Skip to main content
Top
Published in: BMC Public Health 1/2008

Open Access 01-12-2008 | Research article

Identification of patients for clinical risk assessment by prediction of cardiovascular risk using default risk factor values

Author: Tom Marshall

Published in: BMC Public Health | Issue 1/2008

Login to get access

Abstract

Background

To identify high risk patients without cardiovascular disease requires assessment of risk factors. Primary care providers must therefore determine which patients without cardiovascular disease should be highest priority for cardiovascular risk assessment. One approach is to prioritise patients for assessment using a prior estimate of their cardiovascular risk. This prior estimate of cardiovascular risk is derived from risk factor data that are routinely held in electronic medical records, with unknown blood pressure and cholesterol levels replaced by default values derived from national survey data. This paper analyses the test characteristics of using such a strategy for identification of high risk patients.

Methods

Prior estimates of Framingham cardiovascular risk were derived in a population obtained from the Health Survey for England 2003. Receiver operating characteristics curves were constructed for using a prior estimate of cardiovascular risk to identify patients at greater than 20% ten-year cardiovascular risk. This was compared to strategies using age, or diabetic and antihypertensive treatment status to identify high risk patients.

Results

The area under the curve for a prior estimate of cardiovascular risk calculated using minimum data (0.933, 95% CI: 0.925 to 0.941) is significantly greater than for a selection strategy based on age (0.892, 95% CI: 0.882 to 0.902), or diabetic and hypertensive status (0.608, 95% CI: 0.584 to 0.632).

Conclusion

Using routine data held on primary care databases it is possible to identify a population at high risk of cardiovascular disease. Information technology to help primary care prioritise patients for cardiovascular disease prevention may improve the efficiency of cardiovascular risk assessment.
Appendix
Available only for authorised users
Literature
1.
go back to reference Anderson KM, Odell PM, Silson PWF, Kannel WB: Cardiovascular disease risk profiles. American Heart Journal. 1991, 121: 293-8. 10.1016/0002-8703(91)90861-B.CrossRefPubMed Anderson KM, Odell PM, Silson PWF, Kannel WB: Cardiovascular disease risk profiles. American Heart Journal. 1991, 121: 293-8. 10.1016/0002-8703(91)90861-B.CrossRefPubMed
2.
go back to reference Williams B, Poulter NR, Brown MJ, Davis M, McInnes GT, Potter JF, Sever PS, Thom SMcG: Guidelines for management of hypertension: report of the fourth working party of the British Hypertension Society, 2004 – BHS IV. Journal of Human Hypertension. 2004, 18: 139-185. 10.1038/sj.jhh.1001683.CrossRefPubMed Williams B, Poulter NR, Brown MJ, Davis M, McInnes GT, Potter JF, Sever PS, Thom SMcG: Guidelines for management of hypertension: report of the fourth working party of the British Hypertension Society, 2004 – BHS IV. Journal of Human Hypertension. 2004, 18: 139-185. 10.1038/sj.jhh.1001683.CrossRefPubMed
3.
go back to reference Marshall T, Rouse A: Resource implications and health benefits of primary prevention strategies for cardiovascular disease in people aged 30 to 74: mathematical modelling study. British Medical Journal. 2002, 325: 197-199. 10.1136/bmj.325.7357.197.CrossRefPubMedPubMedCentral Marshall T, Rouse A: Resource implications and health benefits of primary prevention strategies for cardiovascular disease in people aged 30 to 74: mathematical modelling study. British Medical Journal. 2002, 325: 197-199. 10.1136/bmj.325.7357.197.CrossRefPubMedPubMedCentral
7.
go back to reference Marshall T: When measurements are misleading: modelling the effects of blood pressure misclassification in the English population. British Medical Journal. 2004, 328: 933-10.1136/bmj.328.7445.933.CrossRefPubMedPubMedCentral Marshall T: When measurements are misleading: modelling the effects of blood pressure misclassification in the English population. British Medical Journal. 2004, 328: 933-10.1136/bmj.328.7445.933.CrossRefPubMedPubMedCentral
8.
go back to reference Marshall T: Misleading measurements: modelling the effects of blood pressure misclassification in a United States population. Medical Decision Making. 2006, 26: 624-632. 10.1177/0272989X06295356.CrossRefPubMed Marshall T: Misleading measurements: modelling the effects of blood pressure misclassification in a United States population. Medical Decision Making. 2006, 26: 624-632. 10.1177/0272989X06295356.CrossRefPubMed
9.
go back to reference Marshall T: Measuring blood pressure: the importance of understanding variation. Brazilian Journal of Hypertension. 2005, 12 (2): 75-82. Marshall T: Measuring blood pressure: the importance of understanding variation. Brazilian Journal of Hypertension. 2005, 12 (2): 75-82.
10.
go back to reference Marshall T, Tennant R, Harrison WN: Estimating the proportion of young adults on antihypertensive treatment that have been correctly diagnosed. Journal of Human Hypertension. 2007, 10.1038/sj.jhh.1002291. [Early online publication: September 13, 2007] Marshall T, Tennant R, Harrison WN: Estimating the proportion of young adults on antihypertensive treatment that have been correctly diagnosed. Journal of Human Hypertension. 2007, 10.1038/sj.jhh.1002291. [Early online publication: September 13, 2007]
11.
go back to reference Wright JM, Musini VJ: Blood pressure variability: lessons learned from a systematic review. Poster presentation D20, 8th International Cochrane Colloquium. October 2000, Cape Town. Further details obtained from a personal communication (e-mail) on 21st July 2003. 2000, October , Cape Town. Further details obtained from a personal communication (e-mail) on 21st July 2003 Wright JM, Musini VJ: Blood pressure variability: lessons learned from a systematic review. Poster presentation D20, 8th International Cochrane Colloquium. October 2000, Cape Town. Further details obtained from a personal communication (e-mail) on 21st July 2003. 2000, October , Cape Town. Further details obtained from a personal communication (e-mail) on 21st July 2003
12.
go back to reference Nazir DJ, Roberts RS, Hill SA, McQueen MJ: Monthly intra-individual variation in lipids over a 1-year period in 22 normal subjects. Clinical Biochemistry. 1999, 32 (5): 381-9. 10.1016/S0009-9120(99)00030-2.CrossRefPubMed Nazir DJ, Roberts RS, Hill SA, McQueen MJ: Monthly intra-individual variation in lipids over a 1-year period in 22 normal subjects. Clinical Biochemistry. 1999, 32 (5): 381-9. 10.1016/S0009-9120(99)00030-2.CrossRefPubMed
13.
go back to reference Department of Health: Preventing coronary heart disease in high risk patients. National service framework for coronary heart disease. 2000, London: Department of Health, 2: 2- Department of Health: Preventing coronary heart disease in high risk patients. National service framework for coronary heart disease. 2000, London: Department of Health, 2: 2-
14.
go back to reference Marshall T: The use of cardiovascular risk factor information in practice databases: making the best of patient data. British Journal of General Practice. 2006, 8: 600-605. Marshall T: The use of cardiovascular risk factor information in practice databases: making the best of patient data. British Journal of General Practice. 2006, 8: 600-605.
15.
go back to reference Conroy RM, Pyörälä K, Fitzgerald AP, Sans S, Menotti A, De Backer G, De Bacquer D, Ducimeti P, Jousilahtig P, on behalf of the SCORE project group, et al: Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. European Heart Journal. 2003, 24: 987-1003. 10.1016/S0195-668X(03)00114-3.CrossRefPubMed Conroy RM, Pyörälä K, Fitzgerald AP, Sans S, Menotti A, De Backer G, De Bacquer D, Ducimeti P, Jousilahtig P, on behalf of the SCORE project group, et al: Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. European Heart Journal. 2003, 24: 987-1003. 10.1016/S0195-668X(03)00114-3.CrossRefPubMed
16.
go back to reference Woodward M, Brindle P, Tunstall-Pedoe H: SIGN group on risk estimation. Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart. 2007, 93 (2): 172-6. 10.1136/hrt.2006.108167.CrossRefPubMed Woodward M, Brindle P, Tunstall-Pedoe H: SIGN group on risk estimation. Adding social deprivation and family history to cardiovascular risk assessment: the ASSIGN score from the Scottish Heart Health Extended Cohort (SHHEC). Heart. 2007, 93 (2): 172-6. 10.1136/hrt.2006.108167.CrossRefPubMed
17.
go back to reference Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P: Derivation and validation of QRISK. A new cardiovascular disease risk score for the UK. British Medical Journal. 2007, 10.1136/bmj.39261.471806.55. Hippisley-Cox J, Coupland C, Vinogradova Y, Robson J, May M, Brindle P: Derivation and validation of QRISK. A new cardiovascular disease risk score for the UK. British Medical Journal. 2007, 10.1136/bmj.39261.471806.55.
Metadata
Title
Identification of patients for clinical risk assessment by prediction of cardiovascular risk using default risk factor values
Author
Tom Marshall
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2008
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/1471-2458-8-25

Other articles of this Issue 1/2008

BMC Public Health 1/2008 Go to the issue