Skip to main content
Top
Published in: Neurocritical Care 1/2019

01-02-2019 | Original Article

Hyperbaric Oxygen Protects Against Cerebral Damage in Permanent Middle Cerebral Artery Occlusion Rats and Inhibits Autophagy Activity

Authors: KongMiao Lu, HaiRong Wang, XiaoLi Ge, QingHua Liu, Miao Chen, Yong Shen, Xuan Liu, ShuMing Pan

Published in: Neurocritical Care | Issue 1/2019

Login to get access

Abstract

Background

To investigate the effects of hyperbaric oxygen (HBO) on brain damage and autophagy levels in a rat model of middle cerebral artery occlusion.

Methods

Neurologic injury and infarcted areas were evaluated according to the modified neurological severity score and 2,3,5-triphenyltetrazolium chloride staining. Western blots were used to determine beclin1, caspase-3 and fodrin1 protein expression. Beclin1 protein expression (an autophagy marker), positive terminal dUTP nick-end labeling (TUNEL) staining (an apoptosis marker) and positive propidium iodide (PI) staining (a necrosis marker) were detected by immunofluorescence.

Results

Our results indicated that HBO could decrease the infarct volume and speed up the recovery of the neurological deficit scores in ischemic rats. Beclin1 was down-regulated after HBO treatment. HBO treatment inhibited fodrin1 protein expression and decreased the number of PI-positive cells. HBO also down-regulated caspase-3 and decreased the number of TUNEL-positive cells.

Conclusion

Cerebral ischemia caused early neuronal death due to necrosis, followed by delayed neuronal death due to apoptosis. Consequently, autophagy might be involved in all processes of ischemia. HBO could protect the brain against ischemic injury, and the possible mechanisms might be correlated with decreased autophagy activity and decreased apoptosis and necrosis levels.
Appendix
Available only for authorised users
Literature
2.
go back to reference Cheng Y, Deshmukh M, D’Costa A, Demaro JA, Gidday JM, Shah A, et al. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Investig. 1998;101(9):1992–9.CrossRefPubMedPubMedCentral Cheng Y, Deshmukh M, D’Costa A, Demaro JA, Gidday JM, Shah A, et al. Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Investig. 1998;101(9):1992–9.CrossRefPubMedPubMedCentral
3.
go back to reference Gill R, Soriano M, Blomgren K, Hagberg H, Wybrecht R, Miss MT, et al. Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain. J Cereb Blood Flow Metab. 2002;22(4):420–30.CrossRefPubMed Gill R, Soriano M, Blomgren K, Hagberg H, Wybrecht R, Miss MT, et al. Role of caspase-3 activation in cerebral ischemia-induced neurodegeneration in adult and neonatal brain. J Cereb Blood Flow Metab. 2002;22(4):420–30.CrossRefPubMed
4.
go back to reference Joly LM, Mucignat V, Mariani J, Plotkine M, Charriaut-Marlangue C. Caspase inhibition after neonatal ischemia in the rat brain. J Cereb Blood Flow Metab. 2004;24(1):124–31.CrossRefPubMed Joly LM, Mucignat V, Mariani J, Plotkine M, Charriaut-Marlangue C. Caspase inhibition after neonatal ischemia in the rat brain. J Cereb Blood Flow Metab. 2004;24(1):124–31.CrossRefPubMed
5.
go back to reference Renolleau S, Fau S, Goyenvalle C, Joly LM, Chauvier D, Jacotot E, et al. Specific caspase inhibitor Q-VD-OPh prevents neonatal stroke in P7 rat: a role for gender. J Neurochem. 2007;100(4):1062–71.CrossRefPubMed Renolleau S, Fau S, Goyenvalle C, Joly LM, Chauvier D, Jacotot E, et al. Specific caspase inhibitor Q-VD-OPh prevents neonatal stroke in P7 rat: a role for gender. J Neurochem. 2007;100(4):1062–71.CrossRefPubMed
7.
go back to reference Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–52.CrossRefPubMed Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol. 2007;8(9):741–52.CrossRefPubMed
10.
go back to reference Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2001;2(4):330–5.CrossRefPubMedPubMedCentral Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep. 2001;2(4):330–5.CrossRefPubMedPubMedCentral
11.
go back to reference Matchett GA, Martin RD, Zhang JH. Hyperbaric oxygen therapy and cerebral ischemia: neuroprotective mechanisms. Neurol Res. 2009;31(2):114–21.CrossRefPubMed Matchett GA, Martin RD, Zhang JH. Hyperbaric oxygen therapy and cerebral ischemia: neuroprotective mechanisms. Neurol Res. 2009;31(2):114–21.CrossRefPubMed
12.
go back to reference Nemoto EM, Betterman K. Basic physiology of hyperbaric oxygen in brain. Neurol Res. 2007;29(2):116–26.CrossRefPubMed Nemoto EM, Betterman K. Basic physiology of hyperbaric oxygen in brain. Neurol Res. 2007;29(2):116–26.CrossRefPubMed
13.
go back to reference Yin X, Meng F, Wang Y, Wei W, Li A, Chai Y, et al. Effect of hyperbaric oxygen on neurological recovery of neonatal rats following hypoxic-ischemic brain damage and its underlying mechanism. Int J Clin Exp Pathol. 2013;6(1):66–75.PubMed Yin X, Meng F, Wang Y, Wei W, Li A, Chai Y, et al. Effect of hyperbaric oxygen on neurological recovery of neonatal rats following hypoxic-ischemic brain damage and its underlying mechanism. Int J Clin Exp Pathol. 2013;6(1):66–75.PubMed
14.
go back to reference Lin KC, Niu KC, Tsai KJ, Kuo JR, Wang LC, Chio CC, et al. Attenuating inflammation but stimulating both angiogenesis and neurogenesis using hyperbaric oxygen in rats with traumatic brain injury. J Trauma Acute Care Surg. 2012;72(3):650–9.CrossRefPubMed Lin KC, Niu KC, Tsai KJ, Kuo JR, Wang LC, Chio CC, et al. Attenuating inflammation but stimulating both angiogenesis and neurogenesis using hyperbaric oxygen in rats with traumatic brain injury. J Trauma Acute Care Surg. 2012;72(3):650–9.CrossRefPubMed
15.
go back to reference Wang XL, Yang YJ, Xie M, Yu XH, Liu CT, Wang X. Proliferation of neural stem cells correlates with Wnt-3 protein in hypoxic-ischemic neonate rats after hyperbaric oxygen therapy. NeuroReport. 2007;18(16):1753–6.CrossRefPubMed Wang XL, Yang YJ, Xie M, Yu XH, Liu CT, Wang X. Proliferation of neural stem cells correlates with Wnt-3 protein in hypoxic-ischemic neonate rats after hyperbaric oxygen therapy. NeuroReport. 2007;18(16):1753–6.CrossRefPubMed
16.
go back to reference Yan W, Zhang H, Bai X, Lu Y, Dong H, Xiong L. Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res. 2011;1402:109–21.CrossRefPubMed Yan W, Zhang H, Bai X, Lu Y, Dong H, Xiong L. Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res. 2011;1402:109–21.CrossRefPubMed
17.
go back to reference Lu Y, Kang J, Bai Y, Zhang Y, Li H, Yang X, et al. Hyperbaric oxygen enlarges the area of brain damage in MCAO rats by blocking autophagy via ERK1/2 activation. Eur J Pharmacol. 2014;728:93–9.CrossRefPubMed Lu Y, Kang J, Bai Y, Zhang Y, Li H, Yang X, et al. Hyperbaric oxygen enlarges the area of brain damage in MCAO rats by blocking autophagy via ERK1/2 activation. Eur J Pharmacol. 2014;728:93–9.CrossRefPubMed
18.
go back to reference Rupadevi M, Parasuraman S, Raveendran R. Protocol for middle cerebral artery occlusion by an intraluminal suture method. J Pharmacol Pharmacother. 2011;2(1):36–9.CrossRefPubMedPubMedCentral Rupadevi M, Parasuraman S, Raveendran R. Protocol for middle cerebral artery occlusion by an intraluminal suture method. J Pharmacol Pharmacother. 2011;2(1):36–9.CrossRefPubMedPubMedCentral
19.
go back to reference Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32(11):2682–8.CrossRefPubMed Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32(11):2682–8.CrossRefPubMed
