Skip to main content
Top
Published in: Journal of Cardiothoracic Surgery 1/2013

Open Access 01-12-2013 | Research article

Hydrogen ion concentration and coronary artery bypass graft surgery with and without cardiopulmonary bypass

Authors: Cher Shiong Chuah, Rachael Kirkbride, R Peter Alston, Joanne Irons

Published in: Journal of Cardiothoracic Surgery | Issue 1/2013

Login to get access

Abstract

Background

Acidosis during cardiopulmonary bypass (CPB) has been related to the strong ion difference (SID) and the composition of intravascular fluids that are administered. Less intravascular fluids tend to be administered during off- than on-pump CABG and should influence the degree of acidosis that develops. This study aimed to explore the role of CPB in the development of acidosis by comparing changes in hydrogen ion concentration ([H+]) and electrolytes in patients undergoing on- and off-pump coronary artery bypass graft (CABG) surgery.

Methods

Eighty two patients had arterial blood gas measurements pre-operatively, following CABG and at approximately 0600 h the morning after surgery. Carbon dioxide tension (PaCO2) and concentrations of sodium, potassium, chloride, [H+], bicarbonate and haemoglobin were measured and strong ion difference calculated. Data was analysed using mixed repeated-measures analysis of variance.

Results

Intra-operatively, mean SID decreased more in the on- compared to the off-pump group (4.0 mmol/L, 95% confidence interval 2.8-5.3 mmol/L, p < 0.001). Neither [H+] or PaCO2 changed significantly and there were no significant difference between the groups. By the morning following surgery, [H+] and PaCO2 had both increased (p < 0.001) and difference in SID had disappeared (p = 0.17).

Conclusion

Despite significant differences in changes in SID, there were no differences in [H+] between patients during or after CABG surgery whether performed on- or off-pump. This may be have been the result of greater haemodilution in the on- compared to the off-pump group, compensating for change in SID by reducing the concentration of weak acids. Although it was associated with significantly greater decrease in SID, CPB was not associated with any significant increased risk of acidosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jansen EW, Borst C, Lahpor JR, Gründeman PF, Eefting FD, Nierich A: Coronary artery bypass grafting without cardiopulmonary bypass using the octopus method: results in the first one hundred patients. J Thorac Cardiovasc Surg. 1998, 116 (1): 60-67. 10.1016/S0022-5223(98)70243-0.CrossRefPubMed Jansen EW, Borst C, Lahpor JR, Gründeman PF, Eefting FD, Nierich A: Coronary artery bypass grafting without cardiopulmonary bypass using the octopus method: results in the first one hundred patients. J Thorac Cardiovasc Surg. 1998, 116 (1): 60-67. 10.1016/S0022-5223(98)70243-0.CrossRefPubMed
2.
go back to reference Shroyer AL, Grover FL, Hattler B, Collins JF, McDonald GO, Kozora E: On-pump versus off-pump coronary-artery bypass surgery. N Engl J Med. 2009, 361 (19): 1827-1837. 10.1056/NEJMoa0902905.CrossRefPubMed Shroyer AL, Grover FL, Hattler B, Collins JF, McDonald GO, Kozora E: On-pump versus off-pump coronary-artery bypass surgery. N Engl J Med. 2009, 361 (19): 1827-1837. 10.1056/NEJMoa0902905.CrossRefPubMed
3.
go back to reference Puskas JD, Williams WH, Duke PG, Staples JR, Glas KE, Marshall JJ: Off-pump coronary artery bypass grafting provides complete revascularization with reduced myocardial injury, transfusion requirements, and length of stay: a prospective randomized comparison of two hundred unselected patients undergoing off-pump versus conventional coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2003, 125 (4): 797-808. 10.1067/mtc.2003.324.CrossRefPubMed Puskas JD, Williams WH, Duke PG, Staples JR, Glas KE, Marshall JJ: Off-pump coronary artery bypass grafting provides complete revascularization with reduced myocardial injury, transfusion requirements, and length of stay: a prospective randomized comparison of two hundred unselected patients undergoing off-pump versus conventional coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2003, 125 (4): 797-808. 10.1067/mtc.2003.324.CrossRefPubMed
4.
go back to reference Alston RP, Theodosiou C, Sanger K: Changing the priming solution from Ringer’s to Hartmann’s solution is associated with less metabolic acidosis during cardiopulmonary bypass. Perfusion. 2007, 22 (6): 385-389. 10.1177/0267659108089142.CrossRefPubMed Alston RP, Theodosiou C, Sanger K: Changing the priming solution from Ringer’s to Hartmann’s solution is associated with less metabolic acidosis during cardiopulmonary bypass. Perfusion. 2007, 22 (6): 385-389. 10.1177/0267659108089142.CrossRefPubMed
5.
go back to reference Prough DS, White R: Acidosis associated with perioperative saline administration: dilution or delusion?. Anesthesiol. 2000, 93 (5): 1167-1169. 10.1097/00000542-200011000-00005.CrossRef Prough DS, White R: Acidosis associated with perioperative saline administration: dilution or delusion?. Anesthesiol. 2000, 93 (5): 1167-1169. 10.1097/00000542-200011000-00005.CrossRef
6.
go back to reference Stewart PA: Modern quantitative acid–base chemistry. Can J Physiol Pharmacol. 1983, 61 (12): 1444-1461. 10.1139/y83-207.CrossRefPubMed Stewart PA: Modern quantitative acid–base chemistry. Can J Physiol Pharmacol. 1983, 61 (12): 1444-1461. 10.1139/y83-207.CrossRefPubMed
7.
go back to reference Alston RP, Cormack L, Collinson C: Metabolic acidosis developing during cardiopulmonary bypass is related to a decrease in strong ion difference. Perfusion. 2004, 19 (3): 145-152. 10.1191/0267659104pf751oa.CrossRefPubMed Alston RP, Cormack L, Collinson C: Metabolic acidosis developing during cardiopulmonary bypass is related to a decrease in strong ion difference. Perfusion. 2004, 19 (3): 145-152. 10.1191/0267659104pf751oa.CrossRefPubMed
8.
go back to reference Gattinoni L, Carlesso E, Cadringher P, Caironi P: Strong ion difference in urine: new perspectives in acid–base assessment. Crit Care. 2006, 10 (2): 137-10.1186/cc4890.CrossRefPubMedPubMedCentral Gattinoni L, Carlesso E, Cadringher P, Caironi P: Strong ion difference in urine: new perspectives in acid–base assessment. Crit Care. 2006, 10 (2): 137-10.1186/cc4890.CrossRefPubMedPubMedCentral
9.
go back to reference Hayhoe M, Bellomo R, Liu G, McNicol L, Buxton B: The aetiology and pathogenesis of cardiopulmonary bypass-associated metabolic acidosis using polygeline pump prime. Intensive Care Med. 1999, 25 (7): 680-685. 10.1007/s001340050930.CrossRefPubMed Hayhoe M, Bellomo R, Liu G, McNicol L, Buxton B: The aetiology and pathogenesis of cardiopulmonary bypass-associated metabolic acidosis using polygeline pump prime. Intensive Care Med. 1999, 25 (7): 680-685. 10.1007/s001340050930.CrossRefPubMed
10.
go back to reference Liskaser FJ, Bellomo R, Hayhoe M, Story D, Poustie S, Smith B: Role of pump prime in the etiology and pathogenesis of cardiopulmonary bypass–associated acidosis. Anesthesiol. 2000, 93 (5): 1170-1173. 10.1097/00000542-200011000-00006.CrossRef Liskaser FJ, Bellomo R, Hayhoe M, Story D, Poustie S, Smith B: Role of pump prime in the etiology and pathogenesis of cardiopulmonary bypass–associated acidosis. Anesthesiol. 2000, 93 (5): 1170-1173. 10.1097/00000542-200011000-00006.CrossRef
11.
go back to reference Himpe D, Neels H, De Hert S, Van Cauwelaert P: Adding lactate to the prime solution during hypothermic cardiopulmonary bypass: a quantitative acid–base analysis. Br J Anaesth. 2003, 90 (4): 440-445. 10.1093/bja/aeg084.CrossRefPubMed Himpe D, Neels H, De Hert S, Van Cauwelaert P: Adding lactate to the prime solution during hypothermic cardiopulmonary bypass: a quantitative acid–base analysis. Br J Anaesth. 2003, 90 (4): 440-445. 10.1093/bja/aeg084.CrossRefPubMed
12.
go back to reference Scheingraber S, Rehm M, Sehmisch C, Finsterer U: Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiol. 1999, 90 (5): 1265-1270. 10.1097/00000542-199905000-00007.CrossRef Scheingraber S, Rehm M, Sehmisch C, Finsterer U: Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiol. 1999, 90 (5): 1265-1270. 10.1097/00000542-199905000-00007.CrossRef
13.
go back to reference Waters JH, Miller LR, Clack S, Kim JV: Cause of metabolic acidosis in prolonged surgery. Crit Care Med. 1999, 27 (10): 2142-2146. 10.1097/00003246-199910000-00011.CrossRefPubMed Waters JH, Miller LR, Clack S, Kim JV: Cause of metabolic acidosis in prolonged surgery. Crit Care Med. 1999, 27 (10): 2142-2146. 10.1097/00003246-199910000-00011.CrossRefPubMed
14.
go back to reference Rahn H: Body temperature and acid–base regulation (review article). Lung. 1974, 151 (2): 87-94. Rahn H: Body temperature and acid–base regulation (review article). Lung. 1974, 151 (2): 87-94.
15.
go back to reference Lancey RA, Soller BR, Vander Salm TJ: Off-pump versus on-pump coronary artery bypass surgery: a case-matched comparison of clinical outcomes and costs. Heart Surg Forum. 2000, 3 (4): 277-281.PubMed Lancey RA, Soller BR, Vander Salm TJ: Off-pump versus on-pump coronary artery bypass surgery: a case-matched comparison of clinical outcomes and costs. Heart Surg Forum. 2000, 3 (4): 277-281.PubMed
17.
go back to reference Figge J, Mydosh T, Fencl V: Serum proteins and acid–base equilibria: a follow-up. J Lab Clin Med. 1992, 120 (5): 713-719.PubMed Figge J, Mydosh T, Fencl V: Serum proteins and acid–base equilibria: a follow-up. J Lab Clin Med. 1992, 120 (5): 713-719.PubMed
18.
go back to reference Hatherill M, Salie S, Waggie Z, Lawrenson J, Hewitson J, Reynolds L: Hyperchloraemic metabolic acidosis following open cardiac surgery. Arch Dis Child. 2005, 90 (12): 1288-1292. 10.1136/adc.2005.078006.CrossRefPubMedPubMedCentral Hatherill M, Salie S, Waggie Z, Lawrenson J, Hewitson J, Reynolds L: Hyperchloraemic metabolic acidosis following open cardiac surgery. Arch Dis Child. 2005, 90 (12): 1288-1292. 10.1136/adc.2005.078006.CrossRefPubMedPubMedCentral
Metadata
Title
Hydrogen ion concentration and coronary artery bypass graft surgery with and without cardiopulmonary bypass
Authors
Cher Shiong Chuah
Rachael Kirkbride
R Peter Alston
Joanne Irons
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Cardiothoracic Surgery / Issue 1/2013
Electronic ISSN: 1749-8090
DOI
https://doi.org/10.1186/1749-8090-8-184

Other articles of this Issue 1/2013

Journal of Cardiothoracic Surgery 1/2013 Go to the issue