–963PubMedCrossRef Rauch F, Travers R, Norman ME et al (2000) Deficient bone formation in idiopathic juvenile osteoporosis: a histomorphometric study of cancellous iliac bone. J Bone Miner Res 15:957–963PubMedCrossRef
6.
go back to reference Rauch F, Travers R, Norman ME et al (2002) The bone formation defect in idiopathic juvenile osteoporosis is surface-specific. Bone 31:85–89PubMedCrossRef Rauch F, Travers R, Norman ME et al (2002) The bone formation defect in idiopathic juvenile osteoporosis is surface-specific. Bone 31:85–89PubMedCrossRef
7.
go back to reference Rauch F, Schoenau E (2001) The developing bone: slave or master of its cells and molecules? Pediatr Res 50:309–314PubMed Rauch F, Schoenau E (2001) The developing bone: slave or master of its cells and molecules? Pediatr Res 50:309–314PubMed
8.
go back to reference Schönau E (1998) The development of the skeletal system in children and the influence of muscular strength. Horm Res 49:27–31PubMedCrossRef Schönau E (1998) The development of the skeletal system in children and the influence of muscular strength. Horm Res 49:27–31PubMedCrossRef
9.
go back to reference Frost HM (1997) Perspectives on increased fractures during the human adolescent growth spurt: summary of a new vital-biomechanical explanation. J Bone Miner Metab 15:115–121CrossRef Frost HM (1997) Perspectives on increased fractures during the human adolescent growth spurt: summary of a new vital-biomechanical explanation. J Bone Miner Metab 15:115–121CrossRef
10.
go back to reference Frost HM, Schönau E (2000) The “muscle-bone” unit in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab 13:571–590PubMed Frost HM, Schönau E (2000) The “muscle-bone” unit in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab 13:571–590PubMed
11.
go back to reference Schönau E, Neu CM, Beck B et al. (2002) Bone Mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res 17:1095–1101CrossRef Schönau E, Neu CM, Beck B et al. (2002) Bone Mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res 17:1095–1101CrossRef
12.
go back to reference Högler W, Briody J, Woodhead HJ et al (2003) Importance of lean mass in the interpretation of total body densitometry in children and adolescents. J Pediatr 143:81–88PubMedCrossRef Högler W, Briody J, Woodhead HJ et al (2003) Importance of lean mass in the interpretation of total body densitometry in children and adolescents. J Pediatr 143:81–88PubMedCrossRef
13.
go back to reference Crabtree NJ, Kibirige MS, Fordham JN et al (2004) The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone 35:965–972PubMedCrossRef Crabtree NJ, Kibirige MS, Fordham JN et al (2004) The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone 35:965–972PubMedCrossRef
14.
go back to reference Ogle GD, Allen JR, Humphries IR et al (1995) Body-composition assessment by dual-energy-x-ray absorptiometry in subjects aged 4–26 years. Am J Clin Nutr 61:746–753PubMed Ogle GD, Allen JR, Humphries IR et al (1995) Body-composition assessment by dual-energy-x-ray absorptiometry in subjects aged 4–26 years. Am J Clin Nutr 61:746–753PubMed
15.
go back to reference Kim J, Wang Z, Heymsfield B et al (2002) Total-body skeletal muscle mass: estimation by a new dual-energy x-ray absorptiometry method. Am J Clin Nutr 76:378–383PubMed Kim J, Wang Z, Heymsfield B et al (2002) Total-body skeletal muscle mass: estimation by a new dual-energy x-ray absorptiometry method. Am J Clin Nutr 76:378–383PubMed
16.
go back to reference Tothill P, Hannan WJ (2002) Bone mineral and soft tissue measurements by dual-energy x-ray absorptiometry during growth. Bone 31:492–496PubMedCrossRef Tothill P, Hannan WJ (2002) Bone mineral and soft tissue measurements by dual-energy x-ray absorptiometry during growth. Bone 31:492–496PubMedCrossRef
17.
go back to reference Ferretti JL, Capozza RF, Cointry GR et al (1998) Gender-related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans between 2 and 87 years of age. Bone 22:683–690PubMedCrossRef Ferretti JL, Capozza RF, Cointry GR et al (1998) Gender-related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans between 2 and 87 years of age. Bone 22:683–690PubMedCrossRef
18.
