Skip to main content
Top
Published in: BMC Cancer 1/2010

Open Access 01-12-2010 | Research article

Hyperbolastic modeling of tumor growth with a combined treatment of iodoacetate and dimethylsulphoxide

Authors: Wayne M Eby, Mohammad A Tabatabai, Zoran Bursac

Published in: BMC Cancer | Issue 1/2010

Login to get access

Abstract

Background

An understanding of growth dynamics of tumors is important in understanding progression of cancer and designing appropriate treatment strategies. We perform a comparative study of the hyperbolastic growth models with the Weibull and Gompertz models, which are prevalently used in the field of tumor growth.

Methods

The hyperbolastic growth models H1, H2, and H3 are applied to growth of solid Ehrlich carcinoma under several different treatments. These are compared with results from Gompertz and Weibull models for the combined treatment.

Results

The growth dynamics of the solid Ehrlich carcinoma with the combined treatment are studied using models H1, H2, and H3, and the models are highly accurate in representing the growth. The growth dynamics are also compared with the untreated tumor, the tumor treated with only iodoacetate, and the tumor treated with only dimethylsulfoxide, and the combined treatment.

Conclusions

The hyperbolastic models prove to be effective in representing and analyzing the growth dynamics of the solid Ehrlich carcinoma. These models are more precise than Gompertz and Weibull and show less error for this data set. The precision of H3 allows for its use in a comparative analysis of tumor growth rates between the various treatments.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tabatabai M, Williams DK, Bursac Z: Hyperbolastic Growth Models: Theory and Application. Theoretical Biology and Medical Modeling. 2005, 2: 1-13. 10.1186/1742-4682-2-1.CrossRef Tabatabai M, Williams DK, Bursac Z: Hyperbolastic Growth Models: Theory and Application. Theoretical Biology and Medical Modeling. 2005, 2: 1-13. 10.1186/1742-4682-2-1.CrossRef
2.
go back to reference Bursac Z, Tabatabai M, Williams DK: Non-linear Hyperbolastic Growth Models and Applications in Cranofacial and Stem Cell Growth. 2005 Proceedings of the American Statistical Association. 2006, Biometrics Section [CD-ROM], Alexandria, VA: American Statistical Association, 190-197. Bursac Z, Tabatabai M, Williams DK: Non-linear Hyperbolastic Growth Models and Applications in Cranofacial and Stem Cell Growth. 2005 Proceedings of the American Statistical Association. 2006, Biometrics Section [CD-ROM], Alexandria, VA: American Statistical Association, 190-197.
3.
go back to reference Ahmadi H, Mottaghitalab M: Hyperbolastic models as a new powerful tool to describe broiler growth kinetics. Poult Sci. 2007, 86: 2461-2465. 10.3382/ps.2007-00086.CrossRefPubMed Ahmadi H, Mottaghitalab M: Hyperbolastic models as a new powerful tool to describe broiler growth kinetics. Poult Sci. 2007, 86: 2461-2465. 10.3382/ps.2007-00086.CrossRefPubMed
4.
go back to reference Cabrales LEB, Aguilera AR, Jiménez RP, Jarque MV, Ciria HMC, Reyes JB, Mateus MAO, Palencia FS, Ávila MG: Mathematical modelling of tumor growth in mice following low-level direct electric current. Mathematics and Computers in Simulation. 2008, 78: 112-120. 10.1016/j.matcom.2007.06.004.CrossRef Cabrales LEB, Aguilera AR, Jiménez RP, Jarque MV, Ciria HMC, Reyes JB, Mateus MAO, Palencia FS, Ávila MG: Mathematical modelling of tumor growth in mice following low-level direct electric current. Mathematics and Computers in Simulation. 2008, 78: 112-120. 10.1016/j.matcom.2007.06.004.CrossRef
5.
go back to reference Lala PK: Age-specific changes in the proliferation of Ehrlich ascites tumor cells grown as solid tumors. Cancer Res. 1972, 32: 628-636.PubMed Lala PK: Age-specific changes in the proliferation of Ehrlich ascites tumor cells grown as solid tumors. Cancer Res. 1972, 32: 628-636.PubMed
6.
go back to reference Araujo RP, McElwain DLS: New insights into vascular collapse and growth dynamics in solid tumors. J. Theor. Biol. 2004, 228: 335-346. 10.1016/j.jtbi.2004.01.009.CrossRefPubMed Araujo RP, McElwain DLS: New insights into vascular collapse and growth dynamics in solid tumors. J. Theor. Biol. 2004, 228: 335-346. 10.1016/j.jtbi.2004.01.009.CrossRefPubMed
7.
go back to reference Komarova NL, Sadovsky AV, Wan FYM: Selective pressures for and against genetic instability in cancer: a time-dependent problem. J. R. Soc. Interface. 2008, 5: 105-121. 10.1098/rsif.2007.1054.CrossRefPubMed Komarova NL, Sadovsky AV, Wan FYM: Selective pressures for and against genetic instability in cancer: a time-dependent problem. J. R. Soc. Interface. 2008, 5: 105-121. 10.1098/rsif.2007.1054.CrossRefPubMed
8.
go back to reference Fahim FA, Esmat AY, Mady EA, Ibrahim EK: Antitumor activities of iodoacetate and dimethylsulphoxide against solid Ehrlich carcinoma growth in mice. Biol Res. 2003, 36: 253-262. 10.4067/S0716-97602003000200015.CrossRefPubMed Fahim FA, Esmat AY, Mady EA, Ibrahim EK: Antitumor activities of iodoacetate and dimethylsulphoxide against solid Ehrlich carcinoma growth in mice. Biol Res. 2003, 36: 253-262. 10.4067/S0716-97602003000200015.CrossRefPubMed
9.
go back to reference Miko M, Drobnica L, Chance B: Inhibition of energy metabolism in Ehrlich ascites cells treated with dactylarin in vitro. Cancer Res. 1979, 39: 4242-4251.PubMed Miko M, Drobnica L, Chance B: Inhibition of energy metabolism in Ehrlich ascites cells treated with dactylarin in vitro. Cancer Res. 1979, 39: 4242-4251.PubMed
10.
go back to reference Scatena R, Bottoni P, Pontoglio A, Mastrototaro L, Giardina B: Glycolytic enzyme inhibitors in cancer treatment. Expert Opinion on Investigational Drugs. 2008, 17: 1533-1545. 10.1517/13543784.17.10.1533.CrossRefPubMed Scatena R, Bottoni P, Pontoglio A, Mastrototaro L, Giardina B: Glycolytic enzyme inhibitors in cancer treatment. Expert Opinion on Investigational Drugs. 2008, 17: 1533-1545. 10.1517/13543784.17.10.1533.CrossRefPubMed
11.
go back to reference Boros LG, Lee PWN, Brandes JL, Cascante M, Muscarella P, Schirmer WJ, Melvin WS, Ellison EC: Nonoxidative pentose phosphate pathways and their direct role in ribose synthesis in tumors: is cancer a disease of cellular glucose metabolism?. Med Hypotheses. 1998, 50: 55-59. 10.1016/S0306-9877(98)90178-5.CrossRefPubMed Boros LG, Lee PWN, Brandes JL, Cascante M, Muscarella P, Schirmer WJ, Melvin WS, Ellison EC: Nonoxidative pentose phosphate pathways and their direct role in ribose synthesis in tumors: is cancer a disease of cellular glucose metabolism?. Med Hypotheses. 1998, 50: 55-59. 10.1016/S0306-9877(98)90178-5.CrossRefPubMed
12.
go back to reference Badwey JA, Karnovsky MI: Active oxygen species and the function of phagocytic leukocytes. Ann. Rev. Biochem. 1980, 49: 695-726. 10.1146/annurev.bi.49.070180.003403.CrossRefPubMed Badwey JA, Karnovsky MI: Active oxygen species and the function of phagocytic leukocytes. Ann. Rev. Biochem. 1980, 49: 695-726. 10.1146/annurev.bi.49.070180.003403.CrossRefPubMed
13.
go back to reference Higgins PJ, O'Donnell PV: Dimethylsulfoxide-induced alterations in the growth properties and protein composition of in vitro-propogated murine hepatoma cells. Oncology. 1982, 39: 325-330. 10.1159/000225662.CrossRefPubMed Higgins PJ, O'Donnell PV: Dimethylsulfoxide-induced alterations in the growth properties and protein composition of in vitro-propogated murine hepatoma cells. Oncology. 1982, 39: 325-330. 10.1159/000225662.CrossRefPubMed
14.
go back to reference Higgins PJ: Characterization of the growth inhibited substate induced in murine hepatic tumor cells during in vitro exposure to dimethylsulfoxide. Int J Cancer. 1986, 38: 889-899. 10.1002/ijc.2910380617.CrossRefPubMed Higgins PJ: Characterization of the growth inhibited substate induced in murine hepatic tumor cells during in vitro exposure to dimethylsulfoxide. Int J Cancer. 1986, 38: 889-899. 10.1002/ijc.2910380617.CrossRefPubMed
Metadata
Title
Hyperbolastic modeling of tumor growth with a combined treatment of iodoacetate and dimethylsulphoxide
Authors
Wayne M Eby
Mohammad A Tabatabai
Zoran Bursac
Publication date
01-12-2010
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2010
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-10-509

Other articles of this Issue 1/2010

BMC Cancer 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine