Skip to main content
Top
Published in: Cancer Cell International 1/2022

Open Access 01-12-2022 | Research

Identifying novel interactions of the colon-cancer related APC protein with Wnt-pathway nuclear transcription factors

Authors: Nayra M. Al-Thani, Stephanie Schaefer-Ramadan, Jovana Aleksic, Yasmin A. Mohamoud, Joel A. Malek

Published in: Cancer Cell International | Issue 1/2022

Login to get access

Abstract

Background

Colon cancer is often driven by mutations of the adenomatous polyposis coli (APC) gene, an essential tumor suppressor gene of the Wnt β-catenin signaling pathway. APC and its cytoplasmic interactions have been well studied. However, various groups have also observed its presence in the nucleus. Identifying novel interactions of APC in the Wnt pathway will provide an opportunity to understand APC’s nuclear role better and ultimately identify potential cancer treatment targets.

Methods

We used the all-vs-all sequencing (AVA-Seq) method to interrogate the interactome of protein fragments spanning most of the 60 Wnt β-catenin pathway proteins. Using protein fragments identified the interacting regions between the proteins with more resolution than a full-length protein approach. Pull-down assays were used to validate a subset of these interactions.

Results

74 known and 703 novel Wnt β-catenin pathway protein-protein interactions were recovered in this study. There were 8 known and 31 novel APC protein-protein interactions. Novel interactions of APC and nuclear transcription factors TCF7, JUN, FOSL1, and SOX17 were particularly interesting and confirmed in validation assays.

Conclusion

Based on our findings of novel interactions between APC and transcription factors and previous evidence of APC localizing to the nucleus, we suggest APC may compete and repress CTNNB1. This would occur through APC binding to the transcription factors (JUN, FOSL1, TCF7) to regulate the Wnt signaling pathway including through enhanced marking of CTNNB1 for degradation in the nucleus by APC binding with SOX17. Additional novel Wnt β-catenin pathway protein-protein interactions from this study could lead researchers to novel drug designs for cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.PubMedCrossRef Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33.PubMedCrossRef
2.
go back to reference Anderson CB, Neufeld KL, White RL. Subcellular distribution of wnt pathway proteins in normal and neoplastic colon. Proc Natl Acad Sci U S A. 2002;99(13):8683–8.PubMedPubMedCentralCrossRef Anderson CB, Neufeld KL, White RL. Subcellular distribution of wnt pathway proteins in normal and neoplastic colon. Proc Natl Acad Sci U S A. 2002;99(13):8683–8.PubMedPubMedCentralCrossRef
3.
4.
go back to reference Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (review). Int J Oncol. 2017;51(5):1357–69.PubMedPubMedCentralCrossRef Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (review). Int J Oncol. 2017;51(5):1357–69.PubMedPubMedCentralCrossRef
5.
go back to reference Jeong WJ, Ro EJ, Choi KY. Interaction between Wnt/beta-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of beta-catenin and RAS by targeting the Wnt/beta-catenin pathway. NPJ Precis Oncol. 2018;2(1):5.PubMedPubMedCentralCrossRef Jeong WJ, Ro EJ, Choi KY. Interaction between Wnt/beta-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of beta-catenin and RAS by targeting the Wnt/beta-catenin pathway. NPJ Precis Oncol. 2018;2(1):5.PubMedPubMedCentralCrossRef
6.
go back to reference Guo Y, Zhao YR, Liu H, Xin Y, Yu JZ, Zang YJ, et al. EHMT2 promotes the pathogenesis of hepatocellular carcinoma by epigenetically silencing APC expression. Cell Biosci. 2021;11(1):152.PubMedPubMedCentralCrossRef Guo Y, Zhao YR, Liu H, Xin Y, Yu JZ, Zang YJ, et al. EHMT2 promotes the pathogenesis of hepatocellular carcinoma by epigenetically silencing APC expression. Cell Biosci. 2021;11(1):152.PubMedPubMedCentralCrossRef
7.
go back to reference Jin Z, Tamura G, Tsuchiya T, Sakata K, Kashiwaba M, Osakabe M, et al. Adenomatous polyposis coli (APC) gene promoter hypermethylation in primary breast cancers. Br J Cancer. 2001;85(1):69–73.PubMedPubMedCentralCrossRef Jin Z, Tamura G, Tsuchiya T, Sakata K, Kashiwaba M, Osakabe M, et al. Adenomatous polyposis coli (APC) gene promoter hypermethylation in primary breast cancers. Br J Cancer. 2001;85(1):69–73.PubMedPubMedCentralCrossRef
8.
go back to reference Ota R, Sawada T, Tsuyama S, Sasaki Y, Suzuki H, Kaizaki Y, et al. Integrated genetic and epigenetic analysis of cancer-related genes in non-ampullary duodenal adenomas and intramucosal adenocarcinomas. J Pathol. 2020;252(3):330–42.PubMedCrossRef Ota R, Sawada T, Tsuyama S, Sasaki Y, Suzuki H, Kaizaki Y, et al. Integrated genetic and epigenetic analysis of cancer-related genes in non-ampullary duodenal adenomas and intramucosal adenocarcinomas. J Pathol. 2020;252(3):330–42.PubMedCrossRef
9.
go back to reference Toualbi K, Guller MC, Mauriz JL, Labalette C, Buendia MA, Mauviel A, et al. Physical and functional cooperation between AP-1 and beta-catenin for the regulation of TCF-dependent genes. Oncogene. 2007;26(24):3492–502.PubMedCrossRef Toualbi K, Guller MC, Mauriz JL, Labalette C, Buendia MA, Mauviel A, et al. Physical and functional cooperation between AP-1 and beta-catenin for the regulation of TCF-dependent genes. Oncogene. 2007;26(24):3492–502.PubMedCrossRef
10.
go back to reference Jochum W, David JP, Elliott C, Wutz A, Plenk H Jr, Matsuo K, et al. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med. 2000;6(9):980–4.PubMedCrossRef Jochum W, David JP, Elliott C, Wutz A, Plenk H Jr, Matsuo K, et al. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med. 2000;6(9):980–4.PubMedCrossRef
11.
go back to reference Schreiber M, Kolbus A, Piu F, Szabowski A, Mohle-Steinlein U, Tian J, et al. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev. 1999;13(5):607–19.PubMedPubMedCentralCrossRef Schreiber M, Kolbus A, Piu F, Szabowski A, Mohle-Steinlein U, Tian J, et al. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev. 1999;13(5):607–19.PubMedPubMedCentralCrossRef
13.
go back to reference Zhang M, Hoyle RG, Ma Z, Sun B, Cai W, Cai H, et al. FOSL1 promotes metastasis of head and neck squamous cell carcinoma through super-enhancer-driven transcription program. Mol Ther. 2021;29(8):2583–600.PubMedPubMedCentralCrossRef Zhang M, Hoyle RG, Ma Z, Sun B, Cai W, Cai H, et al. FOSL1 promotes metastasis of head and neck squamous cell carcinoma through super-enhancer-driven transcription program. Mol Ther. 2021;29(8):2583–600.PubMedPubMedCentralCrossRef
14.
go back to reference Zhou R, Qiu L, Liu X, Ling L, Li N, Zhou K, et al. RASSF6 downregulation promotes the epithelial-mesenchymal transition and predicts poor prognosis in colorectal cancer. Oncotarget. 2017;8(33):55162–75.PubMedPubMedCentralCrossRef Zhou R, Qiu L, Liu X, Ling L, Li N, Zhou K, et al. RASSF6 downregulation promotes the epithelial-mesenchymal transition and predicts poor prognosis in colorectal cancer. Oncotarget. 2017;8(33):55162–75.PubMedPubMedCentralCrossRef
15.
16.
go back to reference Tang W, Dodge M, Gundapaneni D, Michnoff C, Roth M, Lum L. A genome-wide RNAi screen for Wnt/beta-catenin pathway components identifies unexpected roles for TCF transcription factors in cancer. Proc Natl Acad Sci U S A. 2008;105(28):9697–702.PubMedPubMedCentralCrossRef Tang W, Dodge M, Gundapaneni D, Michnoff C, Roth M, Lum L. A genome-wide RNAi screen for Wnt/beta-catenin pathway components identifies unexpected roles for TCF transcription factors in cancer. Proc Natl Acad Sci U S A. 2008;105(28):9697–702.PubMedPubMedCentralCrossRef
17.
go back to reference Roose J, Huls G, van Beest M, Moerer P, van der Horn K, Goldschmeding R, et al. Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcf1. Science. 1999;285(5435):1923–6.PubMedCrossRef Roose J, Huls G, van Beest M, Moerer P, van der Horn K, Goldschmeding R, et al. Synergy between tumor suppressor APC and the beta-catenin-Tcf4 target Tcf1. Science. 1999;285(5435):1923–6.PubMedCrossRef
18.
go back to reference Ress A, Moelling K. Bcr interferes with beta-catenin-Tcf1 interaction. FEBS Lett. 2006;580(5):1227–30.PubMedCrossRef Ress A, Moelling K. Bcr interferes with beta-catenin-Tcf1 interaction. FEBS Lett. 2006;580(5):1227–30.PubMedCrossRef
19.
go back to reference Sinner D, Kordich JJ, Spence JR, Opoka R, Rankin S, Lin SC, et al. Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol Cell Biol. 2007;27(22):7802–15.PubMedPubMedCentralCrossRef Sinner D, Kordich JJ, Spence JR, Opoka R, Rankin S, Lin SC, et al. Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol Cell Biol. 2007;27(22):7802–15.PubMedPubMedCentralCrossRef
20.
go back to reference Zorn AM, Barish GD, Williams BO, Lavender P, Klymkowsky MW, Varmus HE. Regulation of wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin. Mol Cell. 1999;4(4):487–98.PubMedCrossRef Zorn AM, Barish GD, Williams BO, Lavender P, Klymkowsky MW, Varmus HE. Regulation of wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin. Mol Cell. 1999;4(4):487–98.PubMedCrossRef
21.
go back to reference Choi SG, Olivet J, Cassonnet P, Vidalain PO, Luck K, Lambourne L, et al. Maximizing binary interactome mapping with a minimal number of assays. Nat Commun. 2019;10(1):3907.PubMedPubMedCentralCrossRef Choi SG, Olivet J, Cassonnet P, Vidalain PO, Luck K, Lambourne L, et al. Maximizing binary interactome mapping with a minimal number of assays. Nat Commun. 2019;10(1):3907.PubMedPubMedCentralCrossRef
22.
go back to reference Schaefer-Ramadan S, Aleksic J, Al-Thani NM, Mohamoud YA, Hill DE, Malek JA. Scaling-up a fragment-based protein-protein interaction method using a human reference interaction set. Proteins. 2022;90(4):959–72.PubMedCrossRef Schaefer-Ramadan S, Aleksic J, Al-Thani NM, Mohamoud YA, Hill DE, Malek JA. Scaling-up a fragment-based protein-protein interaction method using a human reference interaction set. Proteins. 2022;90(4):959–72.PubMedCrossRef
23.
go back to reference Dove SL, Hochschild A. A bacterial two-hybrid system based on transcription activation. Methods Mol Biol. 2004;261:231–46.PubMed Dove SL, Hochschild A. A bacterial two-hybrid system based on transcription activation. Methods Mol Biol. 2004;261:231–46.PubMed
24.
go back to reference Andrews SS, Schaefer-Ramadan S, Al-Thani NM, Ahmed I, Mohamoud YA, Malek JA. High-resolution protein-protein interaction mapping using all-versus-all sequencing (AVA-Seq). J Biol Chem. 2019;294(30):11549–58.PubMedPubMedCentralCrossRef Andrews SS, Schaefer-Ramadan S, Al-Thani NM, Ahmed I, Mohamoud YA, Malek JA. High-resolution protein-protein interaction mapping using all-versus-all sequencing (AVA-Seq). J Biol Chem. 2019;294(30):11549–58.PubMedPubMedCentralCrossRef
25.
go back to reference Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.PubMedCrossRef Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.PubMedCrossRef
26.
go back to reference Hebditch M, Carballo-Amador MA, Charonis S, Curtis R, Warwicker J. Protein-Sol: a web tool for predicting protein solubility from sequence. Bioinformatics. 2017;33(19):3098–100.PubMedPubMedCentralCrossRef Hebditch M, Carballo-Amador MA, Charonis S, Curtis R, Warwicker J. Protein-Sol: a web tool for predicting protein solubility from sequence. Bioinformatics. 2017;33(19):3098–100.PubMedPubMedCentralCrossRef
27.
go back to reference Alonso-Lopez D, Gutierrez MA, Lopes KP, Prieto C, Santamaria R, De Las Rivas J. APID interactomes: providing proteome-based interactomes with controlled quality for multiple species and derived networks. Nucleic Acids Res. 2016;44(W1):W529-35.PubMedCrossRef Alonso-Lopez D, Gutierrez MA, Lopes KP, Prieto C, Santamaria R, De Las Rivas J. APID interactomes: providing proteome-based interactomes with controlled quality for multiple species and derived networks. Nucleic Acids Res. 2016;44(W1):W529-35.PubMedCrossRef
29.
go back to reference Eklof Spink K, Fridman SG, Weis WI. Molecular mechanisms of beta-catenin recognition by adenomatous polyposis coli revealed by the structure of an APC-beta-catenin complex. EMBO J. 2001;20(22):6203–12.PubMedCrossRef Eklof Spink K, Fridman SG, Weis WI. Molecular mechanisms of beta-catenin recognition by adenomatous polyposis coli revealed by the structure of an APC-beta-catenin complex. EMBO J. 2001;20(22):6203–12.PubMedCrossRef
30.
go back to reference Liu X, Salokas K, Tamene F, Jiu Y, Weldatsadik RG, Ohman T, et al. An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations. Nat Commun. 2018;9(1):1188.PubMedPubMedCentralCrossRef Liu X, Salokas K, Tamene F, Jiu Y, Weldatsadik RG, Ohman T, et al. An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations. Nat Commun. 2018;9(1):1188.PubMedPubMedCentralCrossRef
31.
go back to reference Mao J, Wang J, Liu B, Pan W, Farr GH 3rd, Flynn C, et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical wnt signaling pathway. Mol Cell. 2001;7(4):801–9.PubMedCrossRef Mao J, Wang J, Liu B, Pan W, Farr GH 3rd, Flynn C, et al. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical wnt signaling pathway. Mol Cell. 2001;7(4):801–9.PubMedCrossRef
32.
go back to reference Aripaka K, Gudey SK, Zang G, Schmidt A, Ahrling SS, Osterman L, et al. TRAF6 function as a novel co-regulator of Wnt3a target genes in prostate cancer. EBioMedicine. 2019;45:192–207.PubMedPubMedCentralCrossRef Aripaka K, Gudey SK, Zang G, Schmidt A, Ahrling SS, Osterman L, et al. TRAF6 function as a novel co-regulator of Wnt3a target genes in prostate cancer. EBioMedicine. 2019;45:192–207.PubMedPubMedCentralCrossRef
33.
go back to reference Hart MJ, de los Santos R, Albert IN, Rubinfeld B, Polakis P. Downregulation of beta-catenin by human axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol. 1998;8(10):573–81.PubMedCrossRef Hart MJ, de los Santos R, Albert IN, Rubinfeld B, Polakis P. Downregulation of beta-catenin by human axin and its association with the APC tumor suppressor, beta-catenin and GSK3 beta. Curr Biol. 1998;8(10):573–81.PubMedCrossRef
34.
go back to reference Yu W, Li L, Zheng F, Yang W, Zhao S, Tian C, et al. beta-catenin cooperates with CREB binding protein to promote the growth of Tumor cells. Cell Physiol Biochem. 2017;44(2):467–78.PubMedCrossRef Yu W, Li L, Zheng F, Yang W, Zhao S, Tian C, et al. beta-catenin cooperates with CREB binding protein to promote the growth of Tumor cells. Cell Physiol Biochem. 2017;44(2):467–78.PubMedCrossRef
35.
go back to reference Rosenbluh J, Mercer J, Shrestha Y, Oliver R, Tamayo P, Doench JG, et al. Genetic and proteomic interrogation of Lower confidence candidate genes reveals Signaling Networks in beta-catenin-active cancers. Cell Syst. 2016;3(3):302–16. e4.PubMedPubMedCentralCrossRef Rosenbluh J, Mercer J, Shrestha Y, Oliver R, Tamayo P, Doench JG, et al. Genetic and proteomic interrogation of Lower confidence candidate genes reveals Signaling Networks in beta-catenin-active cancers. Cell Syst. 2016;3(3):302–16. e4.PubMedPubMedCentralCrossRef
36.
go back to reference Zhang W, Duan N, Zhang Q, Song T, Li Z, Chen X, et al. The intracellular NADH level regulates atrophic nonunion pathogenesis through the CtBP2-p300-Runx2 transcriptional complex. Int J Biol Sci. 2018;14(14):2023–36.PubMedPubMedCentralCrossRef Zhang W, Duan N, Zhang Q, Song T, Li Z, Chen X, et al. The intracellular NADH level regulates atrophic nonunion pathogenesis through the CtBP2-p300-Runx2 transcriptional complex. Int J Biol Sci. 2018;14(14):2023–36.PubMedPubMedCentralCrossRef
37.
go back to reference Tsai LN, Ku TK, Salib NK, Crowe DL. Extracellular signals regulate rapid coactivator recruitment at AP-1 sites by altered phosphorylation of both CREB binding protein and c-jun. Mol Cell Biol. 2008;28(13):4240–50.PubMedPubMedCentralCrossRef Tsai LN, Ku TK, Salib NK, Crowe DL. Extracellular signals regulate rapid coactivator recruitment at AP-1 sites by altered phosphorylation of both CREB binding protein and c-jun. Mol Cell Biol. 2008;28(13):4240–50.PubMedPubMedCentralCrossRef
38.
go back to reference Li X, Wang W, Wang J, Malovannaya A, Xi Y, Li W, et al. Proteomic analyses reveal distinct chromatin-associated and soluble transcription factor complexes. Mol Syst Biol. 2015;11(1):775.PubMedPubMedCentralCrossRef Li X, Wang W, Wang J, Malovannaya A, Xi Y, Li W, et al. Proteomic analyses reveal distinct chromatin-associated and soluble transcription factor complexes. Mol Syst Biol. 2015;11(1):775.PubMedPubMedCentralCrossRef
39.
go back to reference Xing Y, Clements WK, Kimelman D, Xu W. Crystal structure of a beta-catenin/axin complex suggests a mechanism for the beta-catenin destruction complex. Genes Dev. 2003;17(22):2753–64.PubMedPubMedCentralCrossRef Xing Y, Clements WK, Kimelman D, Xu W. Crystal structure of a beta-catenin/axin complex suggests a mechanism for the beta-catenin destruction complex. Genes Dev. 2003;17(22):2753–64.PubMedPubMedCentralCrossRef
40.
go back to reference Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science. 1996;272(5264):1023–6.PubMedCrossRef Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science. 1996;272(5264):1023–6.PubMedCrossRef
41.
go back to reference Ikeda S, Kishida M, Matsuura Y, Usui H, Kikuchi A. GSK-3beta-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with axin. Oncogene. 2000;19(4):537–45.PubMedCrossRef Ikeda S, Kishida M, Matsuura Y, Usui H, Kikuchi A. GSK-3beta-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by beta-catenin and protein phosphatase 2A complexed with axin. Oncogene. 2000;19(4):537–45.PubMedCrossRef
42.
go back to reference Benbrook DM, Jones NC. Heterodimer formation between CREB and JUN proteins. Oncogene. 1990;5(3):295–302.PubMed Benbrook DM, Jones NC. Heterodimer formation between CREB and JUN proteins. Oncogene. 1990;5(3):295–302.PubMed
43.
go back to reference Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 1998;17(5):1371–84.PubMedPubMedCentralCrossRef Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 1998;17(5):1371–84.PubMedPubMedCentralCrossRef
44.
go back to reference Mi K, Dolan PJ, Johnson GV. The low density lipoprotein receptor-related protein 6 interacts with glycogen synthase kinase 3 and attenuates activity. J Biol Chem. 2006;281(8):4787–94.PubMedCrossRef Mi K, Dolan PJ, Johnson GV. The low density lipoprotein receptor-related protein 6 interacts with glycogen synthase kinase 3 and attenuates activity. J Biol Chem. 2006;281(8):4787–94.PubMedCrossRef
46.
go back to reference Rosin-Arbesfeld R, Townsley F, Bienz M. The APC tumour suppressor has a nuclear export function. Nature. 2000;406(6799):1009–12.PubMedCrossRef Rosin-Arbesfeld R, Townsley F, Bienz M. The APC tumour suppressor has a nuclear export function. Nature. 2000;406(6799):1009–12.PubMedCrossRef
47.
go back to reference Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, et al. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell. 1996;86(3):391–9.PubMedCrossRef Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, et al. XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell. 1996;86(3):391–9.PubMedCrossRef
48.
go back to reference Morishita EC, Murayama K, Kato-Murayama M, Ishizuka-Katsura Y, Tomabechi Y, Hayashi T, et al. Crystal structures of the armadillo repeat domain of adenomatous polyposis coli and its complex with the tyrosine-rich domain of Sam68. Structure. 2011;19(10):1496–508.PubMedCrossRef Morishita EC, Murayama K, Kato-Murayama M, Ishizuka-Katsura Y, Tomabechi Y, Hayashi T, et al. Crystal structures of the armadillo repeat domain of adenomatous polyposis coli and its complex with the tyrosine-rich domain of Sam68. Structure. 2011;19(10):1496–508.PubMedCrossRef
49.
go back to reference Mayer K, Hieronymus T, Castrop J, Clevers H, Ballhausen WG. Ectopic activation of lymphoid high mobility group-box transcription factor TCF-1 and overexpression in colorectal cancer cells. Int J Cancer. 1997;72(4):625–30.PubMedCrossRef Mayer K, Hieronymus T, Castrop J, Clevers H, Ballhausen WG. Ectopic activation of lymphoid high mobility group-box transcription factor TCF-1 and overexpression in colorectal cancer cells. Int J Cancer. 1997;72(4):625–30.PubMedCrossRef
50.
go back to reference Choi KH, Park MW, Lee SY, Jeon MY, Kim MY, Lee HK, et al. Intracellular expression of the T-cell factor-1 RNA aptamer as an intramer. Mol Cancer Ther. 2006;5(9):2428–34.PubMedCrossRef Choi KH, Park MW, Lee SY, Jeon MY, Kim MY, Lee HK, et al. Intracellular expression of the T-cell factor-1 RNA aptamer as an intramer. Mol Cancer Ther. 2006;5(9):2428–34.PubMedCrossRef
51.
go back to reference Lee SK, Park MW, Yang EG, Yu J, Jeong S. An RNA aptamer that binds to the beta-catenin interaction domain of TCF-1 protein. Biochem Biophys Res Commun. 2005;327(1):294–9.PubMedCrossRef Lee SK, Park MW, Yang EG, Yu J, Jeong S. An RNA aptamer that binds to the beta-catenin interaction domain of TCF-1 protein. Biochem Biophys Res Commun. 2005;327(1):294–9.PubMedCrossRef
52.
go back to reference Hamada F, Bienz M. The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Dev Cell. 2004;7(5):677–85.PubMedCrossRef Hamada F, Bienz M. The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Dev Cell. 2004;7(5):677–85.PubMedCrossRef
53.
go back to reference Juca CEB, Colli LM, Martins CS, Campanini ML, Paixao B, Juca RV, et al. Impact of the canonical wnt pathway activation on the pathogenesis and prognosis of Adamantinomatous Craniopharyngiomas. Horm Metab Res. 2018;50(7):575–81.PubMedCrossRef Juca CEB, Colli LM, Martins CS, Campanini ML, Paixao B, Juca RV, et al. Impact of the canonical wnt pathway activation on the pathogenesis and prognosis of Adamantinomatous Craniopharyngiomas. Horm Metab Res. 2018;50(7):575–81.PubMedCrossRef
54.
55.
go back to reference Rubinfeld B, Albert I, Porfiri E, Munemitsu S, Polakis P. Loss of beta-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Res. 1997;57(20):4624–30.PubMed Rubinfeld B, Albert I, Porfiri E, Munemitsu S, Polakis P. Loss of beta-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Res. 1997;57(20):4624–30.PubMed
56.
go back to reference Liu J, Xing Y, Hinds TR, Zheng J, Xu W. The third 20 amino acid repeat is the tightest binding site of APC for beta-catenin. J Mol Biol. 2006;360(1):133–44.PubMedCrossRef Liu J, Xing Y, Hinds TR, Zheng J, Xu W. The third 20 amino acid repeat is the tightest binding site of APC for beta-catenin. J Mol Biol. 2006;360(1):133–44.PubMedCrossRef
57.
go back to reference Nateri AS, Spencer-Dene B, Behrens A. Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature. 2005;437(7056):281–5.PubMedCrossRef Nateri AS, Spencer-Dene B, Behrens A. Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature. 2005;437(7056):281–5.PubMedCrossRef
58.
go back to reference Warner DR, Warner JB, Hardesty JE, Song YL, Chen CY, Chen Z, et al. Beneficial effects of an endogenous enrichment in n3-PUFAs on wnt signaling are associated with attenuation of alcohol-mediated liver disease in mice. FASEB J. 2021;35(2):e21377.PubMedCrossRef Warner DR, Warner JB, Hardesty JE, Song YL, Chen CY, Chen Z, et al. Beneficial effects of an endogenous enrichment in n3-PUFAs on wnt signaling are associated with attenuation of alcohol-mediated liver disease in mice. FASEB J. 2021;35(2):e21377.PubMedCrossRef
59.
go back to reference Jia Y, Yang Y, Liu S, Herman JG, Lu F, Guo M. SOX17 antagonizes WNT/beta-catenin signaling pathway in hepatocellular carcinoma. Epigenetics. 2010;5(8):743–9.PubMedCrossRef Jia Y, Yang Y, Liu S, Herman JG, Lu F, Guo M. SOX17 antagonizes WNT/beta-catenin signaling pathway in hepatocellular carcinoma. Epigenetics. 2010;5(8):743–9.PubMedCrossRef
Metadata
Title
Identifying novel interactions of the colon-cancer related APC protein with Wnt-pathway nuclear transcription factors
Authors
Nayra M. Al-Thani
Stephanie Schaefer-Ramadan
Jovana Aleksic
Yasmin A. Mohamoud
Joel A. Malek
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2022
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-022-02799-1

Other articles of this Issue 1/2022

Cancer Cell International 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine