Skip to main content
Top
Published in: BMC Infectious Diseases 1/2013

Open Access 01-12-2013 | Research article

Identification of vancomycin-resistant enterococci clones and inter-hospital spread during an outbreak in Taiwan

Authors: Sai-Cheong Lee, Mi-Si Wu, Hsiang-Ju Shih, Shu-Huan Huang, Meng-Jiun Chiou, Lai-Chu See, Liang-Kee Siu

Published in: BMC Infectious Diseases | Issue 1/2013

Login to get access

Abstract

Background

In 2003, nosocomial infections caused by vancomycin-resistant enterococci (VRE) occurred rarely in Taiwan. Between 2003 and 2010, however, the average prevalence of vancomycin resistance among enterococci spp. increased from 2% to 16% in community hospitals and from 3% to 21% in medical centers of Taiwan. We used molecular methods to investigate the epidemiology of VRE in a tertiary teaching hospital in Taiwan.

Methods

Between February 2009 and February 2011, rectal samples and infection site specimens were collected from all inpatients in the nephrology ward after patient consent was obtained. VRE strain types were determined by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST).

Results

A total of 59 vanA gene-containing VRE isolates (1 per patient) were obtained; 24 originated from rectal sample surveillance of patients who exhibited no symptoms (22 Enterococcus faecium and 2 Enterococcus faecalis), and 35 had developed infections over 3 days after admission (32 E. faecium, 2 E. faecalis, and 1 Enterococcus durans). The 59 VRE isolates demonstrated vancomycin minimum inhibitory concentrations (MICs) of ≥256 μg/m. The MIC range for linezolid, tigecycline, and daptomycin was 0.25–1.5 μg/mL, 0.032–0.25 and 1–4 μg/mL, respectively. For 56 isolates, the MIC for teicoplanin was >8 μg/mL. The predominant types in the nephrology ward were MLST types 414, 78, and18 as well as PFGE types A, C, and D.

Conclusion

VREs are endemic in nephrology wards. MLST 414 is the most predominant strain. The increase VRE prevalence is due to cross-transmission of VRE clones ST 414,78,18 by undetected VRE carriers. Because similar VRE STs had been reported in a different hospital of Taiwan, this finding may indicate inter-hospital VRE spread in Taiwan. Active surveillance and effective infection control policies are important controlling the spread of VRE in high risk hospital zones. All endemic VRE strains are resistant to teicoplanin but are sensitive to daptomycin, linezolid, and tigecycline.
Literature
1.
go back to reference Padiglione A, Wolfe R, Grabsch EA: Risk factors for the new detection of vancomycin-resistant enterococci (VRE) in acute-care hospitals that employ strict infection control procedures. Antimicrob Agents Chemother. 2003, 47: 2492-2498. 10.1128/AAC.47.8.2492-2498.2003.CrossRefPubMedPubMedCentral Padiglione A, Wolfe R, Grabsch EA: Risk factors for the new detection of vancomycin-resistant enterococci (VRE) in acute-care hospitals that employ strict infection control procedures. Antimicrob Agents Chemother. 2003, 47: 2492-2498. 10.1128/AAC.47.8.2492-2498.2003.CrossRefPubMedPubMedCentral
2.
go back to reference Grayson ML, Grabsch EA, Johnson PD: Outcome of a screening program for vancomycin-resistant enterococci in a hospital in Victoria. Med J Aust. 1999, 171: 133-136.PubMed Grayson ML, Grabsch EA, Johnson PD: Outcome of a screening program for vancomycin-resistant enterococci in a hospital in Victoria. Med J Aust. 1999, 171: 133-136.PubMed
3.
go back to reference Centers for Disease Control and Prevention: Guidelines for isolation precautions in hospitals. Am J Infect Control. 1996, 24: 24-52.CrossRef Centers for Disease Control and Prevention: Guidelines for isolation precautions in hospitals. Am J Infect Control. 1996, 24: 24-52.CrossRef
4.
go back to reference Centers for Disease Control and Prevention: Nosocomial enterococci resistant to vancomycin—United States, 1989–1993. MMWR Morb Mortal Wkly Rep. 1993, 42: 597-599. Centers for Disease Control and Prevention: Nosocomial enterococci resistant to vancomycin—United States, 1989–1993. MMWR Morb Mortal Wkly Rep. 1993, 42: 597-599.
5.
go back to reference Centers for Disease Control, Department of Health, Taiwan: Vancomycin-resistant enterococci. Taiwan Nosocomial Infections Surveillance Report 2003–2010. 2010, Taipei, Taiwan Centers for Disease Control, Department of Health, Taiwan: Vancomycin-resistant enterococci. Taiwan Nosocomial Infections Surveillance Report 2003–2010. 2010, Taipei, Taiwan
6.
go back to reference Hospital Infection Control Practices Advisory Committee (HICPAC): Recommendations for preventing the spread of vancomycin resistance. Infect Control Hosp Epidemiol. 1995, 16: 105-113.CrossRef Hospital Infection Control Practices Advisory Committee (HICPAC): Recommendations for preventing the spread of vancomycin resistance. Infect Control Hosp Epidemiol. 1995, 16: 105-113.CrossRef
7.
go back to reference Morris JG, Shay DK, Hebden JN, McCarter RJ, Perdue BE, Jarvis W: Enterococci resistant to multiple antimicrobial agents, including vancomycin: establishment of endemicity in a University Medical Center. Ann Intern Med. 1995, 123: 250-259.CrossRefPubMed Morris JG, Shay DK, Hebden JN, McCarter RJ, Perdue BE, Jarvis W: Enterococci resistant to multiple antimicrobial agents, including vancomycin: establishment of endemicity in a University Medical Center. Ann Intern Med. 1995, 123: 250-259.CrossRefPubMed
8.
go back to reference Livornese LL, Dias S, Samel C, Romanowski B, Taylor S, May P, Pitsakis P, Woods G, Kaye D, Levison ME: Hospital-acquired infection with vancomycin-resistant Enterococcus faecium transmitted by electronic thermometers. Ann Intern Med. 1992, 117: 112-116.CrossRefPubMed Livornese LL, Dias S, Samel C, Romanowski B, Taylor S, May P, Pitsakis P, Woods G, Kaye D, Levison ME: Hospital-acquired infection with vancomycin-resistant Enterococcus faecium transmitted by electronic thermometers. Ann Intern Med. 1992, 117: 112-116.CrossRefPubMed
9.
go back to reference Montecalvo MA, Horowitz H, Gedris C, Carbonaro C, Tenover FC, Issah A: Outbreak of vancomycin-, ampicillin-, and aminoglycoside-resistant Enterococcus faecium bacteremia in an adult oncology unit. Antimicrob Agents Chemother. 1994, 38: 1363-1367. 10.1128/AAC.38.6.1363.CrossRefPubMedPubMedCentral Montecalvo MA, Horowitz H, Gedris C, Carbonaro C, Tenover FC, Issah A: Outbreak of vancomycin-, ampicillin-, and aminoglycoside-resistant Enterococcus faecium bacteremia in an adult oncology unit. Antimicrob Agents Chemother. 1994, 38: 1363-1367. 10.1128/AAC.38.6.1363.CrossRefPubMedPubMedCentral
10.
go back to reference Chow JW, Kuritza A, Shlaes DM, Green M, Sahm DF, Zervos MJ: Clonal spread of vancomycin-resistant Enterococcus faecium between patients in three hospitals in two states. J Clin Microbiol. 1993, 31: 609-611. Chow JW, Kuritza A, Shlaes DM, Green M, Sahm DF, Zervos MJ: Clonal spread of vancomycin-resistant Enterococcus faecium between patients in three hospitals in two states. J Clin Microbiol. 1993, 31: 609-611.
11.
go back to reference Boyce JM, Opal SM, Chow JW, Zervos MJ, Potter-Bynoe G, Sherman CB, Romulo RL, Fortna S, Medeiros AA: Outbreak of multi-drug-resistant Enterococcus faecium with transferable vanB class vancomycin resistance. J Clin Microbiol. 1994, 32: 1148-1153.PubMedPubMedCentral Boyce JM, Opal SM, Chow JW, Zervos MJ, Potter-Bynoe G, Sherman CB, Romulo RL, Fortna S, Medeiros AA: Outbreak of multi-drug-resistant Enterococcus faecium with transferable vanB class vancomycin resistance. J Clin Microbiol. 1994, 32: 1148-1153.PubMedPubMedCentral
12.
go back to reference Slaughter S, Hayden M, Nathan C, Hu TC, Rice T, Van Voorhis J, Matushek M, Franklin C, Weinstein RA: A comparison of the effect of universal use of gloves and gowns with that of glove use alone on acquisition of vancomycin-resistant enterococci in a medical intensive care unit. Ann Intern Med. 1996, 125: 448-456.CrossRefPubMed Slaughter S, Hayden M, Nathan C, Hu TC, Rice T, Van Voorhis J, Matushek M, Franklin C, Weinstein RA: A comparison of the effect of universal use of gloves and gowns with that of glove use alone on acquisition of vancomycin-resistant enterococci in a medical intensive care unit. Ann Intern Med. 1996, 125: 448-456.CrossRefPubMed
13.
go back to reference Clinical and Laboratory Standards Institute: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (M7-A8). 2009, Wayne, Pennsylvania: Clinical and Laboratory Standard Institute Clinical and Laboratory Standards Institute: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (M7-A8). 2009, Wayne, Pennsylvania: Clinical and Laboratory Standard Institute
14.
go back to reference Clinical and Laboratory Standards Institute: Performance Standards for Antimicrobial Susceptibility Testing: Nineteenth Informational Supplement (M100-S19). 2009, Wayne, PA: Clinical and Laboratory Standard Institute Clinical and Laboratory Standards Institute: Performance Standards for Antimicrobial Susceptibility Testing: Nineteenth Informational Supplement (M100-S19). 2009, Wayne, PA: Clinical and Laboratory Standard Institute
15.
go back to reference Murray BE, Singh KV, Heath JD, Sharma BR, Weinstock GM: Comparison of genomic DNAs of different enterococcal isolates using restriction endonucleases with infrequent recognition sites. J Clin Microbiol. 1990, 28: 2059-2063.PubMedPubMedCentral Murray BE, Singh KV, Heath JD, Sharma BR, Weinstock GM: Comparison of genomic DNAs of different enterococcal isolates using restriction endonucleases with infrequent recognition sites. J Clin Microbiol. 1990, 28: 2059-2063.PubMedPubMedCentral
16.
go back to reference Goering RV: Molecular epidemiology of nosocomial infection: analysis of chromosomal restriction patterns by pulsed-field gel electrophoresis. Infect Control Hosp Epidemiol. 1993, 14: 595-600. 10.1086/646645.CrossRefPubMed Goering RV: Molecular epidemiology of nosocomial infection: analysis of chromosomal restriction patterns by pulsed-field gel electrophoresis. Infect Control Hosp Epidemiol. 1993, 14: 595-600. 10.1086/646645.CrossRefPubMed
17.
go back to reference Enright MC, Day NPJ, Davies CE, Peacock SJ, Spratt BG: Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000, 38: 1008-1015.PubMedPubMedCentral Enright MC, Day NPJ, Davies CE, Peacock SJ, Spratt BG: Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000, 38: 1008-1015.PubMedPubMedCentral
18.
go back to reference Evers S, Sahm DF, Courvalin P: The vanB gene of vancomycin resistant Enterococcus faecalis V583 is structurally related to genes encoding D-Ala:D-Ala ligases and glycopeptide resistance proteins vanA and vanC. Gene. 1993, 24: 143-144.CrossRef Evers S, Sahm DF, Courvalin P: The vanB gene of vancomycin resistant Enterococcus faecalis V583 is structurally related to genes encoding D-Ala:D-Ala ligases and glycopeptide resistance proteins vanA and vanC. Gene. 1993, 24: 143-144.CrossRef
19.
go back to reference Brisson-Noël A, Dutka-Malen S, Molinas C, Leclerq R, Courvalin P: Cloning and heterospecific expression of the resistance determinant vanA encoding high-level resistance to glycopeptides in Enterococcus faecium BM4147. Antimicrob Agents Chemother. 1990, 34: 924-927. 10.1128/AAC.34.5.924.CrossRefPubMedPubMedCentral Brisson-Noël A, Dutka-Malen S, Molinas C, Leclerq R, Courvalin P: Cloning and heterospecific expression of the resistance determinant vanA encoding high-level resistance to glycopeptides in Enterococcus faecium BM4147. Antimicrob Agents Chemother. 1990, 34: 924-927. 10.1128/AAC.34.5.924.CrossRefPubMedPubMedCentral
20.
go back to reference Smith TL, Iwen PC, Olson SB, Rupp ME: Environmental contamination with vancomycin-resistant enterococci in an outpatient setting. Infect Control Hosp Epidemiol. 1998, 19: 515-518. 10.1086/647862.CrossRefPubMed Smith TL, Iwen PC, Olson SB, Rupp ME: Environmental contamination with vancomycin-resistant enterococci in an outpatient setting. Infect Control Hosp Epidemiol. 1998, 19: 515-518. 10.1086/647862.CrossRefPubMed
21.
go back to reference Edmond MB, Ober JF, Weinbaum DL: Vancomycin-resistant Enterococcus faecium bacteremia: risk factors for infection. Clin Infect Dis. 1995, 20: 1126-1133. 10.1093/clinids/20.5.1126.CrossRefPubMed Edmond MB, Ober JF, Weinbaum DL: Vancomycin-resistant Enterococcus faecium bacteremia: risk factors for infection. Clin Infect Dis. 1995, 20: 1126-1133. 10.1093/clinids/20.5.1126.CrossRefPubMed
22.
go back to reference Cho HH, Sung JY, Kwon KC, Lim JS, Koo SH: Antimicrobial resistance and multilocus sequence typing of vancomycin-resistant Enterococcus faecium isolated from the Chungcheong area. Korean J Clin Microbiol. 2011, 14: 60-66. 10.5145/KJCM.2011.14.2.60.CrossRef Cho HH, Sung JY, Kwon KC, Lim JS, Koo SH: Antimicrobial resistance and multilocus sequence typing of vancomycin-resistant Enterococcus faecium isolated from the Chungcheong area. Korean J Clin Microbiol. 2011, 14: 60-66. 10.5145/KJCM.2011.14.2.60.CrossRef
23.
go back to reference Lu CL, Chuang YC, Chang HC, Chen YC, Wang JT, Chang SC: Microbiological and clinical characteristics of vancomycin-resistant Enterococcus faecium bacteraemia in Taiwan: implication of sequence type for prognosis. J Antimicrob Chemother. 2012, 67: 2243-2249. 10.1093/jac/dks181.CrossRefPubMed Lu CL, Chuang YC, Chang HC, Chen YC, Wang JT, Chang SC: Microbiological and clinical characteristics of vancomycin-resistant Enterococcus faecium bacteraemia in Taiwan: implication of sequence type for prognosis. J Antimicrob Chemother. 2012, 67: 2243-2249. 10.1093/jac/dks181.CrossRefPubMed
Metadata
Title
Identification of vancomycin-resistant enterococci clones and inter-hospital spread during an outbreak in Taiwan
Authors
Sai-Cheong Lee
Mi-Si Wu
Hsiang-Ju Shih
Shu-Huan Huang
Meng-Jiun Chiou
Lai-Chu See
Liang-Kee Siu
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2013
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/1471-2334-13-163

Other articles of this Issue 1/2013

BMC Infectious Diseases 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine