Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2017

Open Access 01-12-2017 | Research

Identification of differential genomic DNA Methylation in the hypothalamus of pubertal rat using reduced representation Bisulfite sequencing

Authors: Lei Luo, Zhiqiu Yao, Jing Ye, Yuan Tian, Chen Yang, Xiaoxiao Gao, Min Song, Ya Liu, Yunhai Zhang, Yunsheng Li, Xiaorong Zhang, Fugui Fang

Published in: Reproductive Biology and Endocrinology | Issue 1/2017

Login to get access

Abstract

Background

There are many variables affecting the onset of puberty in animals, including genetic, nutritional, and environmental factors. Recent studies suggest that epigenetic regulation, especially DNA methylation, plays a majorrole in the regulation of puberty. However, there have been no reports on DNA methylation of the pubertal genome.

Methods

We investigated DNA methylation in the female rat hypothalamus at prepuberty and puberty using reduced representation bisulfite sequencing technology. The identified genes and signaling pathways exhibiting changes to DNA methylation in pubertal rats were determined by Gene Ontogeny and Kyoto Encyclopedia of Genes and Genomes analysis.

Results

The distribution of the three types of methylated C bases in promoter and CpG island (CGI) regions in the hypothalamus was as follows: 87.79% CG, 3.05% CHG, 9.16% CHH for promoters, and 88.35% CG, 3.21% CHG, 88.35% CHH for CGI in prepubertal rats; and 90.78% CG, 2.13% CHG, 7.09% CHH for promoters, and 88.59% CG, 88.59% CHG, 8.35% CHH for CGI in pubertal animals. CG showed the highest percentage of methylation, and was the highest methylation state in CGI. Compared to prepubertal hyoyhalamus samples, we identified ten genes with altered methylation in promoter regions in the pubertal hypothalamus samples, and 43 genes with altered methylation in the CGI. Changes in DNA methylation were found in gonadotropin-releasing hormone signaling pathways, and the oocyte meiosis pathway.

Conclusion

Our results demonstrate changes in DNA methylation occur in female rats from prepuberty to puberty suggestng DNA methylation may play a crucial role in the regulation of puberty onset. This study provides essential information for future studies on the role of epigenetics in the regulation of puberty.
Appendix
Available only for authorised users
Literature
1.
go back to reference Banerjee I, Clayton P. The genetic basis for the timing of human puberty. J Neuroendocrinol. 2007;19:831–8.CrossRefPubMed Banerjee I, Clayton P. The genetic basis for the timing of human puberty. J Neuroendocrinol. 2007;19:831–8.CrossRefPubMed
2.
go back to reference Kaltiala-Heino R, Rimpela M, Rissanen A, Rantanen P. Early puberty and early sexual activity are associated with bulimic-type eating pathology in middle adolescence. J Adolesc Health. 2001;28:346–52.CrossRefPubMed Kaltiala-Heino R, Rimpela M, Rissanen A, Rantanen P. Early puberty and early sexual activity are associated with bulimic-type eating pathology in middle adolescence. J Adolesc Health. 2001;28:346–52.CrossRefPubMed
3.
go back to reference Kaltiala-Heino R, Kosunen E, Rimpela M. Pubertal timing, sexual behaviour and self-reported depression in middle adolescence. J Adolesc. 2003;26:531–45.CrossRefPubMed Kaltiala-Heino R, Kosunen E, Rimpela M. Pubertal timing, sexual behaviour and self-reported depression in middle adolescence. J Adolesc. 2003;26:531–45.CrossRefPubMed
4.
go back to reference Golub MS, Collman GW, Foster PM, Kimmel CA, Rajpert-De Meyts E, Reiter EO, Sharpe RM, Skakkebaek NE, Toppari J. Public health implications of altered puberty timing. Pediatrics. 2008;121(Suppl 3):S218–30.CrossRefPubMed Golub MS, Collman GW, Foster PM, Kimmel CA, Rajpert-De Meyts E, Reiter EO, Sharpe RM, Skakkebaek NE, Toppari J. Public health implications of altered puberty timing. Pediatrics. 2008;121(Suppl 3):S218–30.CrossRefPubMed
5.
go back to reference Elks CE, Ong KK, Scott RA, van der Schouw YT, Brand JS, Wark PA, Amiano P, Balkau B, Barricarte A, Boeing H, et al. Age at Menarche and Type 2 Diabetes Risk The EPIC-InterAct study. Diabetes Care. 2013;36:3526–34.CrossRefPubMedPubMedCentral Elks CE, Ong KK, Scott RA, van der Schouw YT, Brand JS, Wark PA, Amiano P, Balkau B, Barricarte A, Boeing H, et al. Age at Menarche and Type 2 Diabetes Risk The EPIC-InterAct study. Diabetes Care. 2013;36:3526–34.CrossRefPubMedPubMedCentral
6.
go back to reference Patterson JL, Beltranena E, Foxcroft GR. The effect of gilt age at first estrus and breeding on third estrus on sow body weight changes and long-term reproductive performance. J Anim Sci. 2010;88:2500–13.CrossRefPubMed Patterson JL, Beltranena E, Foxcroft GR. The effect of gilt age at first estrus and breeding on third estrus on sow body weight changes and long-term reproductive performance. J Anim Sci. 2010;88:2500–13.CrossRefPubMed
7.
go back to reference Rosales Nieto CA, Ferguson MB, Macleay CA, Briegel JR, Martin GB, Thompson AN. Selection for superior growth advances the onset of puberty and increases reproductive performance in ewe lambs. Animal. 2013;7:990–7.CrossRefPubMed Rosales Nieto CA, Ferguson MB, Macleay CA, Briegel JR, Martin GB, Thompson AN. Selection for superior growth advances the onset of puberty and increases reproductive performance in ewe lambs. Animal. 2013;7:990–7.CrossRefPubMed
8.
go back to reference Saito H, Sasaki Y, Koketsu Y. Associations between Age of Gilts at First Mating and Lifetime Performance or Culling Risk in Commercial Herds. J Vet Med Sci. 2011;73:555–9.CrossRefPubMed Saito H, Sasaki Y, Koketsu Y. Associations between Age of Gilts at First Mating and Lifetime Performance or Culling Risk in Commercial Herds. J Vet Med Sci. 2011;73:555–9.CrossRefPubMed
9.
go back to reference Nieto CAR, Thompson AN, Macleay CA, Briegel JR, Hedger MP, Ferguson MB, Martin GB. Relationships among body composition, circulating concentrations of leptin and follistatin, and the onset of puberty and fertility in young female sheep. Anim Reprod Sci. 2014;151:148–56.CrossRef Nieto CAR, Thompson AN, Macleay CA, Briegel JR, Hedger MP, Ferguson MB, Martin GB. Relationships among body composition, circulating concentrations of leptin and follistatin, and the onset of puberty and fertility in young female sheep. Anim Reprod Sci. 2014;151:148–56.CrossRef
10.
go back to reference Macedo DB, Brito VN, Latronico AC. New Causes of Central Precocious Puberty: The Role of Genetic Factors. Neuroendocrinology. 2014;100:1–8.CrossRef Macedo DB, Brito VN, Latronico AC. New Causes of Central Precocious Puberty: The Role of Genetic Factors. Neuroendocrinology. 2014;100:1–8.CrossRef
11.
12.
go back to reference Soliman A, De Sanctis V, Elalaily R, Bedair S. Advances in pubertal growth and factors influencing it: Can we increase pubertal growth? Indian J Endocrinol Metab. 2014;18:S53–62.CrossRefPubMedPubMedCentral Soliman A, De Sanctis V, Elalaily R, Bedair S. Advances in pubertal growth and factors influencing it: Can we increase pubertal growth? Indian J Endocrinol Metab. 2014;18:S53–62.CrossRefPubMedPubMedCentral
13.
go back to reference Lomniczi A, Wright H, Ojeda SR. Epigenetic regulation of female puberty. Front Neuroendocrinol. 2015;36:90–107.CrossRefPubMed Lomniczi A, Wright H, Ojeda SR. Epigenetic regulation of female puberty. Front Neuroendocrinol. 2015;36:90–107.CrossRefPubMed
14.
go back to reference Krewson TD, Supelak PJ, Hill AE, Singer JB, Lander ES, Nadeau JH, Palmert MR. Chromosomes 6 and 13 harbor genes that regulate pubertal timing in mouse chromosome substitution strains. Endocrinology. 2004;145:4447–51.CrossRefPubMed Krewson TD, Supelak PJ, Hill AE, Singer JB, Lander ES, Nadeau JH, Palmert MR. Chromosomes 6 and 13 harbor genes that regulate pubertal timing in mouse chromosome substitution strains. Endocrinology. 2004;145:4447–51.CrossRefPubMed
15.
go back to reference Ojeda SR, Lomniczi A, Mastronardi C, Heger S, Roth C, Parent AS, Matagne V, Mungenast AE. Minireview: the neuroendocrine regulation of puberty: is the time ripe for a systems biology approach? Endocrinology. 2006;147:1166–74.CrossRefPubMed Ojeda SR, Lomniczi A, Mastronardi C, Heger S, Roth C, Parent AS, Matagne V, Mungenast AE. Minireview: the neuroendocrine regulation of puberty: is the time ripe for a systems biology approach? Endocrinology. 2006;147:1166–74.CrossRefPubMed
16.
go back to reference Ojeda SR, Lomniczi A, Loche A, Matagne V, Kaidar G, Sandau US, Dissen GA. The transcriptional control of female puberty. Brain Res. 2010;1364:164–74.CrossRefPubMedPubMedCentral Ojeda SR, Lomniczi A, Loche A, Matagne V, Kaidar G, Sandau US, Dissen GA. The transcriptional control of female puberty. Brain Res. 2010;1364:164–74.CrossRefPubMedPubMedCentral
17.
go back to reference Teles MG, Bianco SD, Brito VN, Trarbach EB, Kuohung W, Xu S, Seminara SB, Mendonca BB, Kaiser UB, Latronico AC. A GPR54-activating mutation in a patient with central precocious puberty. N Engl J Med. 2008;358:709–15.CrossRefPubMedPubMedCentral Teles MG, Bianco SD, Brito VN, Trarbach EB, Kuohung W, Xu S, Seminara SB, Mendonca BB, Kaiser UB, Latronico AC. A GPR54-activating mutation in a patient with central precocious puberty. N Engl J Med. 2008;358:709–15.CrossRefPubMedPubMedCentral
18.
go back to reference Freitas KC, Ryan G, Brito VN, Tao YX, Costa EM, Mendonca BB, Segaloff D, Latronico AC. Molecular analysis of the neuropeptide Y1 receptor gene in human idiopathic gonadotropin-dependent precocious puberty and isolated hypogonadotropic hypogonadism. Fertil Steril. 2007;87:627–34.CrossRefPubMed Freitas KC, Ryan G, Brito VN, Tao YX, Costa EM, Mendonca BB, Segaloff D, Latronico AC. Molecular analysis of the neuropeptide Y1 receptor gene in human idiopathic gonadotropin-dependent precocious puberty and isolated hypogonadotropic hypogonadism. Fertil Steril. 2007;87:627–34.CrossRefPubMed
19.
go back to reference Elks CE, Ong KK. Whole genome associated studies for age at menarche. Brief Funct Genomics. 2011;10:91–7.CrossRefPubMed Elks CE, Ong KK. Whole genome associated studies for age at menarche. Brief Funct Genomics. 2011;10:91–7.CrossRefPubMed
20.
go back to reference Ojeda SR, Dubay C, Lomniczi A, Kaidar G, Matagne V, Sandau US, Dissen GA. Gene networks and the neuroendocrine regulation of puberty. Mol Cell Endocrinol. 2010;324:3–11.CrossRefPubMed Ojeda SR, Dubay C, Lomniczi A, Kaidar G, Matagne V, Sandau US, Dissen GA. Gene networks and the neuroendocrine regulation of puberty. Mol Cell Endocrinol. 2010;324:3–11.CrossRefPubMed
21.
go back to reference d'Anglemont de Tassigny X, Colledge WH. The role of kisspeptin signaling in reproduction. Physiology (Bethesda). 2010;25:207–17.CrossRef d'Anglemont de Tassigny X, Colledge WH. The role of kisspeptin signaling in reproduction. Physiology (Bethesda). 2010;25:207–17.CrossRef
22.
go back to reference Navarro VM. New insights into the control of pulsatile GnRH release: the role of Kiss1/neurokinin B neurons. Front Endocrinol. 2012;3:48.CrossRef Navarro VM. New insights into the control of pulsatile GnRH release: the role of Kiss1/neurokinin B neurons. Front Endocrinol. 2012;3:48.CrossRef
23.
go back to reference Tillet Y, Picard S, Bruneau G, Ciofi P, Wankowska M, Wojcik-Gladysz A, Polkowska J. Hypothalamic arcuate neuropeptide Y-neurons decrease periventricular somatostatin-neuronal activity before puberty in the female lamb: morphological arguments. J Chem Neuroanat. 2010;40:265–71.CrossRefPubMed Tillet Y, Picard S, Bruneau G, Ciofi P, Wankowska M, Wojcik-Gladysz A, Polkowska J. Hypothalamic arcuate neuropeptide Y-neurons decrease periventricular somatostatin-neuronal activity before puberty in the female lamb: morphological arguments. J Chem Neuroanat. 2010;40:265–71.CrossRefPubMed
24.
go back to reference Kamegai J, Minami S, Sugihara H, Hasegawa O, Higuchi H, Wakabayashi I. Growth hormone receptor gene is expressed in neuropeptide Y neurons in hypothalamic arcuate nucleus of rats. Endocrinology. 1996;137:2109–12.CrossRefPubMed Kamegai J, Minami S, Sugihara H, Hasegawa O, Higuchi H, Wakabayashi I. Growth hormone receptor gene is expressed in neuropeptide Y neurons in hypothalamic arcuate nucleus of rats. Endocrinology. 1996;137:2109–12.CrossRefPubMed
25.
go back to reference Atala A. Re: leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function. J Urol. 2014;191:1928.CrossRefPubMed Atala A. Re: leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function. J Urol. 2014;191:1928.CrossRefPubMed
26.
27.
go back to reference Park SW, Lee ST, Sohn YB, Cho SY, Kim SH, Kim SJ, Kim CH, Ko AR, Paik KH, Kim JW, Jin DK. LIN28B polymorphisms are associated with central precocious puberty and early puberty in girls. Korean J Pediatr. 2012;55:388–92.CrossRefPubMedPubMedCentral Park SW, Lee ST, Sohn YB, Cho SY, Kim SH, Kim SJ, Kim CH, Ko AR, Paik KH, Kim JW, Jin DK. LIN28B polymorphisms are associated with central precocious puberty and early puberty in girls. Korean J Pediatr. 2012;55:388–92.CrossRefPubMedPubMedCentral
28.
go back to reference Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, Serin A, Mungan NO, Cook JR, Ozbek MN, et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat Genet. 2009;41:354–8.CrossRefPubMed Topaloglu AK, Reimann F, Guclu M, Yalin AS, Kotan LD, Porter KM, Serin A, Mungan NO, Cook JR, Ozbek MN, et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat Genet. 2009;41:354–8.CrossRefPubMed
29.
go back to reference Ramaswamy S, Seminara SB, Ali B, Ciofi P, Amin NA, Plant TM. Neurokinin B stimulates GnRH release in the male monkey (Macaca mulatta) and is colocalized with kisspeptin in the arcuate nucleus. Endocrinology. 2010;151:4494–503.CrossRefPubMedPubMedCentral Ramaswamy S, Seminara SB, Ali B, Ciofi P, Amin NA, Plant TM. Neurokinin B stimulates GnRH release in the male monkey (Macaca mulatta) and is colocalized with kisspeptin in the arcuate nucleus. Endocrinology. 2010;151:4494–503.CrossRefPubMedPubMedCentral
30.
go back to reference Tusset C, Noel SD, Trarbach EB, Silveira LF, Jorge AA, Brito VN, Cukier P, Seminara SB, Mendonca BB, Kaiser UB, Latronico AC. Mutational analysis of TAC3 and TACR3 genes in patients with idiopathic central pubertal disorders. Arq Bras Endocrinol Metabol. 2012;56:646–52.CrossRefPubMedPubMedCentral Tusset C, Noel SD, Trarbach EB, Silveira LF, Jorge AA, Brito VN, Cukier P, Seminara SB, Mendonca BB, Kaiser UB, Latronico AC. Mutational analysis of TAC3 and TACR3 genes in patients with idiopathic central pubertal disorders. Arq Bras Endocrinol Metabol. 2012;56:646–52.CrossRefPubMedPubMedCentral
31.
go back to reference Ojeda SR, Lomniczi A. Puberty in 2013: Unravelling the mystery of puberty. Nat Rev Endocrinol. 2014;10:67–9.CrossRefPubMed Ojeda SR, Lomniczi A. Puberty in 2013: Unravelling the mystery of puberty. Nat Rev Endocrinol. 2014;10:67–9.CrossRefPubMed
32.
go back to reference Lomniczi A, Loche A, Castellano JM, Ronnekleiv OK, Bosch M, Kaidar G, Knoll JG, Wright H, Pfeifer GP, Ojeda SR. Epigenetic control of female puberty. Nat Neurosci. 2013;16:281–9.CrossRefPubMedPubMedCentral Lomniczi A, Loche A, Castellano JM, Ronnekleiv OK, Bosch M, Kaidar G, Knoll JG, Wright H, Pfeifer GP, Ojeda SR. Epigenetic control of female puberty. Nat Neurosci. 2013;16:281–9.CrossRefPubMedPubMedCentral
33.
go back to reference Wyatt AK, Zavodna M, Viljoen JL, Stanton JA, Gemmell NJ, Jasoni CL. Changes in methylation patterns of kiss1 and kiss1r gene promoters across puberty. Genet Epigenet. 2013;5:51–62.PubMedPubMedCentral Wyatt AK, Zavodna M, Viljoen JL, Stanton JA, Gemmell NJ, Jasoni CL. Changes in methylation patterns of kiss1 and kiss1r gene promoters across puberty. Genet Epigenet. 2013;5:51–62.PubMedPubMedCentral
34.
go back to reference Semaan SJ, Dhamija S, Kim J, Ku EC, Kauffman AS. Assessment of Epigenetic Contributions to Sexually-Dimorphic Kiss1 Expression in the Anteroventral Periventricular Nucleus of Mice. Endocrinology. 2012;153:1875–86.CrossRefPubMedPubMedCentral Semaan SJ, Dhamija S, Kim J, Ku EC, Kauffman AS. Assessment of Epigenetic Contributions to Sexually-Dimorphic Kiss1 Expression in the Anteroventral Periventricular Nucleus of Mice. Endocrinology. 2012;153:1875–86.CrossRefPubMedPubMedCentral
35.
go back to reference Gu H, Bock C, Mikkelsen TS, Jager N, Smith ZD, Tomazou E, Gnirke A, Lander ES, Meissner A. Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat Methods. 2010;7:133–6.CrossRefPubMedPubMedCentral Gu H, Bock C, Mikkelsen TS, Jager N, Smith ZD, Tomazou E, Gnirke A, Lander ES, Meissner A. Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat Methods. 2010;7:133–6.CrossRefPubMedPubMedCentral
36.
go back to reference Clegg DJ, Brown LM, Zigman JM, Kemp CJ, Strader AD, Benoit SC, Woods SC, Mangiaracina M, Geary N. Estradiol-dependent decrease in the orexigenic potency of ghrelin in female rats. Diabetes. 2007;56:1051–8.CrossRefPubMed Clegg DJ, Brown LM, Zigman JM, Kemp CJ, Strader AD, Benoit SC, Woods SC, Mangiaracina M, Geary N. Estradiol-dependent decrease in the orexigenic potency of ghrelin in female rats. Diabetes. 2007;56:1051–8.CrossRefPubMed
37.
go back to reference Gao H, Sisley S, Yallampalli C. Blunted hypothalamic ghrelin signaling reduces diet intake in rats fed a low-protein diet in late pregnancy. Physiol Rep. 2015;3 Gao H, Sisley S, Yallampalli C. Blunted hypothalamic ghrelin signaling reduces diet intake in rats fed a low-protein diet in late pregnancy. Physiol Rep. 2015;3
38.
go back to reference Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc. 2011;6:468–81.CrossRefPubMed Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc. 2011;6:468–81.CrossRefPubMed
39.
go back to reference Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell. 2006;126:1189–201.CrossRefPubMed Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR. Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell. 2006;126:1189–201.CrossRefPubMed
40.
go back to reference Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.CrossRefPubMedPubMedCentral Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.CrossRefPubMedPubMedCentral
41.
go back to reference Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480–4.CrossRefPubMed Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:D480–4.CrossRefPubMed
42.
go back to reference Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet. 2007;39:61–9.CrossRefPubMed Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet. 2007;39:61–9.CrossRefPubMed
43.
go back to reference Ziller MJ, Gu H, Muller F, Donaghey J, Tsai LT, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2013;500:477–81.CrossRefPubMedPubMedCentral Ziller MJ, Gu H, Muller F, Donaghey J, Tsai LT, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2013;500:477–81.CrossRefPubMedPubMedCentral
44.
45.
go back to reference Yan J, Zierath JR, Barres R. Evidence for non-CpG methylation in mammals. Exp Cell Res. 2011;317:2555–61.CrossRefPubMed Yan J, Zierath JR, Barres R. Evidence for non-CpG methylation in mammals. Exp Cell Res. 2011;317:2555–61.CrossRefPubMed
46.
go back to reference Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 2008;452:215–9.CrossRefPubMedPubMedCentral Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature. 2008;452:215–9.CrossRefPubMedPubMedCentral
47.
go back to reference Lomniczi A, Ojeda SR. The Emerging Role of Epigenetics in the Regulation of Female Puberty. Endocr Dev. 2016;29:1–16.PubMed Lomniczi A, Ojeda SR. The Emerging Role of Epigenetics in the Regulation of Female Puberty. Endocr Dev. 2016;29:1–16.PubMed
48.
go back to reference Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, Kang GB, Rosenberger G, Tekin M, Ozata M, et al. Mutations in CHD7, Encoding a Chromatin-Remodeling Protein, Cause Idiopathic Hypogonadotropic Hypogonadism and Kallmann Syndrome. Am J Hum Genet. 2008;83:511–9.CrossRefPubMedPubMedCentral Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, Kang GB, Rosenberger G, Tekin M, Ozata M, et al. Mutations in CHD7, Encoding a Chromatin-Remodeling Protein, Cause Idiopathic Hypogonadotropic Hypogonadism and Kallmann Syndrome. Am J Hum Genet. 2008;83:511–9.CrossRefPubMedPubMedCentral
49.
go back to reference Watson RE Jr, Langub MC Jr, Engle MG, Maley BE. Estrogen-receptive neurons in the anteroventral periventricular nucleus are synaptic targets of the suprachiasmatic nucleus and peri-suprachiasmatic region. Brain Res. 1995;689:254–64.CrossRefPubMed Watson RE Jr, Langub MC Jr, Engle MG, Maley BE. Estrogen-receptive neurons in the anteroventral periventricular nucleus are synaptic targets of the suprachiasmatic nucleus and peri-suprachiasmatic region. Brain Res. 1995;689:254–64.CrossRefPubMed
50.
go back to reference Williams WP 3rd, Jarjisian SG, Mikkelsen JD, Kriegsfeld LJ. Circadian control of kisspeptin and a gated GnRH response mediate the preovulatory luteinizing hormone surge. Endocrinology. 2011;152:595–606.CrossRefPubMed Williams WP 3rd, Jarjisian SG, Mikkelsen JD, Kriegsfeld LJ. Circadian control of kisspeptin and a gated GnRH response mediate the preovulatory luteinizing hormone surge. Endocrinology. 2011;152:595–606.CrossRefPubMed
51.
go back to reference Vida B, Deli L, Hrabovszky E, Kalamatianos T, Caraty A, Coen CW, Liposits Z, Kallo I. Evidence for suprachiasmatic vasopressin neurones innervating kisspeptin neurones in the rostral periventricular area of the mouse brain: regulation by oestrogen. J Neuroendocrinol. 2010;22:1032–9.CrossRefPubMed Vida B, Deli L, Hrabovszky E, Kalamatianos T, Caraty A, Coen CW, Liposits Z, Kallo I. Evidence for suprachiasmatic vasopressin neurones innervating kisspeptin neurones in the rostral periventricular area of the mouse brain: regulation by oestrogen. J Neuroendocrinol. 2010;22:1032–9.CrossRefPubMed
52.
go back to reference Pitynski D, Flynn FW, DC S: Does salt have a permissive role in the induction of puberty? Med Hypotheses 2015, 85:463-467. Pitynski D, Flynn FW, DC S: Does salt have a permissive role in the induction of puberty? Med Hypotheses 2015, 85:463-467.
53.
go back to reference Kriegsfeld LJ, Leak RK, Yackulic CB, LeSauter J, Silver R. Organization of suprachiasmatic nucleus projections in Syrian hamsters (Mesocricetus auratus): An anterograde and retrograde analysis. J Comp Neurol. 2004;468:361–79.CrossRefPubMedPubMedCentral Kriegsfeld LJ, Leak RK, Yackulic CB, LeSauter J, Silver R. Organization of suprachiasmatic nucleus projections in Syrian hamsters (Mesocricetus auratus): An anterograde and retrograde analysis. J Comp Neurol. 2004;468:361–79.CrossRefPubMedPubMedCentral
55.
go back to reference Rakyan VK, Down TA, Thorne NP, Flicek P, Kulesha E, Graf S, Tomazou EM, Backdahl L, Johnson N, Herberth M, et al. An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res. 2008;18:1518–29.CrossRefPubMedPubMedCentral Rakyan VK, Down TA, Thorne NP, Flicek P, Kulesha E, Graf S, Tomazou EM, Backdahl L, Johnson N, Herberth M, et al. An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res. 2008;18:1518–29.CrossRefPubMedPubMedCentral
56.
go back to reference Fan S, Zhang X. CpG island methylation pattern in different human tissues and its correlation with gene expression. Biochem Biophys Res Commun. 2009;383:421–5.CrossRefPubMed Fan S, Zhang X. CpG island methylation pattern in different human tissues and its correlation with gene expression. Biochem Biophys Res Commun. 2009;383:421–5.CrossRefPubMed
57.
go back to reference Yang C, Ye J, Li XM, Gao XX, Zhang KF, Luo L, Ding JP, Zhang YH, Li YS, Cao HG, et al. DNA Methylation Patterns in the Hypothalamus of Female Pubertal Goats. PLoS One. 2016;11 Yang C, Ye J, Li XM, Gao XX, Zhang KF, Luo L, Ding JP, Zhang YH, Li YS, Cao HG, et al. DNA Methylation Patterns in the Hypothalamus of Female Pubertal Goats. PLoS One. 2016;11
58.
go back to reference Dumasia K, Kumar A, Deshpande S, Balasinor NH. Estrogen signaling, through estrogen receptor beta, regulates DNA methylation and its machinery in male germ line in adult rats. Epigenetics. 2017;12:476–83.CrossRefPubMed Dumasia K, Kumar A, Deshpande S, Balasinor NH. Estrogen signaling, through estrogen receptor beta, regulates DNA methylation and its machinery in male germ line in adult rats. Epigenetics. 2017;12:476–83.CrossRefPubMed
Metadata
Title
Identification of differential genomic DNA Methylation in the hypothalamus of pubertal rat using reduced representation Bisulfite sequencing
Authors
Lei Luo
Zhiqiu Yao
Jing Ye
Yuan Tian
Chen Yang
Xiaoxiao Gao
Min Song
Ya Liu
Yunhai Zhang
Yunsheng Li
Xiaorong Zhang
Fugui Fang
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2017
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-017-0301-2

Other articles of this Issue 1/2017

Reproductive Biology and Endocrinology 1/2017 Go to the issue