Skip to main content
Top
Published in: Translational Stroke Research 3/2016

01-06-2016 | Original Article

Hydrogen Sulfide Attenuates Tissue Plasminogen Activator-Induced Cerebral Hemorrhage Following Experimental Stroke

Authors: Hui Liu, Yi Wang, Yunqi Xiao, Zichun Hua, Jian Cheng, Jia Jia

Published in: Translational Stroke Research | Issue 3/2016

Login to get access

Abstract

Tissue plasminogen activator (tPA), the only approved drug for the treatment of ischemic stroke, increases the risk of cerebral hemorrhage. Here, we investigated whether the newly identified gaso-transmitter hydrogen sulfide (H2S), when used in combination with tPA, reduced the hemorrhagic transformation following stroke. In a mouse model of middle cerebral artery occlusion (MCAO), intravenous injection of tPA enhanced cerebral hemorrhage, which was significantly attenuated by the co-administration of two structurally unrelated H2S donors, ADT-OH and NaHS. By assessing extravasation of Evans blue into the ischemic hemisphere as well as brain edema following MCAO, we further showed that a tPA-exacerbated BBB disruption was significantly ameliorated by the co-administration of ADT-OH. In the mouse MCAO model, tPA upregulated Akt activation, vascular endothelial growth factor (VEGF) expression, and metalloproteinase 9 (MMP9) activity in the ischemic brain, which was remarkably attenuated by ADT-OH. In the in vitro glucose–oxygen deprivation (OGD) model, ADT-OH markedly attenuated tPA-enhanced Akt activation and VEGF expression in brain microvascular endothelial cells. Finally, ADT-OH improved functional outcomes in mice subjected to MCAO and tPA infusion. In conclusion, H2S donors reduced tPA-induced cerebral hemorrhage by possibly inhibiting the Akt-VEGF-MMP9 cascade. Administration of H2S donors has potential as a novel modality to improve the safety of tPA following stroke.
Literature
2.
go back to reference Hafez S, Hoda MN, Guo X, Johnson MH, Fagan SC, Ergul A. Comparative analysis of different methods of ischemia/reperfusion in hyperglycemic stroke outcomes: interaction with tPA. Transl Stroke Res. 2015;6(3):171–80. doi:10.1007/s12975-015-0391-0.CrossRefPubMed Hafez S, Hoda MN, Guo X, Johnson MH, Fagan SC, Ergul A. Comparative analysis of different methods of ischemia/reperfusion in hyperglycemic stroke outcomes: interaction with tPA. Transl Stroke Res. 2015;6(3):171–80. doi:10.​1007/​s12975-015-0391-0.CrossRefPubMed
5.
go back to reference Dijkhuizen RM, Asahi M, Wu O, Rosen BR, Lo EH. Rapid breakdown of microvascular barriers and subsequent hemorrhagic transformation after delayed recombinant tissue plasminogen activator treatment in a rat embolic stroke model. Stroke J Cereb Circ. 2002;33(8):2100–4.CrossRef Dijkhuizen RM, Asahi M, Wu O, Rosen BR, Lo EH. Rapid breakdown of microvascular barriers and subsequent hemorrhagic transformation after delayed recombinant tissue plasminogen activator treatment in a rat embolic stroke model. Stroke J Cereb Circ. 2002;33(8):2100–4.CrossRef
6.
go back to reference Kastrup A, Groschel K, Ringer TM, Redecker C, Cordesmeyer R, Witte OW, et al. Early disruption of the blood–brain barrier after thrombolytic therapy predicts hemorrhage in patients with acute stroke. Stroke J Cereb Circ. 2008;39(8):2385–7. doi:10.1161/STROKEAHA.107.505420.CrossRef Kastrup A, Groschel K, Ringer TM, Redecker C, Cordesmeyer R, Witte OW, et al. Early disruption of the blood–brain barrier after thrombolytic therapy predicts hemorrhage in patients with acute stroke. Stroke J Cereb Circ. 2008;39(8):2385–7. doi:10.​1161/​STROKEAHA.​107.​505420.CrossRef
7.
go back to reference Wang L, Fan W, Cai P, Fan M, Zhu X, Dai Y, et al. Recombinant ADAMTS13 reduces tissue plasminogen activator-induced hemorrhage after stroke in mice. Ann Neurol. 2013;73(2):189–98. doi:10.1002/ana.23762.CrossRefPubMed Wang L, Fan W, Cai P, Fan M, Zhu X, Dai Y, et al. Recombinant ADAMTS13 reduces tissue plasminogen activator-induced hemorrhage after stroke in mice. Ann Neurol. 2013;73(2):189–98. doi:10.​1002/​ana.​23762.CrossRefPubMed
8.
go back to reference Won S, Lee JH, Wali B, Stein DG, Sayeed I. Progesterone attenuates hemorrhagic transformation after delayed tPA treatment in an experimental model of stroke in rats: involvement of the VEGF-MMP pathway. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2014;34(1):72–80. doi:10.1038/jcbfm.2013.163.CrossRef Won S, Lee JH, Wali B, Stein DG, Sayeed I. Progesterone attenuates hemorrhagic transformation after delayed tPA treatment in an experimental model of stroke in rats: involvement of the VEGF-MMP pathway. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2014;34(1):72–80. doi:10.​1038/​jcbfm.​2013.​163.CrossRef
9.
13.
go back to reference Nicholson CK, Lambert JP, Molkentin JD, Sadoshima J, Calvert JW. Thioredoxin 1 is essential for sodium sulfide-mediated cardioprotection in the setting of heart failure. Arterioscler Thromb Vasc Biol. 2013;33(4):744–51. doi:10.1161/ATVBAHA.112.300484.CrossRefPubMed Nicholson CK, Lambert JP, Molkentin JD, Sadoshima J, Calvert JW. Thioredoxin 1 is essential for sodium sulfide-mediated cardioprotection in the setting of heart failure. Arterioscler Thromb Vasc Biol. 2013;33(4):744–51. doi:10.​1161/​ATVBAHA.​112.​300484.CrossRefPubMed
15.
go back to reference Hunter JP, Hosgood SA, Patel M, Rose R, Read K, Nicholson ML. Effects of hydrogen sulphide in an experimental model of renal ischaemia-reperfusion injury. Br J Surg. 2012;99(12):1665–71. doi:10.1002/bjs.8956.CrossRefPubMed Hunter JP, Hosgood SA, Patel M, Rose R, Read K, Nicholson ML. Effects of hydrogen sulphide in an experimental model of renal ischaemia-reperfusion injury. Br J Surg. 2012;99(12):1665–71. doi:10.​1002/​bjs.​8956.CrossRefPubMed
19.
22.
23.
go back to reference Su EJ, Fredriksson L, Geyer M, Folestad E, Cale J, Andrae J, et al. Activation of PDGF-CC by tissue plasminogen activator impairs blood–brain barrier integrity during ischemic stroke. Nat Med. 2008;14(7):731–7. doi:10.1038/nm1787.CrossRefPubMedPubMedCentral Su EJ, Fredriksson L, Geyer M, Folestad E, Cale J, Andrae J, et al. Activation of PDGF-CC by tissue plasminogen activator impairs blood–brain barrier integrity during ischemic stroke. Nat Med. 2008;14(7):731–7. doi:10.​1038/​nm1787.CrossRefPubMedPubMedCentral
25.
26.
go back to reference Jin Q, Cheng J, Liu Y, Wu J, Wang X, Wei S, et al. Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain Behav Immun. 2014;40:131–42. doi:10.1016/j.bbi.2014.03.003.CrossRefPubMed Jin Q, Cheng J, Liu Y, Wu J, Wang X, Wei S, et al. Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain Behav Immun. 2014;40:131–42. doi:10.​1016/​j.​bbi.​2014.​03.​003.CrossRefPubMed
28.
29.
go back to reference Kilic E, Kilic U, Wang Y, Bassetti CL, Marti HH, Hermann DM. The phosphatidylinositol-3 kinase/Akt pathway mediates VEGF’s neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia. FASEB J Off Publ Fed Am Soc Exp Biol. 2006;20(8):1185–7. doi:10.1096/fj.05-4829fje. Kilic E, Kilic U, Wang Y, Bassetti CL, Marti HH, Hermann DM. The phosphatidylinositol-3 kinase/Akt pathway mediates VEGF’s neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia. FASEB J Off Publ Fed Am Soc Exp Biol. 2006;20(8):1185–7. doi:10.​1096/​fj.​05-4829fje.
30.
go back to reference Geng Y, Li E, Mu Q, Zhang Y, Wei X, Li H, et al. Hydrogen sulfide inhalation decreases early blood–brain barrier permeability and brain edema induced by cardiac arrest and resuscitation. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2015;35(3):494–500. doi:10.1038/jcbfm.2014.223.CrossRef Geng Y, Li E, Mu Q, Zhang Y, Wei X, Li H, et al. Hydrogen sulfide inhalation decreases early blood–brain barrier permeability and brain edema induced by cardiac arrest and resuscitation. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2015;35(3):494–500. doi:10.​1038/​jcbfm.​2014.​223.CrossRef
31.
go back to reference Kamat PK, Kyles P, Kalani A, Tyagi N. Hydrogen sulfide ameliorates homocysteine-induced Alzheimer’s disease-like pathology, blood–brain barrier disruption, and synaptic disorder. Mol Neurobiol. 2015. doi:10.1007/s12035-015-9212-4. Kamat PK, Kyles P, Kalani A, Tyagi N. Hydrogen sulfide ameliorates homocysteine-induced Alzheimer’s disease-like pathology, blood–brain barrier disruption, and synaptic disorder. Mol Neurobiol. 2015. doi:10.​1007/​s12035-015-9212-4.
37.
go back to reference Ukai Y, Taniguchi N, Takeshita K, Kimura K, Enomoto H. Chronic anethole trithione treatment enhances the salivary secretion and increases the muscarinic acetylcholine receptors in the rat submaxillary gland. Arch Int Pharmacodyn Ther. 1984;271(2):206–12.PubMed Ukai Y, Taniguchi N, Takeshita K, Kimura K, Enomoto H. Chronic anethole trithione treatment enhances the salivary secretion and increases the muscarinic acetylcholine receptors in the rat submaxillary gland. Arch Int Pharmacodyn Ther. 1984;271(2):206–12.PubMed
38.
go back to reference Xie H, Xu Q, Jia J, Ao G, Sun Y, Hu L, et al. Hydrogen sulfide protects against myocardial ischemia and reperfusion injury by activating AMP-activated protein kinase to restore autophagic flux. Biochem Biophys Res Commun. 2015;458(3):632–8. doi:10.1016/j.bbrc.2015.02.017.CrossRefPubMed Xie H, Xu Q, Jia J, Ao G, Sun Y, Hu L, et al. Hydrogen sulfide protects against myocardial ischemia and reperfusion injury by activating AMP-activated protein kinase to restore autophagic flux. Biochem Biophys Res Commun. 2015;458(3):632–8. doi:10.​1016/​j.​bbrc.​2015.​02.​017.CrossRefPubMed
40.
go back to reference Zhang ZG, Zhang L, Tsang W, Soltanian-Zadeh H, Morris D, Zhang R, et al. Correlation of VEGF and angiopoietin expression with disruption of blood–brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2002;22(4):379–92. doi:10.1097/00004647-200204000-00002.CrossRef Zhang ZG, Zhang L, Tsang W, Soltanian-Zadeh H, Morris D, Zhang R, et al. Correlation of VEGF and angiopoietin expression with disruption of blood–brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2002;22(4):379–92. doi:10.​1097/​00004647-200204000-00002.CrossRef
41.
go back to reference UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854–65.CrossRef UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352(9131):854–65.CrossRef
44.
go back to reference Tao BB, Liu SY, Zhang CC, Fu W, Cai WJ, Wang Y, et al. VEGFR2 functions as an H2S-targeting receptor protein kinase with its novel Cys1045-Cys1024 disulfide bond serving as a specific molecular switch for hydrogen sulfide actions in vascular endothelial cells. Antioxid Redox Signal. 2013;19(5):448–64. doi:10.1089/ars.2012.4565.CrossRefPubMedPubMedCentral Tao BB, Liu SY, Zhang CC, Fu W, Cai WJ, Wang Y, et al. VEGFR2 functions as an H2S-targeting receptor protein kinase with its novel Cys1045-Cys1024 disulfide bond serving as a specific molecular switch for hydrogen sulfide actions in vascular endothelial cells. Antioxid Redox Signal. 2013;19(5):448–64. doi:10.​1089/​ars.​2012.​4565.CrossRefPubMedPubMedCentral
Metadata
Title
Hydrogen Sulfide Attenuates Tissue Plasminogen Activator-Induced Cerebral Hemorrhage Following Experimental Stroke
Authors
Hui Liu
Yi Wang
Yunqi Xiao
Zichun Hua
Jian Cheng
Jia Jia
Publication date
01-06-2016
Publisher
Springer US
Published in
Translational Stroke Research / Issue 3/2016
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-016-0459-5

Other articles of this Issue 3/2016

Translational Stroke Research 3/2016 Go to the issue