20.
go back to reference Li Y, Chopp M, Chen J, Wang L, Gautam SC, Xu YX, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab. 2000;20(9):1311–9.CrossRefPubMed Li Y, Chopp M, Chen J, Wang L, Gautam SC, Xu YX, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab. 2000;20(9):1311–9.CrossRefPubMed
21.
go back to reference Ashwal S, Tone B, Tian HR, Cole DJ, Pearce WJ. Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion. Stroke. 1998;29(5):1037–46.CrossRefPubMed Ashwal S, Tone B, Tian HR, Cole DJ, Pearce WJ. Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion. Stroke. 1998;29(5):1037–46.CrossRefPubMed
23.
go back to reference Saido TC, Yokota M, Nagao S, Yamaura I, Tani E, Tsuchiya T, et al. Spatial resolution of fodrin proteolysis in postischemic brain. J Biol Chem. 1993;268(33):25239–43.PubMed Saido TC, Yokota M, Nagao S, Yamaura I, Tani E, Tsuchiya T, et al. Spatial resolution of fodrin proteolysis in postischemic brain. J Biol Chem. 1993;268(33):25239–43.PubMed
24.
go back to reference Northington FJ, Zelaya ME, O’Riordan DP, Blomgren K, Flock DL, Hagberg H, et al. Failure to complete apoptosis following neonatal hypoxia–ischemia manifests as ‘‘continuum” phenotype of cell death and occurs with multiple manifestations of mitochondrial dysfunction in rodent forebrain. Neuroscience. 2007;149(4):822–33.CrossRefPubMed Northington FJ, Zelaya ME, O’Riordan DP, Blomgren K, Flock DL, Hagberg H, et al. Failure to complete apoptosis following neonatal hypoxia–ischemia manifests as ‘‘continuum” phenotype of cell death and occurs with multiple manifestations of mitochondrial dysfunction in rodent forebrain. Neuroscience. 2007;149(4):822–33.CrossRefPubMed
25.
go back to reference Puyal J, Vaslin A, Mottier V, Clarke PG. Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol. 2009;66(3):378–89.CrossRefPubMed Puyal J, Vaslin A, Mottier V, Clarke PG. Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol. 2009;66(3):378–89.CrossRefPubMed
26.
go back to reference Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994;36(4):557–65.CrossRefPubMed Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994;36(4):557–65.CrossRefPubMed
27.
go back to reference Northington FJ, Ferriero DM, Graham EM, Traystman RJ, Martin LJ. Early neurodegeneration after hypoxia–ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis. Neurobiol Dis. 2001;8(2):207–19.CrossRefPubMed Northington FJ, Ferriero DM, Graham EM, Traystman RJ, Martin LJ. Early neurodegeneration after hypoxia–ischemia in neonatal rat is necrosis while delayed neuronal death is apoptosis. Neurobiol Dis. 2001;8(2):207–19.CrossRefPubMed
28.
go back to reference Benjelloun N, Joly LM, Palmier B, Plotkine M, Charriaut-Marlangue C. Apoptotic mitochondrial pathway in neurones and astrocytes after neonatal hypoxia–ischaemia in the rat brain. Neuropathol Appl Neurobiol. 2003;29(4):350–60.CrossRefPubMed Benjelloun N, Joly LM, Palmier B, Plotkine M, Charriaut-Marlangue C. Apoptotic mitochondrial pathway in neurones and astrocytes after neonatal hypoxia–ischaemia in the rat brain. Neuropathol Appl Neurobiol. 2003;29(4):350–60.CrossRefPubMed
29.
30.
go back to reference Rockswold SB, Rockswold GL, Defillo A. Hyperbaric oxygen in traumatic brain injury. Neurol Res. 2007;29(2):162–72.CrossRefPubMed Rockswold SB, Rockswold GL, Defillo A. Hyperbaric oxygen in traumatic brain injury. Neurol Res. 2007;29(2):162–72.CrossRefPubMed
31.
go back to reference Bao DS, Wu YK, Fu SJ, Wang GY, Yang SJ, Liang GB, et al. Hyperbaric oxygenation protects against ischemia-reperfusion injury in transplanted rat kidneys by triggering autophagy and inhibiting inflammatory response. Ann Transplant. 2017;10(22):75–82.CrossRef Bao DS, Wu YK, Fu SJ, Wang GY, Yang SJ, Liang GB, et al. Hyperbaric oxygenation protects against ischemia-reperfusion injury in transplanted rat kidneys by triggering autophagy and inhibiting inflammatory response. Ann Transplant. 2017;10(22):75–82.CrossRef
32.
go back to reference Sun Y, Liu D, Su P, Lin F, Tang Q. Changes in autophagy in rats after spinal cord injury and the effect of hyperbaric oxygen on autophagy. Neurosci Lett. 2016;618:139–45.CrossRefPubMed Sun Y, Liu D, Su P, Lin F, Tang Q. Changes in autophagy in rats after spinal cord injury and the effect of hyperbaric oxygen on autophagy. Neurosci Lett. 2016;618:139–45.CrossRefPubMed
33.
go back to reference Chen C, Chen W, Li Y, Dong Y, Teng X, Nong Z, et al. Hyperbaric oxygen protects against myocardial reperfusion injury via the inhibition of inflammation and the modulation of autophagy. Oncotarget. 2017;8(67):111522–34.PubMedPubMedCentral Chen C, Chen W, Li Y, Dong Y, Teng X, Nong Z, et al. Hyperbaric oxygen protects against myocardial reperfusion injury via the inhibition of inflammation and the modulation of autophagy. Oncotarget. 2017;8(67):111522–34.PubMedPubMedCentral
34.
go back to reference Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, et al. Cerebral ischemia hypoxia induces intravascular coagulation and autophagy. Am J Pathol. 2006;169(2):566–83.CrossRefPubMedPubMedCentral Adhami F, Liao G, Morozov YM, Schloemer A, Schmithorst VJ, Lorenz JN, et al. Cerebral ischemia hypoxia induces intravascular coagulation and autophagy. Am J Pathol. 2006;169(2):566–83.CrossRefPubMedPubMedCentral
Metadata
Title
Hyperbaric Oxygen Protects Against Cerebral Damage in Permanent Middle Cerebral Artery Occlusion Rats and Inhibits Autophagy Activity
Authors
KongMiao Lu
HaiRong Wang
XiaoLi Ge
QingHua Liu
Miao Chen
Yong Shen
Xuan Liu
ShuMing Pan
Publication date
01-02-2019
Publisher
Springer US
Published in
Neurocritical Care / Issue 1/2019
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-018-0577-x

Other articles of this Issue 1/2019

Neurocritical Care 1/2019 Go to the issue