Skip to main content
Top
Published in: BMC Pediatrics 1/2021

Open Access 01-12-2021 | Hypoglycemia | Case report

Component of oligomeric Golgi complex 1 deficiency leads to hypoglycemia: a case report and literature review

Authors: Yizhou Huang, Han Dai, Gangyi Yang, Lili Zhang, Shiyao Xue, Min Zhu

Published in: BMC Pediatrics | Issue 1/2021

Login to get access

Abstract

Background

Congenital disorders of glycosylation (CDG) are a group of metabolic diseases with clinical and genetic heterogeneity, and CDG-IIg is one of the rare reported types of CDG. The aim of this study is to report the clinical manifestations and gene-phenotype characteristics of a rare case of CDG caused by a COG1 gene mutation and review literatures of CDG disease.

Case presentation

The patient was male, and the main clinical symptoms were developmental retardation, convulsion, strabismus, and hypoglycemia, which is rarely reported in CDG-IIg. We treated the patient with glucose infusion and he was recovered from hypoglycemia. Genetic analysis showed that the patient carried the heterozygous intron mutation c.1070 + 3A > G (splicing) in the coding region of the COG1 gene that was inherited from the mother, and the heterozygous mutation c.2492G > A (p. Arg831Gln) in exon 10 of the COG1 gene that was inherited from the father. The genes interacting with COG1 were mainly involved in the transport and composition of the Golgi. The clinical data and laboratory results from a patient diagnosed with CDG-IIg were analyzed, and the causative gene mutation was identified by high-throughput sequencing. The genes and signal pathways related to COG1 were analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses.

Conclusions

The c.2492G > A (p. Arg831Gln) mutation in exon 10 of the COG1 gene may be a potential pathogenetic variant for CDG-IIg. Because of the various manifestations of CDG in clinical practice, multidisciplinary collaboration is important for the diagnosis and treatment of this disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference Verheijen J, Tahata S, Kozicz T, Witters P, Morava E. Therapeutic approaches in Congenital Disorders of Glycosylation (CDG) involving N-linked glycosylation: an update. Genet Med. 2020;22:268–79.CrossRef Verheijen J, Tahata S, Kozicz T, Witters P, Morava E. Therapeutic approaches in Congenital Disorders of Glycosylation (CDG) involving N-linked glycosylation: an update. Genet Med. 2020;22:268–79.CrossRef
2.
go back to reference Footitt EJ, Karimova A, Burch M, Yayeh T, Dupré T, Vuillaumier-Barrot S, et al. Cardiomyopathy in the congenital disorders of glycosylation (CDG): a case of late presentation and literature review. J Inherit Metab Dis. 2009;32:313–9.CrossRef Footitt EJ, Karimova A, Burch M, Yayeh T, Dupré T, Vuillaumier-Barrot S, et al. Cardiomyopathy in the congenital disorders of glycosylation (CDG): a case of late presentation and literature review. J Inherit Metab Dis. 2009;32:313–9.CrossRef
3.
go back to reference Freeze HH. Update and perspectives on congenital disorders of glycosylation. Glycobiology. 2001;11:129R–43R.CrossRef Freeze HH. Update and perspectives on congenital disorders of glycosylation. Glycobiology. 2001;11:129R–43R.CrossRef
4.
go back to reference Coman D, Irving M, Kannu P, Jaeken J, Savarirayan R. The skeletal manifestations of the congenital disorders of glycosylation. Clin Genet. 2008;73:507–15.CrossRef Coman D, Irving M, Kannu P, Jaeken J, Savarirayan R. The skeletal manifestations of the congenital disorders of glycosylation. Clin Genet. 2008;73:507–15.CrossRef
5.
go back to reference Lao JP, DiPrimio N, Prangley M, Sam FS, Mast JD, Perlstein EO. Yeast Models Of Phosphomannomutase 2 Deficiency, A Congenital Disorder Of Glycosylation. G3. 2019;9:413–23.CrossRef Lao JP, DiPrimio N, Prangley M, Sam FS, Mast JD, Perlstein EO. Yeast Models Of Phosphomannomutase 2 Deficiency, A Congenital Disorder Of Glycosylation. G3. 2019;9:413–23.CrossRef
6.
go back to reference Foulquier F, Vasile E, Schollen E, Callewaert N, Raemaekers T, Quelhas D, et al. Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc Natl Acad Sci U S A. 2006;103:3764–9.CrossRef Foulquier F, Vasile E, Schollen E, Callewaert N, Raemaekers T, Quelhas D, et al. Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc Natl Acad Sci U S A. 2006;103:3764–9.CrossRef
7.
go back to reference Jaeken J. Congenital disorders of glycosylation. Ann N Y Acad Sci. 2010;1214:190–8.CrossRef Jaeken J. Congenital disorders of glycosylation. Ann N Y Acad Sci. 2010;1214:190–8.CrossRef
8.
go back to reference Oka T, Vasile E, Penman M, Novina CD, Dykxhoorn DM, Ungar D, et al. Genetic Analysis of the Subunit Organization and Function of the Conserved Oligomeric Golgi (COG) Complex. J Biol Chem. 2005;280:32736–45.CrossRef Oka T, Vasile E, Penman M, Novina CD, Dykxhoorn DM, Ungar D, et al. Genetic Analysis of the Subunit Organization and Function of the Conserved Oligomeric Golgi (COG) Complex. J Biol Chem. 2005;280:32736–45.CrossRef
9.
go back to reference Ungar D, Oka T, Vasile E, Krieger M, Hughson FM. Subunit architecture of the conserved oligomeric Golgi complex. J Biol Chem. 2005;280:32729–35.CrossRef Ungar D, Oka T, Vasile E, Krieger M, Hughson FM. Subunit architecture of the conserved oligomeric Golgi complex. J Biol Chem. 2005;280:32729–35.CrossRef
10.
go back to reference Zeevaert R, Foulquier F, Dimitrov B, Reynders E, Van Damme-Lombaerts R, Simeonov E, et al. Cerebrocostomandibular-like syndrome and a mutation in the conserved oligomeric Golgi complex, subunit 1. Hum Mol Genet. 2008;18:517–24.CrossRef Zeevaert R, Foulquier F, Dimitrov B, Reynders E, Van Damme-Lombaerts R, Simeonov E, et al. Cerebrocostomandibular-like syndrome and a mutation in the conserved oligomeric Golgi complex, subunit 1. Hum Mol Genet. 2008;18:517–24.CrossRef
11.
go back to reference Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L. Single-cell in situ RNA profiling by sequential hybridization. Nat Methods. 2014;11:360–1.CrossRef Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L. Single-cell in situ RNA profiling by sequential hybridization. Nat Methods. 2014;11:360–1.CrossRef
12.
go back to reference Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca AM, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2019;35:1978–80.CrossRef Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca AM, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2019;35:1978–80.CrossRef
13.
go back to reference Quang D, Chen Y, Xie X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics. 2015;31:761–3.CrossRef Quang D, Chen Y, Xie X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics. 2015;31:761–3.CrossRef
14.
go back to reference Jian X, Boerwinkle E, Liu X. In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res. 2014;42:13534–44.CrossRef Jian X, Boerwinkle E, Liu X. In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res. 2014;42:13534–44.CrossRef
15.
go back to reference Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet. 2015;24:2125–37.CrossRef Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet. 2015;24:2125–37.CrossRef
16.
go back to reference Liu X, Wu C, Li C, Boerwinkle E. dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Hum Mutat. 2016;37:235–41.CrossRef Liu X, Wu C, Li C, Boerwinkle E. dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Hum Mutat. 2016;37:235–41.CrossRef
17.
go back to reference Liu X, Jian X, Boerwinkle E. dbNSFP: A lightweight database of human nonsynonymous SNPs and their functional predictions. Hum Mutat. 2011;32:894–9.CrossRef Liu X, Jian X, Boerwinkle E. dbNSFP: A lightweight database of human nonsynonymous SNPs and their functional predictions. Hum Mutat. 2011;32:894–9.CrossRef
18.
go back to reference Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.CrossRef Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.CrossRef
19.
go back to reference Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–8.CrossRef Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–8.CrossRef
20.
go back to reference Yu G, Wang L, Han Y, He Q. clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. OMICS A J Integr Biol. 2012;16:284–7.CrossRef Yu G, Wang L, Han Y, He Q. clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters. OMICS A J Integr Biol. 2012;16:284–7.CrossRef
21.
go back to reference Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48:D498–503.PubMed Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabregat A, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48:D498–503.PubMed
22.
go back to reference Höck M, Wegleiter K, Ralser E, Kiechl-Kohlendorfer U, Scholl-Bürgi S, Fauth C, et al. ALG8-CDG: novel patients and review of the literature. Orphanet J Rare Dis. 2015;10:73.CrossRef Höck M, Wegleiter K, Ralser E, Kiechl-Kohlendorfer U, Scholl-Bürgi S, Fauth C, et al. ALG8-CDG: novel patients and review of the literature. Orphanet J Rare Dis. 2015;10:73.CrossRef
23.
go back to reference Shental-Bechor D, Levy Y. Folding of glycoproteins: toward understanding the biophysics of the glycosylation code. Curr Opin Struct Biol. 2009;19:524–33.CrossRef Shental-Bechor D, Levy Y. Folding of glycoproteins: toward understanding the biophysics of the glycosylation code. Curr Opin Struct Biol. 2009;19:524–33.CrossRef
24.
go back to reference Barone R, Fiumara A, Jaeken J. Congenital Disorders of Glycosylation with Emphasis on Cerebellar Involvement. Semin Neurol. 2014;34:357–66.CrossRef Barone R, Fiumara A, Jaeken J. Congenital Disorders of Glycosylation with Emphasis on Cerebellar Involvement. Semin Neurol. 2014;34:357–66.CrossRef
25.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CrossRef Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CrossRef
26.
go back to reference Oka T, Ungar D, Hughson FM, Krieger M. The COG and COPI complexes interact to control the abundance of GEARs, a subset of Golgi integral membrane proteins. Mol Biol Cell. 2004;15:2423–35.CrossRef Oka T, Ungar D, Hughson FM, Krieger M. The COG and COPI complexes interact to control the abundance of GEARs, a subset of Golgi integral membrane proteins. Mol Biol Cell. 2004;15:2423–35.CrossRef
27.
go back to reference Zeevaert R, Foulquier F, Jaeken J, Matthijs G. Deficiencies in subunits of the Conserved Oligomeric Golgi (COG) complex define a novel group of Congenital Disorders of Glycosylation. Mol Genet Metab. 2008;93:15–21.CrossRef Zeevaert R, Foulquier F, Jaeken J, Matthijs G. Deficiencies in subunits of the Conserved Oligomeric Golgi (COG) complex define a novel group of Congenital Disorders of Glycosylation. Mol Genet Metab. 2008;93:15–21.CrossRef
28.
go back to reference Babovic-Vuksanovic D, Patterson MC, Schwenk WF, O'Brien JF, Vockley J, Freeze HH, et al. Severe hypoglycemia as a presenting symptom of carbohydrate-deficient glycoprotein syndrome. J Pediatr. 1999;135:775–81.CrossRef Babovic-Vuksanovic D, Patterson MC, Schwenk WF, O'Brien JF, Vockley J, Freeze HH, et al. Severe hypoglycemia as a presenting symptom of carbohydrate-deficient glycoprotein syndrome. J Pediatr. 1999;135:775–81.CrossRef
29.
go back to reference Bohles H, Sewell AA, Gebhardt B, Reinecke-Luthge A, Kloppel G, Marquardt T. Hyperinsulinaemic hypoglycaemia--leading symptom in a patient with congenital disorder of glycosylation Ia (phosphomannomutase deficiency). J Inherit Metab Dis. 2001;24:858–62.CrossRef Bohles H, Sewell AA, Gebhardt B, Reinecke-Luthge A, Kloppel G, Marquardt T. Hyperinsulinaemic hypoglycaemia--leading symptom in a patient with congenital disorder of glycosylation Ia (phosphomannomutase deficiency). J Inherit Metab Dis. 2001;24:858–62.CrossRef
30.
go back to reference Sun L, Eklund EA, Chung WK, Wang C, Cohen J, Freeze HH. Congenital Disorder of Glycosylation Id Presenting with Hyperinsulinemic Hypoglycemia and Islet Cell Hyperplasia. J Clin Endocrinol Metab. 2005;90:4371–5.CrossRef Sun L, Eklund EA, Chung WK, Wang C, Cohen J, Freeze HH. Congenital Disorder of Glycosylation Id Presenting with Hyperinsulinemic Hypoglycemia and Islet Cell Hyperplasia. J Clin Endocrinol Metab. 2005;90:4371–5.CrossRef
31.
go back to reference Tegtmeyer LC, Rust S, van Scherpenzeel M, Ng BG, Losfeld ME, Timal S, et al. Multiple phenotypes in phosphoglucomutase 1 deficiency. N Engl J Med. 2014;370:533–42.CrossRef Tegtmeyer LC, Rust S, van Scherpenzeel M, Ng BG, Losfeld ME, Timal S, et al. Multiple phenotypes in phosphoglucomutase 1 deficiency. N Engl J Med. 2014;370:533–42.CrossRef
32.
go back to reference Morava E. Galactose supplementation in phosphoglucomutase-1 deficiency; review and outlook for a novel treatable CDG. Mol Genet Metab. 2014;112:275–9.CrossRef Morava E. Galactose supplementation in phosphoglucomutase-1 deficiency; review and outlook for a novel treatable CDG. Mol Genet Metab. 2014;112:275–9.CrossRef
33.
go back to reference Jaeken J, Péanne R. What is new in CDG? J Inherit Metab Dis. 2017;40:569–86.CrossRef Jaeken J, Péanne R. What is new in CDG? J Inherit Metab Dis. 2017;40:569–86.CrossRef
34.
go back to reference Fang J, Peters V, Körner C, Hoffmann GF. Improvement of CDG diagnosis by combined examination of several glycoproteins. J Inherit Metab Dis. 2004 2004-01-01;27:581–90.CrossRef Fang J, Peters V, Körner C, Hoffmann GF. Improvement of CDG diagnosis by combined examination of several glycoproteins. J Inherit Metab Dis. 2004 2004-01-01;27:581–90.CrossRef
35.
go back to reference Radenkovic S, Bird MJ, Emmerzaal TL, Wong SY, Felgueira C, Stiers KM, et al. The Metabolic Map into the Pathomechanism and Treatment of PGM1-CDG. Am J Hum Genet. 2019;104:835–46.CrossRef Radenkovic S, Bird MJ, Emmerzaal TL, Wong SY, Felgueira C, Stiers KM, et al. The Metabolic Map into the Pathomechanism and Treatment of PGM1-CDG. Am J Hum Genet. 2019;104:835–46.CrossRef
36.
go back to reference Stray-Pedersen A, Backe PH, Sorte HS, Mørkrid L, Chokshi NY, Erichsen HC, et al. PGM3 Mutations Cause a Congenital Disorder of Glycosylation with Severe Immunodeficiency and Skeletal Dysplasia. Am J Hum Genet. 2014;95:96–107.CrossRef Stray-Pedersen A, Backe PH, Sorte HS, Mørkrid L, Chokshi NY, Erichsen HC, et al. PGM3 Mutations Cause a Congenital Disorder of Glycosylation with Severe Immunodeficiency and Skeletal Dysplasia. Am J Hum Genet. 2014;95:96–107.CrossRef
37.
go back to reference Janssen MC, de Kleine RH, van den Berg AP, Heijdra Y, van Scherpenzeel M, Lefeber DJ, et al. Successful liver transplantation and long-term follow-up in a patient with MPI-CDG. Pediatrics. 2014;134:e279–83.CrossRef Janssen MC, de Kleine RH, van den Berg AP, Heijdra Y, van Scherpenzeel M, Lefeber DJ, et al. Successful liver transplantation and long-term follow-up in a patient with MPI-CDG. Pediatrics. 2014;134:e279–83.CrossRef
38.
go back to reference Ramírez AS, Boilevin J, Lin C, Ha Gan B, Janser D, Aebi M, et al. Chemo-enzymatic synthesis of lipid-linked GlcNAc2Man5 oligosaccharides using recombinant Alg1, Alg2 and Alg11 proteins. Glycobiology. 2017;27:726–33.CrossRef Ramírez AS, Boilevin J, Lin C, Ha Gan B, Janser D, Aebi M, et al. Chemo-enzymatic synthesis of lipid-linked GlcNAc2Man5 oligosaccharides using recombinant Alg1, Alg2 and Alg11 proteins. Glycobiology. 2017;27:726–33.CrossRef
Metadata
Title
Component of oligomeric Golgi complex 1 deficiency leads to hypoglycemia: a case report and literature review
Authors
Yizhou Huang
Han Dai
Gangyi Yang
Lili Zhang
Shiyao Xue
Min Zhu
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Hypoglycemia
Published in
BMC Pediatrics / Issue 1/2021
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-021-02922-7

Other articles of this Issue 1/2021

BMC Pediatrics 1/2021 Go to the issue