Skip to main content
Top
Published in: Inflammation 1/2014

01-02-2014

Identification of MicroRNAs Dysregulated in CD14 Gene Silencing RAW264.7 Macrophage Cells

Authors: Li Du, Hui Rong, Ying Cheng, Shiyu Guo, Qiaoyun Shi, Xiaoxiao Jia, Huapei Zhu, Yongchang Hao, Kailian Xu, Jianing Zhang, Hanwei Jiao, Tianjing Zhao, Hui Zhang, Chuangfu Chen, Fengyang Wang

Published in: Inflammation | Issue 1/2014

Login to get access

Abstract

A cluster of differentiation antigen 14 (CD14) is involved in lipopolysaccharide (LPS)-induced proinflammatory cytokine release and LPS-induced septic shock. MicroRNAs (miRNAs) are short non-coding RNAs that are involved in the epigenetic regulation of cellular process and bacterial infection. Our previous study indicated that siRNA against CD14 effectively inhibited LPS-induced tumor necrosis factor alpha, chemokine (C-X-C motif) ligand 2, interleukin-6 release, and NO production. To identify miRNAs which are affected by CD14 gene silencing and dissect the mechanisms of the attenuating of LPS-induced damaging immune activation more clearly, based on the CD14 knockdown RAW264.7 macrophage cell line established in our previous study, miRNAs expression profiling of CD14 knockdown RAW264.7 cells were analyzed with miRNA microarray and validated by qRT-PCR, the potential targets were predicted and subjected to gene ontology (GO) pathway and biological processes analysis. We demonstrated for the first time that CD14 knockdown significantly changed the expression of 199a-3p, miR-199a-5p, and miR-21-5p in RAW264.7 cells, and significantly enriched GO terms in the predicted target genes of these miRNAs were apoptosis process, immune response, inflammatory response, innate immune response, anti-apoptosis, cytokine production, and cytokine-mediated signaling pathway. These findings may improve our understanding about functional mechanism of miRNAs in the attenuating of LPS-induced damaging immune activation more clearly.
Literature
1.
go back to reference Janeway, C.A., and R. Medzhitov. 2002. Innate immune recognition. Annual Review of Immunology 20: 197–216.CrossRef Janeway, C.A., and R. Medzhitov. 2002. Innate immune recognition. Annual Review of Immunology 20: 197–216.CrossRef
2.
go back to reference Haziot, A., E. Ferrero, F. Köntgen, N. Hijiya, S. Yamamoto, J. Silver, C.L. Stewart, and S.M. Goyert. 1996. Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity 4: 407–414.CrossRef Haziot, A., E. Ferrero, F. Köntgen, N. Hijiya, S. Yamamoto, J. Silver, C.L. Stewart, and S.M. Goyert. 1996. Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice. Immunity 4: 407–414.CrossRef
3.
go back to reference Triantafilou, M., K. Triantafilou, and N. Fernandez. 2000. Rough and smooth forms of fluorescein-labelled bacterial endotoxin exhibit CD14/LBP dependent and independent binding that is influenced by endotoxin concentration. European Journal of Biochemistry 267: 2218–2226.CrossRef Triantafilou, M., K. Triantafilou, and N. Fernandez. 2000. Rough and smooth forms of fluorescein-labelled bacterial endotoxin exhibit CD14/LBP dependent and independent binding that is influenced by endotoxin concentration. European Journal of Biochemistry 267: 2218–2226.CrossRef
4.
go back to reference Liu, J., S. Batkai, P. Pacher, J. Harvey-White, J.A. Wagner, B.F. Cravatt, B. Gao, and G. Kunos. 2003. Lipopolysaccharide induces anandamide synthesis in macrophages via CD14/MAPK/Phosphoinositide3-Kinase/NF-κB independently of platelet-activating factor. Journal of Biological Chemistry 278: 45034–45039.CrossRef Liu, J., S. Batkai, P. Pacher, J. Harvey-White, J.A. Wagner, B.F. Cravatt, B. Gao, and G. Kunos. 2003. Lipopolysaccharide induces anandamide synthesis in macrophages via CD14/MAPK/Phosphoinositide3-Kinase/NF-κB independently of platelet-activating factor. Journal of Biological Chemistry 278: 45034–45039.CrossRef
5.
go back to reference Maris, N.A., M.C. Dessing, A.F. de Vos, P. Bresser, J.S. van der Zee, H.M. Jansen, C.A. Spek, and T. van der Poll. 2006. Toll-like receptor mRNA levels in alveolar macrophages after inhalation of endotoxin. European Respiratory Journal 28: 622–626.CrossRef Maris, N.A., M.C. Dessing, A.F. de Vos, P. Bresser, J.S. van der Zee, H.M. Jansen, C.A. Spek, and T. van der Poll. 2006. Toll-like receptor mRNA levels in alveolar macrophages after inhalation of endotoxin. European Respiratory Journal 28: 622–626.CrossRef
6.
go back to reference Matsuguchi, T., A. Masuda, K. Sugimoto, Y. Nagai, and Y. Yoshikai. 2003. JNK-interacting protein 3 associates with Toll-like receptor 4 and is involved in LPS-mediated JNK activation. EMBO Journal 22: 4455–4464.CrossRef Matsuguchi, T., A. Masuda, K. Sugimoto, Y. Nagai, and Y. Yoshikai. 2003. JNK-interacting protein 3 associates with Toll-like receptor 4 and is involved in LPS-mediated JNK activation. EMBO Journal 22: 4455–4464.CrossRef
7.
go back to reference Chen, C.Z., L. Li, H.F. Lodish, and D. Bartel. 2004. MicroRNAs modulate hematopoietic lineage differentiation. Science 303: 83–86.CrossRef Chen, C.Z., L. Li, H.F. Lodish, and D. Bartel. 2004. MicroRNAs modulate hematopoietic lineage differentiation. Science 303: 83–86.CrossRef
8.
go back to reference Hannafon, B.N., P. Sebastiani, A. de las Morenas, J. Lu, and C.L. Rosenberg. 2011. Expression of microRNA and their gene targets are dysregulated in preinvasive breast cancer. Breast Cancer Research 13: R24.CrossRef Hannafon, B.N., P. Sebastiani, A. de las Morenas, J. Lu, and C.L. Rosenberg. 2011. Expression of microRNA and their gene targets are dysregulated in preinvasive breast cancer. Breast Cancer Research 13: R24.CrossRef
9.
go back to reference Tili, E., J.J. Michaille, A. Cimino, S. Costinean, C.D. Dumitru, B. Adair, M. Fabbri, H. Alder, C.G. Liu, G.A. Calin, and C.M. Croce. 2007. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulation the response to entodoxin shock. Journal Imunology 179: 5082–5089.CrossRef Tili, E., J.J. Michaille, A. Cimino, S. Costinean, C.D. Dumitru, B. Adair, M. Fabbri, H. Alder, C.G. Liu, G.A. Calin, and C.M. Croce. 2007. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulation the response to entodoxin shock. Journal Imunology 179: 5082–5089.CrossRef
10.
go back to reference Ruggiero, T., M. Trabucchi, F. De Santa, S. Zupo, B.D. Harfe, M.T. McManus, M.G. Rosenfeld, P. Briata, and R. Gherzi. 2009. LPS induces KH-type splicing regulatory protein-dependendent processing of microRNA-155 precursors in macrophages. FASEB Journal 23(9): 2898–2908.CrossRef Ruggiero, T., M. Trabucchi, F. De Santa, S. Zupo, B.D. Harfe, M.T. McManus, M.G. Rosenfeld, P. Briata, and R. Gherzi. 2009. LPS induces KH-type splicing regulatory protein-dependendent processing of microRNA-155 precursors in macrophages. FASEB Journal 23(9): 2898–2908.CrossRef
11.
go back to reference Sheedy, F.J., and L.A. O’Neill. 2008. Adding fuel to fire: microRNAs as a new class of mediators of inflammation. Annals of Rheumatic Diseases 67(Suppl 3): iii50–5.CrossRef Sheedy, F.J., and L.A. O’Neill. 2008. Adding fuel to fire: microRNAs as a new class of mediators of inflammation. Annals of Rheumatic Diseases 67(Suppl 3): iii50–5.CrossRef
12.
go back to reference Cheng, Y., W. Kuang, Y. Hao, D.L. Zhang, M. Lei, L. Du, H.W. Jiao, X.R. Zhang, and F.Y. Wang. 2012. Downregulation of miR-27a* and miR-532-5p and upregulation of miR-146a and miR-155 in LPS-induced RAW264.7 macrophage cells. Inflammation 35: 1308–1313.CrossRef Cheng, Y., W. Kuang, Y. Hao, D.L. Zhang, M. Lei, L. Du, H.W. Jiao, X.R. Zhang, and F.Y. Wang. 2012. Downregulation of miR-27a* and miR-532-5p and upregulation of miR-146a and miR-155 in LPS-induced RAW264.7 macrophage cells. Inflammation 35: 1308–1313.CrossRef
13.
go back to reference Lei, M., L. Du, H.W. Jiao, Y. Cheng, D. Zhang, Y. Hao, G. Li, W. Qiu, Q. Fan, C. Li, C. Chen, and F.Y. Wang. 2012. Inhibition of mCD14 inhibits TNFα secretion and NO production in RAW264.7 cells stimulated by B. melitensis infection. Veterinary Microbiology 160(3–4): 362–368.CrossRef Lei, M., L. Du, H.W. Jiao, Y. Cheng, D. Zhang, Y. Hao, G. Li, W. Qiu, Q. Fan, C. Li, C. Chen, and F.Y. Wang. 2012. Inhibition of mCD14 inhibits TNFα secretion and NO production in RAW264.7 cells stimulated by B. melitensis infection. Veterinary Microbiology 160(3–4): 362–368.CrossRef
14.
go back to reference Dykxhoorn, D.M., Y. Wu, H. Xie, F. Yu, A. Lal, F.F. Petrocca, D. Martinvalet, E. Song, B. Lim, and J. Lieberman. 2009. miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS One 4: e7181.CrossRef Dykxhoorn, D.M., Y. Wu, H. Xie, F. Yu, A. Lal, F.F. Petrocca, D. Martinvalet, E. Song, B. Lim, and J. Lieberman. 2009. miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS One 4: e7181.CrossRef
15.
go back to reference Lino Cardenas, C.L., I.S. Henaoui, E. Courcot, C. Roderburg, C. Cauffiez, S. Aubert, M.C. Copin, B. Wallaert, F. Glowacki, E. Dewaeles, J. Milosevic, J. Maurizio, J. Tedrow, B. Marcet, J.M. Lo-Guidice, N. Kaminski, P. Barbry, T. Luedde, M. Perrais, B. Mari, and N. Pottier. 2013. miR-199a-5p is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genetics 9(2): e1003291.CrossRef Lino Cardenas, C.L., I.S. Henaoui, E. Courcot, C. Roderburg, C. Cauffiez, S. Aubert, M.C. Copin, B. Wallaert, F. Glowacki, E. Dewaeles, J. Milosevic, J. Maurizio, J. Tedrow, B. Marcet, J.M. Lo-Guidice, N. Kaminski, P. Barbry, T. Luedde, M. Perrais, B. Mari, and N. Pottier. 2013. miR-199a-5p is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genetics 9(2): e1003291.CrossRef
16.
go back to reference Mariana, L., R. Reinhard, J. Meyer, B. Arndt, and T. Thomas. 2003. New microRNAs from mouse and human. RNA 9(2): 175–179.CrossRef Mariana, L., R. Reinhard, J. Meyer, B. Arndt, and T. Thomas. 2003. New microRNAs from mouse and human. RNA 9(2): 175–179.CrossRef
17.
go back to reference Shatseva, T., D.Y. Lee, Z. Deng, and B.B. Yang. 2011. MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2. Journal of Cell Science 124(Pt 16): 2826–2836.CrossRef Shatseva, T., D.Y. Lee, Z. Deng, and B.B. Yang. 2011. MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2. Journal of Cell Science 124(Pt 16): 2826–2836.CrossRef
18.
go back to reference Zhang, Y., K.J. Fan, Q. Sun, A.Z. Chen, W.L. Shen, Z.H. Zhao, X.F. Zheng, and X. Yang. 2012. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-β signalling pathway. Nucleic Acids Research 40(18): 9286–9297.CrossRef Zhang, Y., K.J. Fan, Q. Sun, A.Z. Chen, W.L. Shen, Z.H. Zhao, X.F. Zheng, and X. Yang. 2012. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-β signalling pathway. Nucleic Acids Research 40(18): 9286–9297.CrossRef
19.
go back to reference Zhang, S., L.Liu, R.Wang, H.Tuo, Y. Guo, L. Yi, J.Wang, and D.Wang. 2013. MiR-199a-5p promotes migration and tube formation of human cytomegalovirus-infected endothelial cells through downregulation of SIRT1 and eNOS. Archives of Virology. I Zhang, S., L.Liu, R.Wang, H.Tuo, Y. Guo, L. Yi, J.Wang, and D.Wang. 2013. MiR-199a-5p promotes migration and tube formation of human cytomegalovirus-infected endothelial cells through downregulation of SIRT1 and eNOS. Archives of Virology. I
20.
go back to reference Sanchez-Diaz, P.C., T.H. Hsiao, J.C. Chang, D. Yue, M.C. Tan, H.I. Chen, G.E. Tomlinson, Y. Huang, Y. Chen, and J.Y. Hung. 2013. De-regulated microRNAs in pediatric cancer stem cells target pathways involved in cell proliferation, cell cycle and development. PLoS One 8(4): e61622.CrossRef Sanchez-Diaz, P.C., T.H. Hsiao, J.C. Chang, D. Yue, M.C. Tan, H.I. Chen, G.E. Tomlinson, Y. Huang, Y. Chen, and J.Y. Hung. 2013. De-regulated microRNAs in pediatric cancer stem cells target pathways involved in cell proliferation, cell cycle and development. PLoS One 8(4): e61622.CrossRef
21.
go back to reference Bode, J.G., C. Ehlting, and D. Häussinger. 2012. The macrophage response towards LPS and its control through the p38(MAPK)-STAT3 axis. Cellular Signalling 24(6): 1185–1194.CrossRef Bode, J.G., C. Ehlting, and D. Häussinger. 2012. The macrophage response towards LPS and its control through the p38(MAPK)-STAT3 axis. Cellular Signalling 24(6): 1185–1194.CrossRef
22.
go back to reference Guha, M.N., and Mackman. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling 13(2): 85–94.CrossRef Guha, M.N., and Mackman. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling 13(2): 85–94.CrossRef
Metadata
Title
Identification of MicroRNAs Dysregulated in CD14 Gene Silencing RAW264.7 Macrophage Cells
Authors
Li Du
Hui Rong
Ying Cheng
Shiyu Guo
Qiaoyun Shi
Xiaoxiao Jia
Huapei Zhu
Yongchang Hao
Kailian Xu
Jianing Zhang
Hanwei Jiao
Tianjing Zhao
Hui Zhang
Chuangfu Chen
Fengyang Wang
Publication date
01-02-2014
Publisher
Springer US
Published in
Inflammation / Issue 1/2014
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-013-9739-3

Other articles of this Issue 1/2014

Inflammation 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine