Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2016

Open Access 01-12-2016 | Research

Identification of a potent small molecule capable of regulating polyploidization, megakaryocyte maturation, and platelet production

Authors: Nick Huang, Mabel Lou, Hua Liu, Cecilia Avila, Yupo Ma

Published in: Journal of Hematology & Oncology | Issue 1/2016

Login to get access

Abstract

Background

Megakaryocytic cell maturation involves polyploidization, and megakaryocyte (MK) ploidy correlates with their maturation and platelet production. Retardation of MK maturation is closely associated with poor MK engraftment after cord blood transplantation and neonatal thrombocytopenia. Despite the high prevalence of thrombocytopenia in a range of setting that affect infants to adults, there are still very limited modalities of treatment.

Methods

Human CD34+ cells were isolated from cord blood or bone marrow samples acquired from consenting patients. Cells were cultured and induced using 616452 and compared to current drugs on the market such as rominplostim or TPO. Ploidy analysis was completed using propidium iodide staining and flow cytometry analysis. Animal studies consisted of transplanting human CD34+ cells into NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice followed by daily injections of 15 mg/kg of 616452.

Results

Within one week of culture, the chemical was able to induce polyploidization, the process required for megakaryocyte maturation with the accumulation of DNA content, to 64 N or greater to achieve a relative adult size. We observed fold increases as high as 200-fold in cells of 16 N or greater compared to un-induced cells with a dose-dependent manner. In addition, MK differentiated in the presence of 616452 demonstrated a more robust capacity of MK differentiation than that of MKs cultured with rominplostim used for adult idiopathic thrombocytopenic purpura (ITP) patients. In mice transplanted with human cord blood, 616452 strikingly enhanced MK reconstitution in the marrow and human peripheral platelet production. The molecular therapeutic actions for this chemical may be through TPO-independent pathways.

Conclusion

Our studies may have an important impact on our fundamental understanding of fetal MK biology, the clinical management of thrombocytopenic neonates and leukemic differentiation therapy.
Appendix
Available only for authorised users
Literature
2.
go back to reference Lordier L, Jalil A, Aurade F, Larbret F, Larghero J, Debili N, Vainchenker W, Chang Y. Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and Rho/Rock signaling. Blood. 2008;112(8):3164–74.CrossRefPubMed Lordier L, Jalil A, Aurade F, Larbret F, Larghero J, Debili N, Vainchenker W, Chang Y. Megakaryocyte endomitosis is a failure of late cytokinesis related to defects in the contractile ring and Rho/Rock signaling. Blood. 2008;112(8):3164–74.CrossRefPubMed
3.
go back to reference Lordier L, Pan J, Naim V, Jalil A, Badirou I, Rameau P, Larghero J, Debili N, Rosselli F, Vainchenker W, Chang Y. Presence of a defect in karyokinesis during megakaryocyte endomitosis. Cell Cycle. 2012;11(23):4385–9.CrossRefPubMedPubMedCentral Lordier L, Pan J, Naim V, Jalil A, Badirou I, Rameau P, Larghero J, Debili N, Rosselli F, Vainchenker W, Chang Y. Presence of a defect in karyokinesis during megakaryocyte endomitosis. Cell Cycle. 2012;11(23):4385–9.CrossRefPubMedPubMedCentral
4.
go back to reference Arriaga M, South K, Cohen JL, Mazur EM. Interrelationship between mitosis and endomitosis in cultures of human megakaryocyte progenitor cells. Blood. 1987;69(2):486–92.PubMed Arriaga M, South K, Cohen JL, Mazur EM. Interrelationship between mitosis and endomitosis in cultures of human megakaryocyte progenitor cells. Blood. 1987;69(2):486–92.PubMed
6.
go back to reference Linden MD, Jackson DE. Platelets: pleiotropic roles in atherogenesis and atherothrombosis. Int J Biochem Cell Biol. 2010;42(11):1762–6.CrossRefPubMed Linden MD, Jackson DE. Platelets: pleiotropic roles in atherogenesis and atherothrombosis. Int J Biochem Cell Biol. 2010;42(11):1762–6.CrossRefPubMed
8.
go back to reference Semple JW, Italiano Jr JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11(4):264–74.CrossRefPubMed Semple JW, Italiano Jr JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11(4):264–74.CrossRefPubMed
9.
go back to reference von Lindern JS, van den Bruele T, Lopriore E, Walther FJ. Thrombocytopenia in neonates and the risk of intraventricular hemorrhage: a retrospective cohort study. BMC Pediatr. 2011;11:16.CrossRef von Lindern JS, van den Bruele T, Lopriore E, Walther FJ. Thrombocytopenia in neonates and the risk of intraventricular hemorrhage: a retrospective cohort study. BMC Pediatr. 2011;11:16.CrossRef
10.
go back to reference Roberts I, Stanworth S, Murray NA. Thrombocytopenia in the neonate. Blood Rev. 2008;22(4):173–86.CrossRefPubMed Roberts I, Stanworth S, Murray NA. Thrombocytopenia in the neonate. Blood Rev. 2008;22(4):173–86.CrossRefPubMed
11.
go back to reference Homans A. Thrombocytopenia in the neonate. Pediatr Clin N Am. 1996;43(3):737–56.CrossRef Homans A. Thrombocytopenia in the neonate. Pediatr Clin N Am. 1996;43(3):737–56.CrossRef
12.
go back to reference Ignatz M, Sola-Visner M, Rimsza LM, Fuchs D, Shuster JJ, Li XM, Jotwani A, Staba S, Wingard JR, Hu Z, Slayton WB. Umbilical cord blood produces small megakaryocytes after transplantation. Biol Blood Marrow Transplant. 2007;13(2):145–50.CrossRefPubMed Ignatz M, Sola-Visner M, Rimsza LM, Fuchs D, Shuster JJ, Li XM, Jotwani A, Staba S, Wingard JR, Hu Z, Slayton WB. Umbilical cord blood produces small megakaryocytes after transplantation. Biol Blood Marrow Transplant. 2007;13(2):145–50.CrossRefPubMed
13.
go back to reference Fuchs DA, McGinn SG, Cantu CL, Klein RR, Sola-Visner MC, Rimsza LM. Developmental differences in megakaryocyte size in infants and children. Am J Clin Pathol. 2012;138(1):140–5.CrossRefPubMed Fuchs DA, McGinn SG, Cantu CL, Klein RR, Sola-Visner MC, Rimsza LM. Developmental differences in megakaryocyte size in infants and children. Am J Clin Pathol. 2012;138(1):140–5.CrossRefPubMed
14.
go back to reference Bartley TD, Bogenberger J, Hunt P, Li YS, Lu HS, Martin F, Chang MS, Samal B, Nichol JL, Swift S, et al. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell. 1994;77(7):1117–24.CrossRefPubMed Bartley TD, Bogenberger J, Hunt P, Li YS, Lu HS, Martin F, Chang MS, Samal B, Nichol JL, Swift S, et al. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell. 1994;77(7):1117–24.CrossRefPubMed
15.
go back to reference Lok S, Kaushansky K, Holly RD, Kuijper JL, Lofton-Day CE, Oort PJ, Grant FJ, Heipel MD, Burkhead SK, Kramer JM, et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature. 1994;369(6481):565–8.CrossRefPubMed Lok S, Kaushansky K, Holly RD, Kuijper JL, Lofton-Day CE, Oort PJ, Grant FJ, Heipel MD, Burkhead SK, Kramer JM, et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature. 1994;369(6481):565–8.CrossRefPubMed
16.
go back to reference Vadhan-Raj S, Verschraegen CF, Bueso-Ramos C, Broxmeyer HE, Kudelka AP, Freedman RS, Edwards CL, Gershenson D, Jones D, Ashby M, Kavanagh JJ. Recombinant human thrombopoietin attenuates carboplatin-induced severe thrombocytopenia and the need for platelet transfusions in patients with gynecologic cancer. Ann Intern Med. 2000;132(5):364–8.CrossRefPubMed Vadhan-Raj S, Verschraegen CF, Bueso-Ramos C, Broxmeyer HE, Kudelka AP, Freedman RS, Edwards CL, Gershenson D, Jones D, Ashby M, Kavanagh JJ. Recombinant human thrombopoietin attenuates carboplatin-induced severe thrombocytopenia and the need for platelet transfusions in patients with gynecologic cancer. Ann Intern Med. 2000;132(5):364–8.CrossRefPubMed
17.
go back to reference Jeong JY, Levine MS, Abayasekara N, Berliner N, Laubach J, Vanasse GJ. The non-peptide thrombopoietin receptor agonist eltrombopag stimulates megakaryopoiesis in bone marrow cells from patients with relapsed multiple myeloma. J Hematol Oncol. 2015;8:37.CrossRefPubMedPubMedCentral Jeong JY, Levine MS, Abayasekara N, Berliner N, Laubach J, Vanasse GJ. The non-peptide thrombopoietin receptor agonist eltrombopag stimulates megakaryopoiesis in bone marrow cells from patients with relapsed multiple myeloma. J Hematol Oncol. 2015;8:37.CrossRefPubMedPubMedCentral
18.
go back to reference Fujimi A, Kamihara Y, Hashimoto A, Kanisawa Y, Nakajima C, Hayasaka N, Yamada S, Okuda T, Minami S, Ono K, Iyama S, Kato J. Identification of anti-thrombopoietin receptor antibody in prolonged thrombocytopenia after allogeneic hematopoietic stem cell transplantation treated successfully with eltrombopag. Int J Hematol. 2015;102(4):471–6.CrossRefPubMed Fujimi A, Kamihara Y, Hashimoto A, Kanisawa Y, Nakajima C, Hayasaka N, Yamada S, Okuda T, Minami S, Ono K, Iyama S, Kato J. Identification of anti-thrombopoietin receptor antibody in prolonged thrombocytopenia after allogeneic hematopoietic stem cell transplantation treated successfully with eltrombopag. Int J Hematol. 2015;102(4):471–6.CrossRefPubMed
19.
go back to reference Fuentes R, Wang Y, Hirsch J, Wang C, Rauova L, Worthen GS, Kowalska MA, Poncz M. Infusion of mature megakaryocytes into mice yields functional platelets. J Clin Invest. 2010;120(11):3917–22.CrossRefPubMedPubMedCentral Fuentes R, Wang Y, Hirsch J, Wang C, Rauova L, Worthen GS, Kowalska MA, Poncz M. Infusion of mature megakaryocytes into mice yields functional platelets. J Clin Invest. 2010;120(11):3917–22.CrossRefPubMedPubMedCentral
20.
go back to reference Farese AM, MacVittie TJ, Roskos L, Stead RB. Hematopoietic recovery following autologous bone marrow transplantation in a nonhuman primate: effect of variation in treatment schedule with PEG-rHuMGDF. Stem Cells. 2003;21(1):79–89.CrossRefPubMed Farese AM, MacVittie TJ, Roskos L, Stead RB. Hematopoietic recovery following autologous bone marrow transplantation in a nonhuman primate: effect of variation in treatment schedule with PEG-rHuMGDF. Stem Cells. 2003;21(1):79–89.CrossRefPubMed
21.
go back to reference Neelis KJ, Dubbelman YD, Wognum AW, Thomas GR, Eaton DL, Egeland T, Wagemaker G. Lack of efficacy of thrombopoietin and granulocyte colony-stimulating factor after high dose total-body irradiation and autologous stem cell or bone marrow transplantation in rhesus monkeys. Exp Hematol. 1997;25(10):1094–103.PubMed Neelis KJ, Dubbelman YD, Wognum AW, Thomas GR, Eaton DL, Egeland T, Wagemaker G. Lack of efficacy of thrombopoietin and granulocyte colony-stimulating factor after high dose total-body irradiation and autologous stem cell or bone marrow transplantation in rhesus monkeys. Exp Hematol. 1997;25(10):1094–103.PubMed
22.
go back to reference Zheng C, Yang R, Han Z, Zhou B, Liang L, Lu M. TPO-independent megakaryocytopoiesis. Crit Rev Oncol Hematol. 2008;65(3):212–22.CrossRefPubMed Zheng C, Yang R, Han Z, Zhou B, Liang L, Lu M. TPO-independent megakaryocytopoiesis. Crit Rev Oncol Hematol. 2008;65(3):212–22.CrossRefPubMed
23.
go back to reference Schulenburg A, Blatt K, Cerny-Reiterer S, Sadovnik I, Herrmann H, Marian B, Grunt TW, Zielinski CC, Valent P. Cancer stem cells in basic science and in translational oncology: can we translate into clinical application? J Hematol Oncol. 2015;8:16.CrossRefPubMedPubMedCentral Schulenburg A, Blatt K, Cerny-Reiterer S, Sadovnik I, Herrmann H, Marian B, Grunt TW, Zielinski CC, Valent P. Cancer stem cells in basic science and in translational oncology: can we translate into clinical application? J Hematol Oncol. 2015;8:16.CrossRefPubMedPubMedCentral
24.
go back to reference Queiroz LB, Lima BD, Mazzeu JF, Camargo R, Cordoba MS, Magalhães QI, Martins-de-Sa C, Ferrari I. Analysis of GATA1 mutations and leukemogenesis in newborns with Down syndrome. Genet Mol Res. 2013;12(4):4630–8.CrossRefPubMed Queiroz LB, Lima BD, Mazzeu JF, Camargo R, Cordoba MS, Magalhães QI, Martins-de-Sa C, Ferrari I. Analysis of GATA1 mutations and leukemogenesis in newborns with Down syndrome. Genet Mol Res. 2013;12(4):4630–8.CrossRefPubMed
25.
go back to reference Alford KA, Reinhardt K, Garnett C, Norton A, Bohmer K, von Neuhoff C, Kolenova A, Marchi E, Klusmann JH, Roberts I, Hasle H, Reinhardt D, Vyas P, International Myeloid Leukemia-Down Syndrome Study G. Analysis of GATA1 mutations in Down syndrome transient myeloproliferative disorder and myeloid leukemia. Blood. 2011;118(8):2222–38.CrossRefPubMed Alford KA, Reinhardt K, Garnett C, Norton A, Bohmer K, von Neuhoff C, Kolenova A, Marchi E, Klusmann JH, Roberts I, Hasle H, Reinhardt D, Vyas P, International Myeloid Leukemia-Down Syndrome Study G. Analysis of GATA1 mutations in Down syndrome transient myeloproliferative disorder and myeloid leukemia. Blood. 2011;118(8):2222–38.CrossRefPubMed
26.
go back to reference Aguila JR, Liao W, Yang J, Avila C, Hagag N, Senzel L, Ma Y. SALL4 is a robust stimulator for the expansion of hematopoietic stem cells. Blood. 2011;118(3):576–85.CrossRefPubMedPubMedCentral Aguila JR, Liao W, Yang J, Avila C, Hagag N, Senzel L, Ma Y. SALL4 is a robust stimulator for the expansion of hematopoietic stem cells. Blood. 2011;118(3):576–85.CrossRefPubMedPubMedCentral
27.
go back to reference Aguila JR, Mynarcik DC, Ma Y. SALL4: finally an answer to the problem of expansion of hematopoietic stem cells? Expert Rev Hematol. 2011;4(5):479–81.CrossRefPubMed Aguila JR, Mynarcik DC, Ma Y. SALL4: finally an answer to the problem of expansion of hematopoietic stem cells? Expert Rev Hematol. 2011;4(5):479–81.CrossRefPubMed
28.
go back to reference Yang J, Aguila JR, Alipio Z, Lai R, Fink LM, Ma Y. Enhanced self-renewal of hematopoietic stem/progenitor cells mediated by the stem cell gene Sall4. J Hematol Oncol. 2011;4:38.CrossRefPubMedPubMedCentral Yang J, Aguila JR, Alipio Z, Lai R, Fink LM, Ma Y. Enhanced self-renewal of hematopoietic stem/progenitor cells mediated by the stem cell gene Sall4. J Hematol Oncol. 2011;4:38.CrossRefPubMedPubMedCentral
29.
go back to reference Debili N, Louache F, Vainchenker W. Isolation and culture of megakaryocyte precursors. Methods Mol Biol. 2004;272:293–308.PubMed Debili N, Louache F, Vainchenker W. Isolation and culture of megakaryocyte precursors. Methods Mol Biol. 2004;272:293–308.PubMed
30.
go back to reference Nikougoftar Zarif M, Soleimani M, Abolghasemi H, Amirizade N, Abroun S, Kaviani S. The high yield expansion and megakaryocytic differentiation of human umbilical cord blood CD133(+) Cells. Cell J. 2011;13(3):173–8.PubMedPubMedCentral Nikougoftar Zarif M, Soleimani M, Abolghasemi H, Amirizade N, Abroun S, Kaviani S. The high yield expansion and megakaryocytic differentiation of human umbilical cord blood CD133(+) Cells. Cell J. 2011;13(3):173–8.PubMedPubMedCentral
Metadata
Title
Identification of a potent small molecule capable of regulating polyploidization, megakaryocyte maturation, and platelet production
Authors
Nick Huang
Mabel Lou
Hua Liu
Cecilia Avila
Yupo Ma
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2016
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-016-0358-y

Other articles of this Issue 1/2016

Journal of Hematology & Oncology 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine