Skip to main content
Top
Published in: International Journal of Hematology 4/2016

01-04-2016 | Rapid Communication

Identification of a novel putative mitochondrial protein FAM210B associated with erythroid differentiation

Authors: Aiko Kondo, Tohru Fujiwara, Yoko Okitsu, Noriko Fukuhara, Yasushi Onishi, Yukio Nakamura, Kenichi Sawada, Hideo Harigae

Published in: International Journal of Hematology | Issue 4/2016

Login to get access

Abstract

The transcription factor GATA-1 plays an essential role in erythroid differentiation. To identify novel GATA-1 target genes, we analyzed a merged ChIP-seq and expression profiling dataset. We identified FAM210B as a putative novel GATA-1 target gene. Study results demonstrated that GATA-1 directly regulates FAM210B expression, presumably by binding to an intronic enhancer region. Both human and murine FAM210B are abundantly expressed in the later stages of erythroblast development. Moreover, the deduced amino acid sequence predicted that FAM210B is a membrane protein, and Western blot analysis demonstrated its mitochondrial localization. Loss-of-function analysis in erythroid cells suggested that FAM210B may be involved in erythroid differentiation. The identification and characterization of FAM210B provides new insights in the study of erythropoiesis and hereditary anemias.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fujiwara T, O’Geen H, Keles S, et al. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol Cell. 2009;36:667–81.CrossRefPubMedPubMedCentral Fujiwara T, O’Geen H, Keles S, et al. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol Cell. 2009;36:667–81.CrossRefPubMedPubMedCentral
2.
go back to reference Yu M, Riva L, Xie H, Schindler Y, Moran TB, Cheng Y, et al. Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. Mol Cell. 2009;36:682–95.CrossRefPubMedPubMedCentral Yu M, Riva L, Xie H, Schindler Y, Moran TB, Cheng Y, et al. Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. Mol Cell. 2009;36:682–95.CrossRefPubMedPubMedCentral
3.
go back to reference Soler E, Andrieu-Soler C, de Boer E, Bryne JC, Thongjuea S, Stadhouders R, et al. The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation. Genes Dev. 2010;24:277–89.CrossRefPubMedPubMedCentral Soler E, Andrieu-Soler C, de Boer E, Bryne JC, Thongjuea S, Stadhouders R, et al. The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation. Genes Dev. 2010;24:277–89.CrossRefPubMedPubMedCentral
5.
go back to reference Evans T, Felsenfeld G. The erythroid-specific transcription factor Eryf1: a new finger protein. Cell. 1989;58:877–85.CrossRefPubMed Evans T, Felsenfeld G. The erythroid-specific transcription factor Eryf1: a new finger protein. Cell. 1989;58:877–85.CrossRefPubMed
6.
go back to reference Rylski M, Welch JJ, Chen YY, Letting DL, Diehl JA, Chodosh LA, et al. GATA-1-mediated proliferation arrest during erythroid maturation. Mol Cell Biol. 2003;23:5031–42.CrossRefPubMedPubMedCentral Rylski M, Welch JJ, Chen YY, Letting DL, Diehl JA, Chodosh LA, et al. GATA-1-mediated proliferation arrest during erythroid maturation. Mol Cell Biol. 2003;23:5031–42.CrossRefPubMedPubMedCentral
7.
go back to reference Fujiwara T, Saitoh H, Inoue A, Kobayashi M, Okitsu Y, Katsuoka Y, et al. 3-Deazaneplanocin A (DZNep), an inhibitor of S-adenosylmethionine-dependent methyltransferase, promotes erythroid differentiation. J Biol Chem. 2014;289:8121–34.CrossRefPubMedPubMedCentral Fujiwara T, Saitoh H, Inoue A, Kobayashi M, Okitsu Y, Katsuoka Y, et al. 3-Deazaneplanocin A (DZNep), an inhibitor of S-adenosylmethionine-dependent methyltransferase, promotes erythroid differentiation. J Biol Chem. 2014;289:8121–34.CrossRefPubMedPubMedCentral
8.
go back to reference Guo YM, Ishii K, Hirokawa M, Tagawa H, Ohyagi H, Michishita Y, et al. CpG-ODN 2006 and human parvovirus B19 genome consensus sequences selectively inhibit growth and development of erythroid progenitor cells. Blood. 2010;115:4569–79.CrossRefPubMedPubMedCentral Guo YM, Ishii K, Hirokawa M, Tagawa H, Ohyagi H, Michishita Y, et al. CpG-ODN 2006 and human parvovirus B19 genome consensus sequences selectively inhibit growth and development of erythroid progenitor cells. Blood. 2010;115:4569–79.CrossRefPubMedPubMedCentral
9.
go back to reference Kurita R, Suda N, Sudo K, Miharada K, Hiroyama T, Miyoshi H, et al. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells. PLoS One. 2013;8:e59890.CrossRefPubMedPubMedCentral Kurita R, Suda N, Sudo K, Miharada K, Hiroyama T, Miyoshi H, et al. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells. PLoS One. 2013;8:e59890.CrossRefPubMedPubMedCentral
10.
go back to reference Fujiwara T, Okamoto K, Niikuni R, Takahashi K, Okitsu Y, Fukuhara N, et al. Effect of 5-aminolevulinic acid on erythropoiesis: a preclinical in vitro characterization for the treatment of congenital sideroblastic anemia. Biochem Biophys Res Commun. 2014;454:102–8.CrossRefPubMed Fujiwara T, Okamoto K, Niikuni R, Takahashi K, Okitsu Y, Fukuhara N, et al. Effect of 5-aminolevulinic acid on erythropoiesis: a preclinical in vitro characterization for the treatment of congenital sideroblastic anemia. Biochem Biophys Res Commun. 2014;454:102–8.CrossRefPubMed
11.
go back to reference Fujiwara T, Alqadi YW, Okitsu Y, Fukuhara N, Onishi Y, Ishizawa K, et al. Role of transcriptional corepressor ETO2 in erythroid cells. Exp Hematol. 2013;41:303–15.CrossRefPubMed Fujiwara T, Alqadi YW, Okitsu Y, Fukuhara N, Onishi Y, Ishizawa K, et al. Role of transcriptional corepressor ETO2 in erythroid cells. Exp Hematol. 2013;41:303–15.CrossRefPubMed
12.
go back to reference Tahara T, Sun J, Nakanishi K, Yamamoto M, Mori H, Saito T, et al. Heme positively regulates the expression of beta-globin at the locus control region via the transcriptional factor Bach1 in erythroid cells. J Biol Chem. 2004;279:5480–7.CrossRefPubMed Tahara T, Sun J, Nakanishi K, Yamamoto M, Mori H, Saito T, et al. Heme positively regulates the expression of beta-globin at the locus control region via the transcriptional factor Bach1 in erythroid cells. J Biol Chem. 2004;279:5480–7.CrossRefPubMed
13.
go back to reference Furuyama K, Kaneko K, Vargas PD. Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. Tohoku J Exp Med. 2007;213:1–16.CrossRefPubMed Furuyama K, Kaneko K, Vargas PD. Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. Tohoku J Exp Med. 2007;213:1–16.CrossRefPubMed
14.
go back to reference Rouault TA, Tong WH. Tangled up in red: intertwining of the heme and iron-sulfur cluster biogenesis pathways. Cell Metab. 2009;10:80–1.CrossRefPubMed Rouault TA, Tong WH. Tangled up in red: intertwining of the heme and iron-sulfur cluster biogenesis pathways. Cell Metab. 2009;10:80–1.CrossRefPubMed
15.
go back to reference Nilsson R, Schultz IJ, Pierce EL, Soltis KA, Naranuntarat A, Ward DM, et al. Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab. 2009;10:119–30.CrossRefPubMedPubMedCentral Nilsson R, Schultz IJ, Pierce EL, Soltis KA, Naranuntarat A, Ward DM, et al. Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab. 2009;10:119–30.CrossRefPubMedPubMedCentral
16.
go back to reference Yien YY, Robledo RF, Schultz IJ, Takahashi-Makise N, Gwynn B, Bauer DE, et al. TMEM14C is required for erythroid mitochondrial heme metabolism. J Clin Invest. 2014;124:4294–304.CrossRefPubMedPubMedCentral Yien YY, Robledo RF, Schultz IJ, Takahashi-Makise N, Gwynn B, Bauer DE, et al. TMEM14C is required for erythroid mitochondrial heme metabolism. J Clin Invest. 2014;124:4294–304.CrossRefPubMedPubMedCentral
17.
go back to reference Medlock AE, Shiferaw MT, Marcero JR, Vashisht AA, Wohlschlegel JA, Phillips JD, et al. Identification of the mitochondrial heme metabolism complex. PLoS One. 2015;10:e0135896.CrossRefPubMedPubMedCentral Medlock AE, Shiferaw MT, Marcero JR, Vashisht AA, Wohlschlegel JA, Phillips JD, et al. Identification of the mitochondrial heme metabolism complex. PLoS One. 2015;10:e0135896.CrossRefPubMedPubMedCentral
Metadata
Title
Identification of a novel putative mitochondrial protein FAM210B associated with erythroid differentiation
Authors
Aiko Kondo
Tohru Fujiwara
Yoko Okitsu
Noriko Fukuhara
Yasushi Onishi
Yukio Nakamura
Kenichi Sawada
Hideo Harigae
Publication date
01-04-2016
Publisher
Springer Japan
Published in
International Journal of Hematology / Issue 4/2016
Print ISSN: 0925-5710
Electronic ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-016-1968-4

Other articles of this Issue 4/2016

International Journal of Hematology 4/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine