Skip to main content
Top
Published in: Child's Nervous System 1/2024

07-07-2023 | Hydrocephalus | Original Article

Polyvinylpyrrolidone-coated catheters decrease choroid plexus adhesion and improve flow/pressure performance in an in vitro model of hydrocephalus

Authors: Seunghyun Lee, Jenna Ledbetter, Jordan Davies, Bianca Romero, Michael Muhonen, Leandro Castaneyra-Ruiz

Published in: Child's Nervous System | Issue 1/2024

Login to get access

Abstract

Purpose

Proximal catheter obstruction is the leading cause of ventricular shunt failure in pediatric patients. Our aim is to evaluate various types of shunt catheters to assess in vitro cellular adhesion and obstruction.

Methods

Four catheter types were tested: (1) antibiotic and impregnated, (2) barium-stripe polyvinylpyrrolidone coated (PVP), (3) barium-stripe, and (4) barium-impregnated. Catheters were seeded with choroid plexus epithelial cells to test cellular adhesion and inoculated with the same cells to test flow/pressure performance under choroid plexus growth conditions. Ventricular catheters were placed into a three-dimensional printed phantom ventricular replicating system through which artificial cerebrospinal fluid (CSF) was pumped. Differential pressure sensors were used to measure catheter performance.

Results

PVP catheters had the lowest median cell attachment (10 cells) compared to antibiotic-impregnated (230 cells), barium stripe (513 cells), and barium-impregnated (146 cells) catheters after culture (p < 0.01). In addition, PVP catheters (− 0.247 cm H2O) and antibiotic-impregnated (− 1.15 cm H2O) catheters had significantly lower pressure in the phantom ventricular system compared to the barium stripe (0.167 cm H2O) and barium-impregnated (0.618 cm H2O; p < 0.01) catheters.

Conclusions

PVP catheters showed less cellular adhesion and, together with antibiotic-impregnated catheters, required less differential pressure to maintain a consistent flow. Our findings suggest clinical relevance for using PVP ventricular catheters in patients with recurrent catheter obstruction by choroid plexus.
Literature
1.
go back to reference Isaacs AM, Riva-Cambrin J, Yavin D, Hockley A, Pringsheim TM, Jette N, Lethebe BC, Lowerison M, Dronyk J, Hamilton MG (2018) Age-specific global epidemiology of hydrocephalus: systematic review, metanalysis and global birth surveillance. PLoS ONE 13(10):e0204926CrossRefPubMedPubMedCentral Isaacs AM, Riva-Cambrin J, Yavin D, Hockley A, Pringsheim TM, Jette N, Lethebe BC, Lowerison M, Dronyk J, Hamilton MG (2018) Age-specific global epidemiology of hydrocephalus: systematic review, metanalysis and global birth surveillance. PLoS ONE 13(10):e0204926CrossRefPubMedPubMedCentral
2.
go back to reference Del Bigio MR (2010) Neuropathology and structural changes in hydrocephalus. Dev Disabil Res Rev 16(1):16–22CrossRefPubMed Del Bigio MR (2010) Neuropathology and structural changes in hydrocephalus. Dev Disabil Res Rev 16(1):16–22CrossRefPubMed
3.
go back to reference Rekate HL (2009) A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol 16(1):9–15CrossRefPubMed Rekate HL (2009) A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol 16(1):9–15CrossRefPubMed
4.
go back to reference Castaneyra-Ruiz L, Gonzalez-Marrero I, Hernandez-Abad LG, Carmona-Calero EM, Pardo MR, Baz-Davila R, Lee S, Muhonen M, Borges R, Castaneyra-Perdomo A (2022) AQP4 labels a subpopulation of white matter-dependent glial radial cells affected by pediatric hydrocephalus, and its expression increased in glial microvesicles released to the cerebrospinal fluid in obstructive hydrocephalus. Acta Neuropathol Commun 10(1):41CrossRefPubMedPubMedCentral Castaneyra-Ruiz L, Gonzalez-Marrero I, Hernandez-Abad LG, Carmona-Calero EM, Pardo MR, Baz-Davila R, Lee S, Muhonen M, Borges R, Castaneyra-Perdomo A (2022) AQP4 labels a subpopulation of white matter-dependent glial radial cells affected by pediatric hydrocephalus, and its expression increased in glial microvesicles released to the cerebrospinal fluid in obstructive hydrocephalus. Acta Neuropathol Commun 10(1):41CrossRefPubMedPubMedCentral
5.
go back to reference Castaneyra-Ruiz L, Gonzalez-Marrero I, Hernandez-Abad LG, Lee S, Castaneyra-Perdomo A, Muhonen M (2022) “AQP4, astrogenesis, and hydrocephalus: a new neurological perspective.” Int J Mol Sci 23(18) Castaneyra-Ruiz L, Gonzalez-Marrero I, Hernandez-Abad LG, Lee S, Castaneyra-Perdomo A, Muhonen M (2022) “AQP4, astrogenesis, and hydrocephalus: a new neurological perspective.” Int J Mol Sci 23(18)
6.
go back to reference Garcia-Bonilla M, Nair A, Moore J, Castaneyra-Ruiz L, Zwick SH, Dilger RN, Fleming SA, Golden RK, Talcott MR, Isaacs AM, Limbrick DD Jr, McAllister JP 2nd (2023) Impaired neurogenesis with reactive astrocytosis in the hippocampus in a porcine model of acquired hydrocephalus. Exp Neurol 363:114354CrossRefPubMed Garcia-Bonilla M, Nair A, Moore J, Castaneyra-Ruiz L, Zwick SH, Dilger RN, Fleming SA, Golden RK, Talcott MR, Isaacs AM, Limbrick DD Jr, McAllister JP 2nd (2023) Impaired neurogenesis with reactive astrocytosis in the hippocampus in a porcine model of acquired hydrocephalus. Exp Neurol 363:114354CrossRefPubMed
7.
go back to reference Guerra MM, Henzi R, Ortloff A, Lichtin N, Vio K, Jimenez AJ, Dominguez-Pinos MD, Gonzalez C, Jara MC, Hinostroza F, Rodriguez S, Jara M, Ortega E, Guerra F, Sival DA, den Dunnen WF, Perez-Figares JM, McAllister JP, Johanson CE, Rodriguez EM (2015) Cell junction pathology of neural stem cells is associated with ventricular zone disruption, hydrocephalus, and abnormal neurogenesis. J Neuropathol Exp Neurol 74(7):653–671CrossRefPubMed Guerra MM, Henzi R, Ortloff A, Lichtin N, Vio K, Jimenez AJ, Dominguez-Pinos MD, Gonzalez C, Jara MC, Hinostroza F, Rodriguez S, Jara M, Ortega E, Guerra F, Sival DA, den Dunnen WF, Perez-Figares JM, McAllister JP, Johanson CE, Rodriguez EM (2015) Cell junction pathology of neural stem cells is associated with ventricular zone disruption, hydrocephalus, and abnormal neurogenesis. J Neuropathol Exp Neurol 74(7):653–671CrossRefPubMed
8.
go back to reference Isaacs A M, Neil JJ, McAllister JP, Dahiya S, Castaneyra-Ruiz L, Merisaari H, Botteron HE, Alexopoulous D, George A, Peng S, Morales DM, Shimony J, Strahle J, Yan Y, Song SK, Limbrick DD, Smyser C (2021) “Microstructural periventricular white matter injury in post-hemorrhagic ventricular dilatation.” Neurology Isaacs A M, Neil JJ, McAllister JP, Dahiya S, Castaneyra-Ruiz L, Merisaari H, Botteron HE, Alexopoulous D, George A, Peng S, Morales DM, Shimony J, Strahle J, Yan Y, Song SK, Limbrick  DD, Smyser C (2021) “Microstructural periventricular white matter injury in post-hemorrhagic ventricular dilatation.” Neurology
9.
go back to reference McAllister JP, Guerra MM, Ruiz LC, Jimenez AJ, Dominguez-Pinos D, Sival D, den Dunnen W, Morales DM, Schmidt RE, Rodriguez EM, Limbrick DD (2017) Ventricular zone disruption in human neonates with intraventricular hemorrhage. J Neuropathol Exp Neurol 76(5):358–375CrossRefPubMedPubMedCentral McAllister JP, Guerra MM, Ruiz LC, Jimenez AJ, Dominguez-Pinos D, Sival D, den Dunnen W, Morales DM, Schmidt RE, Rodriguez EM, Limbrick DD (2017) Ventricular zone disruption in human neonates with intraventricular hemorrhage. J Neuropathol Exp Neurol 76(5):358–375CrossRefPubMedPubMedCentral
10.
go back to reference Galarza M, Gimenez A, Amigo JM, Schuhmann M, Gazzeri R, Thomale U, McAllister JP 2nd (2018) Next generation of ventricular catheters for hydrocephalus based on parametric designs. Childs Nerv Syst 34(2):267–276CrossRefPubMed Galarza M, Gimenez A, Amigo JM, Schuhmann M, Gazzeri R, Thomale U, McAllister JP 2nd (2018) Next generation of ventricular catheters for hydrocephalus based on parametric designs. Childs Nerv Syst 34(2):267–276CrossRefPubMed
11.
go back to reference Kulkarni AV, Riva-Cambrin J, Butler J, Browd SR, Drake JM, Holubkov R, Kestle JR, Limbrick DD, Simon TD, Tamber MS, Wellons 3rd JC, Whitehead WE, Hydrocephalus Clinical Research N (2013) Outcomes of CSF shunting in children: comparison of Hydrocephalus Clinical Research Network cohort with historical controls: clinical article. J Neurosurg Pediatr 12(4):334–338 Kulkarni AV, Riva-Cambrin J, Butler J, Browd SR, Drake JM, Holubkov R, Kestle JR, Limbrick DD, Simon TD, Tamber MS, Wellons 3rd JC, Whitehead WE, Hydrocephalus Clinical Research N (2013) Outcomes of CSF shunting in children: comparison of Hydrocephalus Clinical Research Network cohort with historical controls: clinical article. J Neurosurg Pediatr 12(4):334–338
12.
go back to reference Wright Z, Larrew TW, Eskandari R (2016) Pediatric hydrocephalus: current state of diagnosis and treatment. Pediatr Rev 37(11):478–490CrossRefPubMed Wright Z, Larrew TW, Eskandari R (2016) Pediatric hydrocephalus: current state of diagnosis and treatment. Pediatr Rev 37(11):478–490CrossRefPubMed
13.
go back to reference Sainte-Rose C, Piatt JH, Renier D, Pierre-Kahn A, Hirsch JF, Hoffman HJ, Humphreys RP, Hendrick EB (1991) Mechanical complications in shunts. Pediatr Neurosurg 17(1):2–9CrossRefPubMed Sainte-Rose C, Piatt JH, Renier D, Pierre-Kahn A, Hirsch JF, Hoffman HJ, Humphreys RP, Hendrick EB (1991) Mechanical complications in shunts. Pediatr Neurosurg 17(1):2–9CrossRefPubMed
14.
go back to reference Stone JJ, Walker CT, Jacobson M, Phillips V, Silberstein HJ (2013) Revision rate of pediatric ventriculoperitoneal shunts after 15 years. J Neurosurg Pediatr 11(1):15–19CrossRefPubMed Stone JJ, Walker CT, Jacobson M, Phillips V, Silberstein HJ (2013) Revision rate of pediatric ventriculoperitoneal shunts after 15 years. J Neurosurg Pediatr 11(1):15–19CrossRefPubMed
15.
go back to reference Hanak BW, Ross EF, Harris CA, Browd SR, Shain W (2016) Toward a better understanding of the cellular basis for cerebrospinal fluid shunt obstruction: report on the construction of a bank of explanted hydrocephalus devices. J Neurosurg Pediatr 18(2):213–223CrossRefPubMedPubMedCentral Hanak BW, Ross EF, Harris CA, Browd SR, Shain W (2016) Toward a better understanding of the cellular basis for cerebrospinal fluid shunt obstruction: report on the construction of a bank of explanted hydrocephalus devices. J Neurosurg Pediatr 18(2):213–223CrossRefPubMedPubMedCentral
16.
go back to reference Hariharan P, Sondheimer J, Petroj A, Gluski J, Jea A, Whitehead WE, Sood S, Ham SD, Rocque BG, Marupudi NI, McAllister JP 2nd, Limbrick D, Del Bigio MR, Harris CA (2021) A multicenter retrospective study of heterogeneous tissue aggregates obstructing ventricular catheters explanted from patients with hydrocephalus. Fluids Barriers CNS 18(1):33CrossRefPubMedPubMedCentral Hariharan P, Sondheimer J, Petroj A, Gluski J, Jea A, Whitehead WE, Sood S, Ham SD, Rocque BG, Marupudi NI, McAllister JP 2nd, Limbrick D, Del Bigio MR, Harris CA (2021) A multicenter retrospective study of heterogeneous tissue aggregates obstructing ventricular catheters explanted from patients with hydrocephalus. Fluids Barriers CNS 18(1):33CrossRefPubMedPubMedCentral
17.
go back to reference Mao G, Agarwal N, Zuccoli G, Tyler-Kabara EC (2017) Intermittent entrapment of choroid plexus in ventricular catheter. Interdisciplinary Neurosurgery 9:17–19CrossRef Mao G, Agarwal N, Zuccoli G, Tyler-Kabara EC (2017) Intermittent entrapment of choroid plexus in ventricular catheter. Interdisciplinary Neurosurgery 9:17–19CrossRef
18.
go back to reference Hanak BW, Hsieh CY, Donaldson W, Browd SR, Lau KKS, Shain W (2018) Reduced cell attachment to poly(2-hydroxyethyl methacrylate)-coated ventricular catheters in vitro. J Biomed Mater Res B Appl Biomater 106(3):1268–1279CrossRefPubMed Hanak BW, Hsieh CY, Donaldson W, Browd SR, Lau KKS, Shain W (2018) Reduced cell attachment to poly(2-hydroxyethyl methacrylate)-coated ventricular catheters in vitro. J Biomed Mater Res B Appl Biomater 106(3):1268–1279CrossRefPubMed
19.
go back to reference Castaneyra-Ruiz L, Lee S, Chan AY, Shah V, Romero B, Ledbetter J, Muhonen M (2022) “Polyvinylpyrrolidone-coated catheters decrease astrocyte adhesion and improve flow/pressure performance in an invitro model of hydrocephalus.” Children (Basel) 10(1) Castaneyra-Ruiz L, Lee S, Chan AY, Shah V, Romero B, Ledbetter J, Muhonen M (2022) “Polyvinylpyrrolidone-coated catheters decrease astrocyte adhesion and improve flow/pressure performance in an invitro model of hydrocephalus.” Children (Basel) 10(1)
20.
go back to reference Lee S, Vinzani M, Romero B, Chan AY, Castañeyra-Ruiz L, Muhonen M (2022) Partial obstruction of ventricular catheters affects performance in a new catheter obstruction model of hydrocephalus. Children 9(10):1453CrossRefPubMedPubMedCentral Lee S, Vinzani M, Romero B, Chan AY, Castañeyra-Ruiz L, Muhonen M (2022) Partial obstruction of ventricular catheters affects performance in a new catheter obstruction model of hydrocephalus. Children 9(10):1453CrossRefPubMedPubMedCentral
21.
go back to reference Lee S, Bristol RE, Preul MC, Chae J (2020) Three-dimensionally printed microelectromechanical-system hydrogel valve for communicating hydrocephalus. ACS Sens 5(5):1398–1404CrossRefPubMed Lee S, Bristol RE, Preul MC, Chae J (2020) Three-dimensionally printed microelectromechanical-system hydrogel valve for communicating hydrocephalus. ACS Sens 5(5):1398–1404CrossRefPubMed
22.
go back to reference Castaneyra-Ruiz L, McAllister JP 2nd, Morales DM, Brody SL, Isaacs AM, Limbrick DD Jr (2020) Preterm intraventricular hemorrhage in vitro: modeling the cytopathology of the ventricular zone. Fluids Barriers CNS 17(1):46CrossRefPubMedPubMedCentral Castaneyra-Ruiz L, McAllister JP 2nd, Morales DM, Brody SL, Isaacs AM, Limbrick DD Jr (2020) Preterm intraventricular hemorrhage in vitro: modeling the cytopathology of the ventricular zone. Fluids Barriers CNS 17(1):46CrossRefPubMedPubMedCentral
23.
go back to reference Castaneyra-Ruiz L, Morales DM, McAllister JP, Brody SL, Isaacs AM, Strahle JM, Dahiya SM, Limbrick DD (2018) Blood exposure causes ventricular zone disruption and glial activation in vitro. J Neuropathol Exp Neurol 77(9):803–813CrossRefPubMedPubMedCentral Castaneyra-Ruiz L, Morales DM, McAllister JP, Brody SL, Isaacs AM, Strahle JM, Dahiya SM, Limbrick DD (2018) Blood exposure causes ventricular zone disruption and glial activation in vitro. J Neuropathol Exp Neurol 77(9):803–813CrossRefPubMedPubMedCentral
24.
go back to reference Castaneyra-Ruiz L, Hernandez-Abad LG, Carmona-Calero EM, Castaneyra-Perdomo A, Gonzalez-Marrero I (2019) AQP1 overexpression in the CSF of obstructive hydrocephalus and inversion of its polarity in the choroid plexus of a chiari malformation type II case. J Neuropathol Exp Neurol 78(7):641–647CrossRefPubMed Castaneyra-Ruiz L, Hernandez-Abad LG, Carmona-Calero EM, Castaneyra-Perdomo A, Gonzalez-Marrero I (2019) AQP1 overexpression in the CSF of obstructive hydrocephalus and inversion of its polarity in the choroid plexus of a chiari malformation type II case. J Neuropathol Exp Neurol 78(7):641–647CrossRefPubMed
25.
go back to reference Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA, Furey CG, Zhou X, Mansuri MS, Montejo J (2017) Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med 23(8):997–1003CrossRefPubMed Karimy JK, Zhang J, Kurland DB, Theriault BC, Duran D, Stokum JA, Furey CG, Zhou X, Mansuri MS, Montejo J (2017) Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med 23(8):997–1003CrossRefPubMed
26.
go back to reference Harris CA, McAllister JP (2012) What we should know about the cellular and tissue response causing catheter obstruction in the treatment of hydrocephalus. Neurosurgery 70(6):1589–1602CrossRefPubMed Harris CA, McAllister JP (2012) What we should know about the cellular and tissue response causing catheter obstruction in the treatment of hydrocephalus. Neurosurgery 70(6):1589–1602CrossRefPubMed
27.
go back to reference Cagavi F, Akalan N, Celik H, Gur D, Guciz B (2004) “Effect of hydrophilic coating on microorganism colonization in silicone tubing.” Acta Neurochir (Wien) 146(6): 603–610; discussion 609–610 Cagavi F, Akalan N, Celik H, Gur D, Guciz B (2004) “Effect of hydrophilic coating on microorganism colonization in silicone tubing.” Acta Neurochir (Wien) 146(6): 603–610; discussion 609–610
28.
go back to reference Chen H-H, Riva-Cambrin J, Brockmeyer DL, Walker ML, Kestle JR (2011) Shunt failure due to intracranial migration of BioGlide ventricular catheters. J Neurosurg Pediatr 7(4):408–412CrossRefPubMed Chen H-H, Riva-Cambrin J, Brockmeyer DL, Walker ML, Kestle JR (2011) Shunt failure due to intracranial migration of BioGlide ventricular catheters. J Neurosurg Pediatr 7(4):408–412CrossRefPubMed
29.
go back to reference Limbrick Jr DD, Leonard JR (2018) Cerebrospinal fluid disorders: lifelong implications, Springer Limbrick Jr DD, Leonard JR (2018) Cerebrospinal fluid disorders: lifelong implications, Springer
Metadata
Title
Polyvinylpyrrolidone-coated catheters decrease choroid plexus adhesion and improve flow/pressure performance in an in vitro model of hydrocephalus
Authors
Seunghyun Lee
Jenna Ledbetter
Jordan Davies
Bianca Romero
Michael Muhonen
Leandro Castaneyra-Ruiz
Publication date
07-07-2023
Publisher
Springer Berlin Heidelberg
Published in
Child's Nervous System / Issue 1/2024
Print ISSN: 0256-7040
Electronic ISSN: 1433-0350
DOI
https://doi.org/10.1007/s00381-023-06058-0

Other articles of this Issue 1/2024

Child's Nervous System 1/2024 Go to the issue