go back to reference Zanchetta JR, Plotkin H, Alvarez Filgueira ML (1995) Bone mass in children: values for 2-20-year-old population. Bone 16[Suppl 4]:393–399 Zanchetta JR, Plotkin H, Alvarez Filgueira ML (1995) Bone mass in children: values for 2-20-year-old population. Bone 16[Suppl 4]:393–399
19.
go back to reference Crabtree NJ, Shaw NJ (2005) A comparison of DXA analysis techniques in children with different clinical conditions: with and without fracture. Bone 36[Suppl 1]:S101–S102 Crabtree NJ, Shaw NJ (2005) A comparison of DXA analysis techniques in children with different clinical conditions: with and without fracture. Bone 36[Suppl 1]:S101–S102
20.
go back to reference Petit MA, Beck TJ, Kontulainen SA (2005) Examining the developing bone: what do we measure and how do we do it? J Musculoskelet Neuronal Interact 5:213–224PubMed Petit MA, Beck TJ, Kontulainen SA (2005) Examining the developing bone: what do we measure and how do we do it? J Musculoskelet Neuronal Interact 5:213–224PubMed
21.
go back to reference Płudowski P, Matusik H, Olszaniecka M et al (2005) Reference values for the indicators of skeletal and muscular status of healthy Polish children. J Clin Densitom 8:164–177PubMedCrossRef Płudowski P, Matusik H, Olszaniecka M et al (2005) Reference values for the indicators of skeletal and muscular status of healthy Polish children. J Clin Densitom 8:164–177PubMedCrossRef
22.
go back to reference Lebiedowski M, Lorenc RS, Olszaniecka M (2003) Radiological status of patients with idiopathic juvenile osteoporosis (IJO) – experience of 61 children. Pol J Radiol 68:43–50 Lebiedowski M, Lorenc RS, Olszaniecka M (2003) Radiological status of patients with idiopathic juvenile osteoporosis (IJO) – experience of 61 children. Pol J Radiol 68:43–50
25.
go back to reference Einhorn TA (1996) Biomechanics of bone. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego, pp 25–37 Einhorn TA (1996) Biomechanics of bone. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego, pp 25–37
26.
27.
go back to reference Frost HM (1990) Structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s Law: the bone modeling problem. Anat Rec 226:403–413PubMedCrossRef Frost HM (1990) Structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s Law: the bone modeling problem. Anat Rec 226:403–413PubMedCrossRef
28.
go back to reference Frost HM (1997) On defining osteopenias and osteoporoses: problems! Another view (with insights from a new paradigm). Bone 20:385.Frost HM. 2003 Absorptiometry and “osteoporosis”: problems. J Bone Miner Metab 21:255–260CrossRef Frost HM (1997) On defining osteopenias and osteoporoses: problems! Another view (with insights from a new paradigm). Bone 20:385.Frost HM. 2003 Absorptiometry and “osteoporosis”: problems. J Bone Miner Metab 21:255–260CrossRef
29.
go back to reference Schiessl H, Frost HM, Jee WSS (1998) Estrogen and bone-muscle strength and mass relationships. Bone 22:1–6PubMedCrossRef Schiessl H, Frost HM, Jee WSS (1998) Estrogen and bone-muscle strength and mass relationships. Bone 22:1–6PubMedCrossRef
30.
go back to reference Płudowski P, Lebiedowski M, Lorenc RS (2005) Evaluation of practical use of bone age assessments based on DXA- derived hand scans in diagnosis of skeletal status in healthy and diseased children. J Clin Densitom 8:48–56PubMedCrossRef Płudowski P, Lebiedowski M, Lorenc RS (2005) Evaluation of practical use of bone age assessments based on DXA- derived hand scans in diagnosis of skeletal status in healthy and diseased children. J Clin Densitom 8:48–56PubMedCrossRef
Metadata
Title
Idiopathic juvenile osteoporosis – an analysis of the muscle-bone relationship
Authors
P. Płudowski
M. Lebiedowski
M. Olszaniecka
J. Marowska
H. Matusik
R. S. Lorenc
Publication date
01-11-2006
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 11/2006
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-006-0183-1

Other articles of this Issue 11/2006

Osteoporosis International 11/2006 Go to the issue