Skip to main content
Top
Published in: Documenta Ophthalmologica 1/2007

01-01-2007 | Original Paper

Hypobaric hypoxia reduces the amplitude of oscillatory potentials in the human ERG

Authors: Márta Janáky, Andor Grósz, Erika Tóth, Krisztina Benedek, György Benedek

Published in: Documenta Ophthalmologica | Issue 1/2007

Login to get access

Abstract

Purpose

To explore the retinal functions in healthy volunteers during acute hypoxic exposure, applying a set of electrophysiological tests.

Methods

Standard electroretinograms (ERGs) of the retina (rod-(scotopic) ERGs, cone-(photopic) ERGs, maximal responses and oscillatory potentials (OPs)) and 30-Hz flicker ERGs were recorded according to ISCEV (International Society of Clinical Electrophysiology of Vision) recommendations in 14 healthy volunteers during a 15-min exposure to a simulated altitude of 5500 m.

Results

The mean arterial oxygen saturation level was significantly reduced (P < 0.001) during the hypobaric challenge. It returned to the normal level very shortly after the end of the hypoxic exposure. No significant change in the latency or amplitude of the slow components of the ERG was found in any recording. The OPs of the ERG, however, revealed a significant decrease in amplitude during hypoxic exposure. Both OP1 and OP2 amplitudes were significantly different (P < 0.05) from the baseline values during hypoxia. Partial recovery of these waves occurred after termination of the hypoxia.

Conclusions

These results appear to support the notion that the inner layers of the retina presumed to be the main source of the OPs, display the highest sensitivity towards circulatory and/or hypoxic challenges.
Literature
1.
go back to reference Yu DY, Cringle SJ (2001) Retinal degeneration and local oxygen metabolism. Br J Ophthalmol 85:366–370CrossRef Yu DY, Cringle SJ (2001) Retinal degeneration and local oxygen metabolism. Br J Ophthalmol 85:366–370CrossRef
2.
3.
go back to reference Fallon TJ, Maxwell D, Kohner EM (1985) Retinal vascular autoregulation in conditions of hyperoxia and hypoxia using the blue field entoptic phenomenon. Ophthalmology 92:701–705PubMed Fallon TJ, Maxwell D, Kohner EM (1985) Retinal vascular autoregulation in conditions of hyperoxia and hypoxia using the blue field entoptic phenomenon. Ophthalmology 92:701–705PubMed
4.
go back to reference Brinchmann-Hansen O, Myhre K (1990) Vascular response of retinal arteries and veins to acute hypoxia of 8,000, 10,000, 12,500, and 15,000 feet of simulated altitude. Aviat Space Environ Med 61:112–116PubMed Brinchmann-Hansen O, Myhre K (1990) Vascular response of retinal arteries and veins to acute hypoxia of 8,000, 10,000, 12,500, and 15,000 feet of simulated altitude. Aviat Space Environ Med 61:112–116PubMed
5.
go back to reference Morris DS, Somner J, Donald MJ, McCormick IJ, Bourne RR, Huang SS, Aspinall P, Dhillon B (2006) The eye at altitude. Adv Exp Med Biol 588:249–270PubMedCrossRef Morris DS, Somner J, Donald MJ, McCormick IJ, Bourne RR, Huang SS, Aspinall P, Dhillon B (2006) The eye at altitude. Adv Exp Med Biol 588:249–270PubMedCrossRef
6.
go back to reference Wangsa-Wirawan ND, Linsenmeier RA (2003) Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 121: 547–557PubMedCrossRef Wangsa-Wirawan ND, Linsenmeier RA (2003) Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 121: 547–557PubMedCrossRef
7.
go back to reference Tinjust D, Kergoat H, Lovasik JV (2002) Neuroretinal function during mild systemic hypoxia. Aviat Space Environ Med 73:1189–1194PubMed Tinjust D, Kergoat H, Lovasik JV (2002) Neuroretinal function during mild systemic hypoxia. Aviat Space Environ Med 73:1189–1194PubMed
8.
go back to reference Kang Derwent J, Linsenmeier RA (2000) Effects of hypoxemia on the a- and b-waves of the electroretinogram in the cat retina. Invest Ophthalmol Vis Sci 41:3634–3642PubMed Kang Derwent J, Linsenmeier RA (2000) Effects of hypoxemia on the a- and b-waves of the electroretinogram in the cat retina. Invest Ophthalmol Vis Sci 41:3634–3642PubMed
9.
go back to reference Cao W, Zaharia M, Drumheller A, Lafond G, Brunette J-R, Jolicoeur FB (1993) Dextromethorphan attenuates the effects of ischemia on rabbit electroretinographic oscillatory potentials. Doc Ophthalmol 84:247–256PubMedCrossRef Cao W, Zaharia M, Drumheller A, Lafond G, Brunette J-R, Jolicoeur FB (1993) Dextromethorphan attenuates the effects of ischemia on rabbit electroretinographic oscillatory potentials. Doc Ophthalmol 84:247–256PubMedCrossRef
10.
go back to reference Marmor MF, Holder GE, Seeliger MW, Yamamoto S (2004) Standard for clinical electroretinography. Doc Ophthalmol 108: 107–114PubMedCrossRef Marmor MF, Holder GE, Seeliger MW, Yamamoto S (2004) Standard for clinical electroretinography. Doc Ophthalmol 108: 107–114PubMedCrossRef
11.
go back to reference Ward MP, Milledge JS, West JB (1989) High altitude medicine and physiology. University of Pennsylvania Press, Philadelphia, PA Ward MP, Milledge JS, West JB (1989) High altitude medicine and physiology. University of Pennsylvania Press, Philadelphia, PA
12.
go back to reference Benedek K, Keri S, Grosz A, Totka Z, Toth E, Benedek G (2002) Short-term hypobaric hypoxia enhances visual contrast sensitivity. Neuroreport 13:1063–1066PubMedCrossRef Benedek K, Keri S, Grosz A, Totka Z, Toth E, Benedek G (2002) Short-term hypobaric hypoxia enhances visual contrast sensitivity. Neuroreport 13:1063–1066PubMedCrossRef
13.
go back to reference Schlaepfer TE, Bartsch P, Fisch HU (1992) Paradoxical effects of mild hypoxia and moderate altitude on human visual perception. Clin Sci 83:633–636PubMed Schlaepfer TE, Bartsch P, Fisch HU (1992) Paradoxical effects of mild hypoxia and moderate altitude on human visual perception. Clin Sci 83:633–636PubMed
14.
go back to reference Wittner M, Riha P (2005) Transient hypobaric hypoxia improves spatial orientation in young rats. Physiol Res 54:335–340PubMed Wittner M, Riha P (2005) Transient hypobaric hypoxia improves spatial orientation in young rats. Physiol Res 54:335–340PubMed
15.
go back to reference Kaur C, Sivakumar V, Foulds WS (2006) Early response of neurons and glial cells to hypoxia in the retina. Invest Ophthalmol Vis Sci 47:1126–1141PubMedCrossRef Kaur C, Sivakumar V, Foulds WS (2006) Early response of neurons and glial cells to hypoxia in the retina. Invest Ophthalmol Vis Sci 47:1126–1141PubMedCrossRef
16.
go back to reference Linsenmeier RA, Steinberg RH (1986) Mechanisms of hypoxic effects on the cat DC electroretinogram. Invest Ophthalmol Vis Sci 27:1385–1394PubMed Linsenmeier RA, Steinberg RH (1986) Mechanisms of hypoxic effects on the cat DC electroretinogram. Invest Ophthalmol Vis Sci 27:1385–1394PubMed
17.
go back to reference Somjen GG, Aitken PG, Czeh G, Jing J, Young JN (1993) Cellular physiology of hypoxia of the mammalian central nervous system. Res Publ Assoc Res Nerv Ment Dis 71:51–65PubMed Somjen GG, Aitken PG, Czeh G, Jing J, Young JN (1993) Cellular physiology of hypoxia of the mammalian central nervous system. Res Publ Assoc Res Nerv Ment Dis 71:51–65PubMed
18.
go back to reference Cobb WA, Morton HB (1954) A new component of the human electroretinogram. J Physiol 123:36P–37P Cobb WA, Morton HB (1954) A new component of the human electroretinogram. J Physiol 123:36P–37P
19.
go back to reference Yonemura D, Masuda Y, Hatta M (1963) The oscillatory potential in the electroretinogram. Jpn J Physiol 13:129–137PubMed Yonemura D, Masuda Y, Hatta M (1963) The oscillatory potential in the electroretinogram. Jpn J Physiol 13:129–137PubMed
20.
21.
go back to reference Wachtmeister L (1998) Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res 17:485–521PubMedCrossRef Wachtmeister L (1998) Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res 17:485–521PubMedCrossRef
22.
go back to reference Heynen H, Wachtmeister L, van Norren D (1985) Origin of the oscillatory potentials in the primate retina. Vision Res 25:1365–1373PubMedCrossRef Heynen H, Wachtmeister L, van Norren D (1985) Origin of the oscillatory potentials in the primate retina. Vision Res 25:1365–1373PubMedCrossRef
23.
go back to reference Vaegan, Graham SL, Goldberg I, Millar TJ (1991) Selective reduction of oscillatory potentials and pattern electroretinograms after retinal ganglion cell damage by disease in humans or by kainic acid toxicity in cats. Doc Ophthalmol 77:237–253PubMedCrossRef Vaegan, Graham SL, Goldberg I, Millar TJ (1991) Selective reduction of oscillatory potentials and pattern electroretinograms after retinal ganglion cell damage by disease in humans or by kainic acid toxicity in cats. Doc Ophthalmol 77:237–253PubMedCrossRef
24.
go back to reference Rangaswamy NV, Zhou W, Harwerth RS, Frishman LJ (2006) Effect of experimental glaucoma in primates on oscillatory potentials of the slow-sequence mfERG. Invest Ophthalmol Vis Sci 47:753–767PubMedCrossRef Rangaswamy NV, Zhou W, Harwerth RS, Frishman LJ (2006) Effect of experimental glaucoma in primates on oscillatory potentials of the slow-sequence mfERG. Invest Ophthalmol Vis Sci 47:753–767PubMedCrossRef
25.
go back to reference Wachtmeister L, Dowling JE (1978) The oscillatory potentials of the mudpuppy retina. Invest Ophthalmol Vis Sci 17:1176–1188PubMed Wachtmeister L, Dowling JE (1978) The oscillatory potentials of the mudpuppy retina. Invest Ophthalmol Vis Sci 17:1176–1188PubMed
26.
go back to reference Miyake Y, Shiroyama N, Ota I, Horiguchi M (1988) Oscillatory potentials in electroretinograms of the human macular region. Invest Ophthalmol Vis Sci 29:1631–1635PubMed Miyake Y, Shiroyama N, Ota I, Horiguchi M (1988) Oscillatory potentials in electroretinograms of the human macular region. Invest Ophthalmol Vis Sci 29:1631–1635PubMed
27.
28.
go back to reference Li X, Sun X, Hu Y, Huang J, Zhang H (1992) Electroretinographic oscillatory potentials in diabetic retinopathy. An analysis in the domains of time and frequency. Doc Ophthalmol 81:173–179PubMedCrossRef Li X, Sun X, Hu Y, Huang J, Zhang H (1992) Electroretinographic oscillatory potentials in diabetic retinopathy. An analysis in the domains of time and frequency. Doc Ophthalmol 81:173–179PubMedCrossRef
29.
go back to reference Tzekov R, Arden GB (1999) The electroretinogram in diabetic retinopathy. Surv Ophthalmol 44:53–60PubMedCrossRef Tzekov R, Arden GB (1999) The electroretinogram in diabetic retinopathy. Surv Ophthalmol 44:53–60PubMedCrossRef
30.
go back to reference Vadala M, Anastasi M, Lodato G (2005) Transient reduction of the ocular perfusion pressure and the oscillatory potentials of the ERG. Vision Res 45:1341–1348PubMedCrossRef Vadala M, Anastasi M, Lodato G (2005) Transient reduction of the ocular perfusion pressure and the oscillatory potentials of the ERG. Vision Res 45:1341–1348PubMedCrossRef
31.
go back to reference Aylward GW (1989) The scotopic threshold response in diabetic retinopathy. Eye 3:626–637PubMed Aylward GW (1989) The scotopic threshold response in diabetic retinopathy. Eye 3:626–637PubMed
32.
go back to reference Johnson MA, Marcus S, Elman MJ, McPhee TJ (1988) Neovascularization in central retinal vein occlusion. Electroretinographic findings. Arch Ophthalmol 106:348–352PubMed Johnson MA, Marcus S, Elman MJ, McPhee TJ (1988) Neovascularization in central retinal vein occlusion. Electroretinographic findings. Arch Ophthalmol 106:348–352PubMed
33.
go back to reference Kergoat H, Forcier P (1996–97) Correlation of an exercise-induced increase in systemic circulation with neural retinal function in humans. Doc Ophthalmol 92:145–157 Kergoat H, Forcier P (1996–97) Correlation of an exercise-induced increase in systemic circulation with neural retinal function in humans. Doc Ophthalmol 92:145–157
Metadata
Title
Hypobaric hypoxia reduces the amplitude of oscillatory potentials in the human ERG
Authors
Márta Janáky
Andor Grósz
Erika Tóth
Krisztina Benedek
György Benedek
Publication date
01-01-2007
Publisher
Springer-Verlag
Published in
Documenta Ophthalmologica / Issue 1/2007
Print ISSN: 0012-4486
Electronic ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-006-9038-5

Other articles of this Issue 1/2007

Documenta Ophthalmologica 1/2007 Go to the issue