Skip to main content
Top
Published in: Inflammation 1/2018

01-02-2018 | ORIGINAL ARTICLE

Hydrogen Sulfide Exerts Anti-oxidative and Anti-inflammatory Effects in Acute Lung Injury

Authors: Kornelia K. Zimmermann, Sashko G. Spassov, Karl M. Strosing, Paul M. Ihle, Helen Engelstaedter, Alexander Hoetzel, Simone Faller

Published in: Inflammation | Issue 1/2018

Login to get access

Abstract

Acute lung injury (ALI) caused by septic stimuli is still a major problem in critical care patients. We have shown previously that hydrogen sulfide (H2S) mediates anti-inflammatory and lung protective effects. In the present study, we aimed to investigate the underlying mechanisms. C57BL/6N mice were instilled with lipopolysaccharide (LPS) intranasally in the absence or presence of inhaled H2S for 6 h. LPS instillation led to alveolar wall thickening, an elevated ALI score, increased neutrophil transmigration, and elevated interleukin-1β cytokine release into the bronchoalveolar lavage fluid. In contrast, H2S inhalation prevented lung injury and inflammation despite LPS treatment. Moreover, H2S inhalation significantly inhibited protein expression of cystathionine-β-synthetase, heat shock protein 70, phosphorylated p38 MAP kinase, NADPH oxidase 2, and the formation of reactive oxygen species (ROS) in LPS-challenged animals. In conclusion, H2S prevents LPS-induced ALI by inhibition of pro-inflammatory and oxidative responses via the concerted attenuation of stress protein, MAP kinase, and ROS signaling pathways.
Literature
1.
go back to reference Martin, G.S., D.M. Mannino, S. Eaton, and M. Moss. 2003. The epidemiology of sepsis in the United States from 1979 through 2000. The New England Journal of Medicine 348: 1546–1554.CrossRefPubMed Martin, G.S., D.M. Mannino, S. Eaton, and M. Moss. 2003. The epidemiology of sepsis in the United States from 1979 through 2000. The New England Journal of Medicine 348: 1546–1554.CrossRefPubMed
2.
go back to reference Matute-Bello, G., C.W. Frevert, and T.R. Martin. 2008. Animal models of acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 295: L379–L399.CrossRefPubMedPubMedCentral Matute-Bello, G., C.W. Frevert, and T.R. Martin. 2008. Animal models of acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 295: L379–L399.CrossRefPubMedPubMedCentral
3.
go back to reference Wheeler, D.S., and H.R. Wong. 2007. Heat shock response and acute lung injury. Free Radical Biology & Medicine 42: 1–14.CrossRef Wheeler, D.S., and H.R. Wong. 2007. Heat shock response and acute lung injury. Free Radical Biology & Medicine 42: 1–14.CrossRef
4.
go back to reference Arndt, P.G., S.K. Young, and G.S. Worthen. 2005. Regulation of lipopolysaccharide-induced lung inflammation by plasminogen activator Inhibitor-1 through a JNK-mediated pathway. Journal of Immunology 175: 4049–4059.CrossRef Arndt, P.G., S.K. Young, and G.S. Worthen. 2005. Regulation of lipopolysaccharide-induced lung inflammation by plasminogen activator Inhibitor-1 through a JNK-mediated pathway. Journal of Immunology 175: 4049–4059.CrossRef
5.
go back to reference Hu, L.F., P.T. Wong, P.K. Moore, and J.S. Bian. 2007. Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. Journal of Neurochemistry 100: 1121–1128.CrossRefPubMed Hu, L.F., P.T. Wong, P.K. Moore, and J.S. Bian. 2007. Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. Journal of Neurochemistry 100: 1121–1128.CrossRefPubMed
6.
go back to reference Lan, A., X. Liao, L. Mo, C. Yang, Z. Yang, X. Wang, F. Hu, P. Chen, J. Feng, D. Zheng, and L. Xiao. 2011. Hydrogen sulfide protects against chemical hypoxia-induced injury by inhibiting ROS-activated ERK1/2 and p38MAPK signaling pathways in PC12 cells. PLoS One 6: e25921.CrossRefPubMedPubMedCentral Lan, A., X. Liao, L. Mo, C. Yang, Z. Yang, X. Wang, F. Hu, P. Chen, J. Feng, D. Zheng, and L. Xiao. 2011. Hydrogen sulfide protects against chemical hypoxia-induced injury by inhibiting ROS-activated ERK1/2 and p38MAPK signaling pathways in PC12 cells. PLoS One 6: e25921.CrossRefPubMedPubMedCentral
7.
go back to reference Biermann, J., W.A. Lagreze, N. Schallner, C.I. Schwer, and U. Goebel. 2011. Inhalative preconditioning with hydrogen sulfide attenuated apoptosis after retinal ischemia/reperfusion injury. Molecular Vision 17: 1275–1286.PubMedPubMedCentral Biermann, J., W.A. Lagreze, N. Schallner, C.I. Schwer, and U. Goebel. 2011. Inhalative preconditioning with hydrogen sulfide attenuated apoptosis after retinal ischemia/reperfusion injury. Molecular Vision 17: 1275–1286.PubMedPubMedCentral
8.
go back to reference Faller, S., S.W. Ryter, A.M. Choi, T. Loop, R. Schmidt, and A. Hoetzel. 2010. Inhaled hydrogen sulfide protects against ventilator-induced lung injury. Anesthesiology 113: 104–115.CrossRefPubMed Faller, S., S.W. Ryter, A.M. Choi, T. Loop, R. Schmidt, and A. Hoetzel. 2010. Inhaled hydrogen sulfide protects against ventilator-induced lung injury. Anesthesiology 113: 104–115.CrossRefPubMed
9.
go back to reference Faller, S., S.G. Spassov, K.K. Zimmermann, S.W. Ryter, H. Buerkle, T. Loop, R. Schmidt, K.M. Strosing, and A. Hoetzel. 2013. Hydrogen sulfide prevents hyperoxia-induced lung injury by downregulating reactive oxygen species formation and angiopoietin-2 release. Current Pharmaceutical Design 19: 2715–2721.CrossRefPubMed Faller, S., S.G. Spassov, K.K. Zimmermann, S.W. Ryter, H. Buerkle, T. Loop, R. Schmidt, K.M. Strosing, and A. Hoetzel. 2013. Hydrogen sulfide prevents hyperoxia-induced lung injury by downregulating reactive oxygen species formation and angiopoietin-2 release. Current Pharmaceutical Design 19: 2715–2721.CrossRefPubMed
10.
go back to reference Li, T., B. Zhao, C. Wang, H. Wang, Z. Liu, W. Li, H. Jin, C. Tang, and J. Du. 2008. Regulatory effects of hydrogen sulfide on IL-6, IL-8 and IL-10 levels in the plasma and pulmonary tissue of rats with acute lung injury. Exp Biol Med (Maywood ). 233: 1081–1087.CrossRefPubMed Li, T., B. Zhao, C. Wang, H. Wang, Z. Liu, W. Li, H. Jin, C. Tang, and J. Du. 2008. Regulatory effects of hydrogen sulfide on IL-6, IL-8 and IL-10 levels in the plasma and pulmonary tissue of rats with acute lung injury. Exp Biol Med (Maywood ). 233: 1081–1087.CrossRefPubMed
11.
go back to reference Faller, S., K.K. Zimmermann, K.M. Strosing, H. Engelstaedter, H. Buerkle, R. Schmidt, S.G. Spassov, and A. Hoetzel. 2012. Inhaled hydrogen sulfide protects against lipopolysaccharide-induced acute lung injury in mice. Medical Gas Research 2: 26.CrossRefPubMedPubMedCentral Faller, S., K.K. Zimmermann, K.M. Strosing, H. Engelstaedter, H. Buerkle, R. Schmidt, S.G. Spassov, and A. Hoetzel. 2012. Inhaled hydrogen sulfide protects against lipopolysaccharide-induced acute lung injury in mice. Medical Gas Research 2: 26.CrossRefPubMedPubMedCentral
12.
go back to reference Faller, S., K.M. Strosing, S.W. Ryter, H. Buerkle, T. Loop, R. Schmidt, and A. Hoetzel. 2012. The volatile anesthetic isoflurane prevents ventilator-induced lung injury via phosphoinositide 3-kinase/Akt signaling in mice. Anesthesia and Analgesia 114: 747–756.CrossRefPubMed Faller, S., K.M. Strosing, S.W. Ryter, H. Buerkle, T. Loop, R. Schmidt, and A. Hoetzel. 2012. The volatile anesthetic isoflurane prevents ventilator-induced lung injury via phosphoinositide 3-kinase/Akt signaling in mice. Anesthesia and Analgesia 114: 747–756.CrossRefPubMed
13.
go back to reference Madden, J.A., S.B. Ahlf, M.W. Dantuma, K.R. Olson, and D.L. Roerig. 2012. Precursors and inhibitors of hydrogen sulfide synthesis affect acute hypoxic pulmonary vasoconstriction in the intact lung. Journal of Applied Physiology 112 (3): 411–418.CrossRefPubMed Madden, J.A., S.B. Ahlf, M.W. Dantuma, K.R. Olson, and D.L. Roerig. 2012. Precursors and inhibitors of hydrogen sulfide synthesis affect acute hypoxic pulmonary vasoconstriction in the intact lung. Journal of Applied Physiology 112 (3): 411–418.CrossRefPubMed
14.
go back to reference Zhang, T.Z., S.H. Yang, J.F. Yao, J. Du, and T.H. Yan. 2015. Sangxingtang inhibits the inflammation of LPS-induced acute lung injury in mice by down-regulating the MAPK/NF-kappaB pathway. Chinese Journal of Natural Medicines 13: 889–895.CrossRefPubMed Zhang, T.Z., S.H. Yang, J.F. Yao, J. Du, and T.H. Yan. 2015. Sangxingtang inhibits the inflammation of LPS-induced acute lung injury in mice by down-regulating the MAPK/NF-kappaB pathway. Chinese Journal of Natural Medicines 13: 889–895.CrossRefPubMed
15.
go back to reference Carnesecchi, S., J.C. Pache, and C. Barazzone-Argiroffo. 2012. NOX enzymes: potential target for the treatment of acute lung injury. Cellular and Molecular Life Sciences 69: 2373–2385.CrossRefPubMed Carnesecchi, S., J.C. Pache, and C. Barazzone-Argiroffo. 2012. NOX enzymes: potential target for the treatment of acute lung injury. Cellular and Molecular Life Sciences 69: 2373–2385.CrossRefPubMed
16.
go back to reference Francis, R.C., K. Vaporidi, K.D. Bloch, F. Ichinose, and W.M. Zapol. 2011. Protective and detrimental effects of sodium sulfide and hydrogen sulfide in murine ventilator-induced lung injury. Anesthesiology 115: 1012–1021.CrossRefPubMedPubMedCentral Francis, R.C., K. Vaporidi, K.D. Bloch, F. Ichinose, and W.M. Zapol. 2011. Protective and detrimental effects of sodium sulfide and hydrogen sulfide in murine ventilator-induced lung injury. Anesthesiology 115: 1012–1021.CrossRefPubMedPubMedCentral
17.
go back to reference Tokuda, K., K. Kida, E. Marutani, E. Crimi, M. Bougaki, A. Khatri, H. Kimura, and F. Ichinose. 2012. Inhaled hydrogen sulfide prevents endotoxin-induced systemic inflammation and improves survival by altering sulfide metabolism in mice. Antioxidants & Redox Signaling 17: 11–21.CrossRef Tokuda, K., K. Kida, E. Marutani, E. Crimi, M. Bougaki, A. Khatri, H. Kimura, and F. Ichinose. 2012. Inhaled hydrogen sulfide prevents endotoxin-induced systemic inflammation and improves survival by altering sulfide metabolism in mice. Antioxidants & Redox Signaling 17: 11–21.CrossRef
18.
go back to reference Hasan, B., F.S. Li, A. Siyit, E. Tuyghun, J.H. Luo, H. Upur, and A. Ablimit. 2014. Expression of aquaporins in the lungs of mice with acute injury caused by LPS treatment. Respiratory Physiology & Neurobiology 200C: 40–45.CrossRef Hasan, B., F.S. Li, A. Siyit, E. Tuyghun, J.H. Luo, H. Upur, and A. Ablimit. 2014. Expression of aquaporins in the lungs of mice with acute injury caused by LPS treatment. Respiratory Physiology & Neurobiology 200C: 40–45.CrossRef
19.
go back to reference Li, L., G. Rossoni, A. Sparatore, L.C. Lee, P. Del Soldato, and P.K. Moore. 2007. Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radical Biology & Medicine 42: 706–719.CrossRef Li, L., G. Rossoni, A. Sparatore, L.C. Lee, P. Del Soldato, and P.K. Moore. 2007. Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radical Biology & Medicine 42: 706–719.CrossRef
20.
go back to reference Sidhapuriwala, J.N., S.W. Ng, and M. Bhatia. 2009. Effects of hydrogen sulfide on inflammation in caerulein-induced acute pancreatitis. Journal Inflammation (London) 6: 35.CrossRef Sidhapuriwala, J.N., S.W. Ng, and M. Bhatia. 2009. Effects of hydrogen sulfide on inflammation in caerulein-induced acute pancreatitis. Journal Inflammation (London) 6: 35.CrossRef
21.
go back to reference Huang, C.W., and P.K. Moore. 2015. H2S synthesizing enzymes: biochemistry and molecular aspects. Handbook of Experimental Pharmacology 230: 3–25.CrossRefPubMed Huang, C.W., and P.K. Moore. 2015. H2S synthesizing enzymes: biochemistry and molecular aspects. Handbook of Experimental Pharmacology 230: 3–25.CrossRefPubMed
22.
go back to reference Ang, A.D., J. Rivers-Auty, A. Hegde, I. Ishii, and M. Bhatia. 2013. The effect of CSE gene deletion in caerulein-induced acute pancreatitis in the mouse. American Journal of Physiology. Gastrointestinal and Liver Physiology 305: G712–G721.CrossRefPubMed Ang, A.D., J. Rivers-Auty, A. Hegde, I. Ishii, and M. Bhatia. 2013. The effect of CSE gene deletion in caerulein-induced acute pancreatitis in the mouse. American Journal of Physiology. Gastrointestinal and Liver Physiology 305: G712–G721.CrossRefPubMed
23.
go back to reference Dugbartey, G.J., F. Talaei, M.C. Houwertjes, M. Goris, A.H. Epema, H.R. Bouma, and R.H. Henning. 2015. Dopamine treatment attenuates acute kidney injury in a rat model of deep hypothermia and rewarming—the role of renal H2S-producing enzymes. European Journal of Pharmacology 769: 225–233.CrossRefPubMed Dugbartey, G.J., F. Talaei, M.C. Houwertjes, M. Goris, A.H. Epema, H.R. Bouma, and R.H. Henning. 2015. Dopamine treatment attenuates acute kidney injury in a rat model of deep hypothermia and rewarming—the role of renal H2S-producing enzymes. European Journal of Pharmacology 769: 225–233.CrossRefPubMed
24.
go back to reference Qu, Z., Y. Jiang, B.Q. Wu, Y.F. Duan, Z.D. Sun, and G.H. Luo. 2014. Cystathionine-gamma-lyase inhibitor attenuates acute lung injury induced by acute pancreatitis in rats. Archives of Medical Science 10: 825–829.CrossRefPubMedPubMedCentral Qu, Z., Y. Jiang, B.Q. Wu, Y.F. Duan, Z.D. Sun, and G.H. Luo. 2014. Cystathionine-gamma-lyase inhibitor attenuates acute lung injury induced by acute pancreatitis in rats. Archives of Medical Science 10: 825–829.CrossRefPubMedPubMedCentral
25.
go back to reference Wagner, F., A. Scheuerle, S. Weber, B. Stahl, O. McCook, M.W. Knoferl, M. Huber-Lang, D.H. Seitz, J. Thomas, P. Asfar, C. Szabo, P. Moller, F. Gebhard, M. Georgieff, E. Calzia, P. Radermacher, and K. Wagner. 2011. Cardiopulmonary, histologic, and inflammatory effects of intravenous Na2S after blunt chest trauma-induced lung contusion in mice. The Journal of Trauma 71: 1659–1667.PubMed Wagner, F., A. Scheuerle, S. Weber, B. Stahl, O. McCook, M.W. Knoferl, M. Huber-Lang, D.H. Seitz, J. Thomas, P. Asfar, C. Szabo, P. Moller, F. Gebhard, M. Georgieff, E. Calzia, P. Radermacher, and K. Wagner. 2011. Cardiopulmonary, histologic, and inflammatory effects of intravenous Na2S after blunt chest trauma-induced lung contusion in mice. The Journal of Trauma 71: 1659–1667.PubMed
26.
go back to reference Zhou, X.H., P. Wei, X.L. Huang, and Y.L. Ling. 2009. Role of endogenous and exogenous hydrogen sulfide in acute lung injury induced by LPS in rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi 25: 289–294.PubMed Zhou, X.H., P. Wei, X.L. Huang, and Y.L. Ling. 2009. Role of endogenous and exogenous hydrogen sulfide in acute lung injury induced by LPS in rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi 25: 289–294.PubMed
27.
go back to reference Zhou, X.H., X.L. Huang, P. Wei, F.J. Tian, and Y.L. Ling. 2009. Role of hydrogen sulfide/cystathionine-gamma-lyase system in acute lung injury induced by lipopolysaccharide in rats. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 21: 199–202.PubMed Zhou, X.H., X.L. Huang, P. Wei, F.J. Tian, and Y.L. Ling. 2009. Role of hydrogen sulfide/cystathionine-gamma-lyase system in acute lung injury induced by lipopolysaccharide in rats. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 21: 199–202.PubMed
28.
go back to reference Asaduzzaman, M., Y. Wang, and H. Thorlacius. 2008. Critical role of p38 mitogen-activated protein kinase signaling in septic lung injury. Critical Care Medicine 36: 482–488.CrossRefPubMed Asaduzzaman, M., Y. Wang, and H. Thorlacius. 2008. Critical role of p38 mitogen-activated protein kinase signaling in septic lung injury. Critical Care Medicine 36: 482–488.CrossRefPubMed
29.
go back to reference Schuh, K., and A. Pahl. 2009. Inhibition of the MAP kinase ERK protects from lipopolysaccharide-induced lung injury. Biochemical Pharmacology 77: 1827–1834.CrossRefPubMed Schuh, K., and A. Pahl. 2009. Inhibition of the MAP kinase ERK protects from lipopolysaccharide-induced lung injury. Biochemical Pharmacology 77: 1827–1834.CrossRefPubMed
30.
go back to reference Issa, K., A. Kimmoun, S. Collin, F. Ganster, S. Fremont-Orlowski, P. Asfar, P.M. Mertes, and B. Levy. 2013. Compared effects of inhibition and exogenous administration of hydrogen sulphide in ischaemia-reperfusion injury. Critical Care 17: R129.CrossRefPubMedPubMedCentral Issa, K., A. Kimmoun, S. Collin, F. Ganster, S. Fremont-Orlowski, P. Asfar, P.M. Mertes, and B. Levy. 2013. Compared effects of inhibition and exogenous administration of hydrogen sulphide in ischaemia-reperfusion injury. Critical Care 17: R129.CrossRefPubMedPubMedCentral
31.
go back to reference Sivarajah, A., M. Collino, M. Yasin, E. Benetti, M. Gallicchio, E. Mazzon, S. Cuzzocrea, R. Fantozzi, and C. Thiemermann. 2009. Anti-apoptotic and anti-inflammatory effects of hydrogen sulfide in a rat model of regional myocardial I/R. Shock 31: 267–274.CrossRefPubMed Sivarajah, A., M. Collino, M. Yasin, E. Benetti, M. Gallicchio, E. Mazzon, S. Cuzzocrea, R. Fantozzi, and C. Thiemermann. 2009. Anti-apoptotic and anti-inflammatory effects of hydrogen sulfide in a rat model of regional myocardial I/R. Shock 31: 267–274.CrossRefPubMed
32.
go back to reference Lee, I.T., and C.M. Yang. 2012. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochemical Pharmacology 84: 581–590.CrossRefPubMed Lee, I.T., and C.M. Yang. 2012. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochemical Pharmacology 84: 581–590.CrossRefPubMed
33.
go back to reference Stein, A., and S.M. Bailey. 2013. Redox biology of hydrogen sulfide: implications for physiology, pathophysiology, and pharmacology. Redox Biology 1: 32–39.CrossRefPubMedPubMedCentral Stein, A., and S.M. Bailey. 2013. Redox biology of hydrogen sulfide: implications for physiology, pathophysiology, and pharmacology. Redox Biology 1: 32–39.CrossRefPubMedPubMedCentral
34.
go back to reference Dong, X.B., C.T. Yang, D.D. Zheng, L.Q. Mo, X.Y. Wang, A.P. Lan, F. Hu, P.X. Chen, J.Q. Feng, M.F. Zhang, and X.X. Liao. 2012. Inhibition of ROS-activated ERK1/2 pathway contributes to the protection of H2S against chemical hypoxia-induced injury in H9c2 cells. Molecular and Cellular Biochemistry 362: 149–157.CrossRefPubMed Dong, X.B., C.T. Yang, D.D. Zheng, L.Q. Mo, X.Y. Wang, A.P. Lan, F. Hu, P.X. Chen, J.Q. Feng, M.F. Zhang, and X.X. Liao. 2012. Inhibition of ROS-activated ERK1/2 pathway contributes to the protection of H2S against chemical hypoxia-induced injury in H9c2 cells. Molecular and Cellular Biochemistry 362: 149–157.CrossRefPubMed
35.
go back to reference Lan, A., W. Xu, H. Zhang, X. Hua, D. Zheng, R. Guo, N. Shen, F. Hu, J. Feng, and D. Liu. 2013. Inhibition of ROS-activated p38MAPK pathway is involved in the protective effect of H2S against chemical hypoxia-induced inflammation in PC12 cells. Neurochemical Research 38: 1454–1466.CrossRefPubMedPubMedCentral Lan, A., W. Xu, H. Zhang, X. Hua, D. Zheng, R. Guo, N. Shen, F. Hu, J. Feng, and D. Liu. 2013. Inhibition of ROS-activated p38MAPK pathway is involved in the protective effect of H2S against chemical hypoxia-induced inflammation in PC12 cells. Neurochemical Research 38: 1454–1466.CrossRefPubMedPubMedCentral
36.
go back to reference Yu, Q., Z. Lu, L. Tao, L. Yang, Y. Guo, Y. Yang, X. Sun, and Q. Ding. 2015. ROS-dependent neuroprotective effects of NaHS in ischemia brain injury involves the PARP/AIF pathway. Cellular Physiology and Biochemistry 36: 1539–1551.CrossRefPubMed Yu, Q., Z. Lu, L. Tao, L. Yang, Y. Guo, Y. Yang, X. Sun, and Q. Ding. 2015. ROS-dependent neuroprotective effects of NaHS in ischemia brain injury involves the PARP/AIF pathway. Cellular Physiology and Biochemistry 36: 1539–1551.CrossRefPubMed
37.
go back to reference Kratzer, E., Y. Tian, N. Sarich, T. Wu, A. Meliton, A. Leff, and A.A. Birukova. 2012. Oxidative stress contributes to lung injury and barrier dysfunction via microtubule destabilization. American Journal of Respiratory Cell and Molecular Biology 47: 688–697.CrossRefPubMedPubMedCentral Kratzer, E., Y. Tian, N. Sarich, T. Wu, A. Meliton, A. Leff, and A.A. Birukova. 2012. Oxidative stress contributes to lung injury and barrier dysfunction via microtubule destabilization. American Journal of Respiratory Cell and Molecular Biology 47: 688–697.CrossRefPubMedPubMedCentral
38.
go back to reference Gandhirajan, R.K., S. Meng, H.C. Chandramoorthy, K. Mallilankaraman, S. Mancarella, H. Gao, R. Razmpour, X.F. Yang, S.R. Houser, J. Chen, W.J. Koch, H. Wang, J. Soboloff, D.L. Gill, and M. Madesh. 2013. Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation. The Journal of Clinical Investigation 123: 887–902.PubMedPubMedCentral Gandhirajan, R.K., S. Meng, H.C. Chandramoorthy, K. Mallilankaraman, S. Mancarella, H. Gao, R. Razmpour, X.F. Yang, S.R. Houser, J. Chen, W.J. Koch, H. Wang, J. Soboloff, D.L. Gill, and M. Madesh. 2013. Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation. The Journal of Clinical Investigation 123: 887–902.PubMedPubMedCentral
39.
go back to reference Menden, H., E. Tate, N. Hogg, and V. Sampath. 2013. LPS-mediated endothelial activation in pulmonary endothelial cells: role of Nox2-dependent IKK-beta phosphorylation. American Journal of Physiology. Lung Cellular and Molecular Physiology 304: L445–L455.CrossRefPubMedPubMedCentral Menden, H., E. Tate, N. Hogg, and V. Sampath. 2013. LPS-mediated endothelial activation in pulmonary endothelial cells: role of Nox2-dependent IKK-beta phosphorylation. American Journal of Physiology. Lung Cellular and Molecular Physiology 304: L445–L455.CrossRefPubMedPubMedCentral
40.
go back to reference Li, H.D., Z.R. Zhang, Q.X. Zhang, Z.C. Qin, D.M. He, and J.S. Chen. 2013. Treatment with exogenous hydrogen sulfide attenuates hyperoxia-induced acute lung injury in mice. European Journal of Applied Physiology 113: 1555–1563.CrossRefPubMed Li, H.D., Z.R. Zhang, Q.X. Zhang, Z.C. Qin, D.M. He, and J.S. Chen. 2013. Treatment with exogenous hydrogen sulfide attenuates hyperoxia-induced acute lung injury in mice. European Journal of Applied Physiology 113: 1555–1563.CrossRefPubMed
41.
go back to reference Tyagi, N., K.S. Moshal, U. Sen, T.P. Vacek, M. Kumar, W.M. Hughes Jr., S. Kundu, and S.C. Tyagi. 2009. H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxidants & Redox Signaling 11: 25–33.CrossRef Tyagi, N., K.S. Moshal, U. Sen, T.P. Vacek, M. Kumar, W.M. Hughes Jr., S. Kundu, and S.C. Tyagi. 2009. H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxidants & Redox Signaling 11: 25–33.CrossRef
42.
go back to reference Zheng, D., S. Dong, T. Li, F. Yang, X. Yu, J. Wu, X. Zhong, Y. Zhao, L. Wang, C. Xu, F. Lu, and W. Zhang. 2015. Exogenous hydrogen sulfide attenuates cardiac fibrosis through reactive oxygen species signal pathways in experimental diabetes mellitus models. Cellular Physiology and Biochemistry 36: 917–929.CrossRefPubMed Zheng, D., S. Dong, T. Li, F. Yang, X. Yu, J. Wu, X. Zhong, Y. Zhao, L. Wang, C. Xu, F. Lu, and W. Zhang. 2015. Exogenous hydrogen sulfide attenuates cardiac fibrosis through reactive oxygen species signal pathways in experimental diabetes mellitus models. Cellular Physiology and Biochemistry 36: 917–929.CrossRefPubMed
Metadata
Title
Hydrogen Sulfide Exerts Anti-oxidative and Anti-inflammatory Effects in Acute Lung Injury
Authors
Kornelia K. Zimmermann
Sashko G. Spassov
Karl M. Strosing
Paul M. Ihle
Helen Engelstaedter
Alexander Hoetzel
Simone Faller
Publication date
01-02-2018
Publisher
Springer US
Published in
Inflammation / Issue 1/2018
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0684-4

Other articles of this Issue 1/2018

Inflammation 1/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine