Skip to main content
Top
Published in: Translational Neurodegeneration 1/2024

Open Access 01-12-2024 | Huntington's Disease | Review

The therapeutic potential of probucol and probucol analogues in neurodegenerative diseases

Authors: Arazu Sharif, John Mamo, Virginie Lam, Hani Al-Salami, Armin Mooranian, Gerald F. Watts, Roger Clarnette, Giuseppe Luna, Ryu Takechi

Published in: Translational Neurodegeneration | Issue 1/2024

Login to get access

Abstract

Neurodegenerative disorders present complex pathologies characterized by various interconnected factors, including the aggregation of misfolded proteins, oxidative stress, neuroinflammation and compromised blood–brain barrier (BBB) integrity. Addressing such multifaceted pathways necessitates the development of multi-target therapeutic strategies. Emerging research indicates that probucol, a historic lipid-lowering medication, offers substantial potential in the realm of neurodegenerative disease prevention and treatment. Preclinical investigations have unveiled multifaceted cellular effects of probucol, showcasing its remarkable antioxidative and anti-inflammatory properties, its ability to fortify the BBB and its direct influence on neural preservation and adaptability. These diverse effects collectively translate into enhancements in both motor and cognitive functions. This review provides a comprehensive overview of recent findings highlighting the efficacy of probucol and probucol-related compounds in the context of various neurodegenerative conditions, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and cognitive impairment associated with diabetes.
Literature
1.
go back to reference Brodtmann A, Werden E, Khlif MS, Bird LJ, Egorova N, Veldsman M, et al. Neurodegeneration over 3 years following ischaemic stroke: findings from the cognition and neocortical volume after stroke study. Front Neurol. 2021;12:754204.PubMedPubMedCentralCrossRef Brodtmann A, Werden E, Khlif MS, Bird LJ, Egorova N, Veldsman M, et al. Neurodegeneration over 3 years following ischaemic stroke: findings from the cognition and neocortical volume after stroke study. Front Neurol. 2021;12:754204.PubMedPubMedCentralCrossRef
2.
go back to reference Jha SK, Jha NK, Kumar D, Ambasta RK, Kumar P. Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in neurodegeneration. Biochim Biophys Acta (BBA) Mol Basis Dis. 2017;1863:1132–46.CrossRef Jha SK, Jha NK, Kumar D, Ambasta RK, Kumar P. Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in neurodegeneration. Biochim Biophys Acta (BBA) Mol Basis Dis. 2017;1863:1132–46.CrossRef
3.
go back to reference Abramov AY, Bachurin SO. Neurodegenerative disorders: searching for targets and new ways of diseases treatment. Med Res Rev. 2021;41:2603–5. PubMedCrossRef Abramov AY, Bachurin SO. Neurodegenerative disorders: searching for targets and new ways of diseases treatment. Med Res Rev. 2021;41:2603–5. PubMedCrossRef
4.
go back to reference de Oliveira LG, Angelo YS, Iglesias AH, Peron JPS. Unraveling the link between mitochondrial dynamics and neuroinflammation. Front Immunol. 2021;12:624919.PubMedPubMedCentralCrossRef de Oliveira LG, Angelo YS, Iglesias AH, Peron JPS. Unraveling the link between mitochondrial dynamics and neuroinflammation. Front Immunol. 2021;12:624919.PubMedPubMedCentralCrossRef
5.
go back to reference Malko P, Jiang LH. TRPM2 channel-mediated cell death: an important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions. Redox Biol. 2020;37:101755.PubMedPubMedCentralCrossRef Malko P, Jiang LH. TRPM2 channel-mediated cell death: an important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions. Redox Biol. 2020;37:101755.PubMedPubMedCentralCrossRef
6.
go back to reference Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015;22:377–88.PubMedCrossRef Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015;22:377–88.PubMedCrossRef
7.
go back to reference Sankowski R, Mader S, Valdés-Ferrer SI. Systemic inflammation and the brain: Novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front Cell Neurosci. 2015;9:128434.CrossRef Sankowski R, Mader S, Valdés-Ferrer SI. Systemic inflammation and the brain: Novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front Cell Neurosci. 2015;9:128434.CrossRef
8.
go back to reference Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelley KW, et al. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J. 2005;19:1329–31.PubMedCrossRef Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelley KW, et al. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J. 2005;19:1329–31.PubMedCrossRef
10.
go back to reference Yamashita S, Matsuzawa Y. Where are we with probucol: a new life for an old drug? Atherosclerosis. 2009;207:16–23.PubMedCrossRef Yamashita S, Matsuzawa Y. Where are we with probucol: a new life for an old drug? Atherosclerosis. 2009;207:16–23.PubMedCrossRef
11.
12.
go back to reference Adlouni A, ElMessal M, Saïle R, Parra HJ, Fruchart JC, Ghalim N. Probucol promotes reverse cholesterol transport in heterozygous familial hypercholesterolemia. Effects on apolipoprotein AI-containing lipoprotein particles. Atherosclerosis. 2000;152:433–40.PubMedCrossRef Adlouni A, ElMessal M, Saïle R, Parra HJ, Fruchart JC, Ghalim N. Probucol promotes reverse cholesterol transport in heterozygous familial hypercholesterolemia. Effects on apolipoprotein AI-containing lipoprotein particles. Atherosclerosis. 2000;152:433–40.PubMedCrossRef
13.
go back to reference Ishigami M, Yamashita S, Sakai N, Hirano KI, Arai T, Maruyama T, et al. High-density lipoproteins from probucol-treated patients have increased capacity to promote cholesterol efflux from mouse peritoneal macrophages loaded with acetylated low-density lipoproteins. Eur J Clin Invest. 1997;27:285–92.PubMedCrossRef Ishigami M, Yamashita S, Sakai N, Hirano KI, Arai T, Maruyama T, et al. High-density lipoproteins from probucol-treated patients have increased capacity to promote cholesterol efflux from mouse peritoneal macrophages loaded with acetylated low-density lipoproteins. Eur J Clin Invest. 1997;27:285–92.PubMedCrossRef
14.
go back to reference Hirano KI, Ikegami C, Tsujii KI, Zhang Z, Matsuura F, Nakagawa-Toyama Y, et al. Probucol enhances the expression of human hepatic scavenger receptor class B type I, possibly through a species-specific mechanism. Arterioscler Thromb Vasc Biol. 2005;25:2422–7.PubMedCrossRef Hirano KI, Ikegami C, Tsujii KI, Zhang Z, Matsuura F, Nakagawa-Toyama Y, et al. Probucol enhances the expression of human hepatic scavenger receptor class B type I, possibly through a species-specific mechanism. Arterioscler Thromb Vasc Biol. 2005;25:2422–7.PubMedCrossRef
15.
go back to reference Rinninger F, Wang N, Ramakrishnan R, Jiang XC, Tall AR. Probucol enhances selective uptake of HDL-associated cholesteryl esters in vitro by a scavenger receptor B-I-dependent mechanism. Arterioscler Thromb Vasc Biol. 1999;19:1325–32.PubMedCrossRef Rinninger F, Wang N, Ramakrishnan R, Jiang XC, Tall AR. Probucol enhances selective uptake of HDL-associated cholesteryl esters in vitro by a scavenger receptor B-I-dependent mechanism. Arterioscler Thromb Vasc Biol. 1999;19:1325–32.PubMedCrossRef
17.
go back to reference Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. The blood-brain barrier: an engineering perspective. Front Neuroeng. 2013;0:7. Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. The blood-brain barrier: an engineering perspective. Front Neuroeng. 2013;0:7.
19.
go back to reference Zhong Z, Deane R, Ali Z, Parisi M, Shapovalov Y, O’Banion MK, et al. ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci. 2008;11:420–2.PubMedPubMedCentralCrossRef Zhong Z, Deane R, Ali Z, Parisi M, Shapovalov Y, O’Banion MK, et al. ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci. 2008;11:420–2.PubMedPubMedCentralCrossRef
20.
go back to reference Drouin-Ouellet J, Sawiak SJ, Cisbani G, Lagacé M, Kuan WL, Saint-Pierre M, et al. Cerebrovascular and blood–brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann Neurol. 2015;78:160–77.PubMedCrossRef Drouin-Ouellet J, Sawiak SJ, Cisbani G, Lagacé M, Kuan WL, Saint-Pierre M, et al. Cerebrovascular and blood–brain barrier impairments in Huntington’s disease: potential implications for its pathophysiology. Ann Neurol. 2015;78:160–77.PubMedCrossRef
21.
go back to reference Yamazaki Y, Shinohara M, Shinohara M, Yamazaki A, Murray ME, Liesinger AM, et al. Selective loss of cortical endothelial tight junction proteins during Alzheimer’s disease progression. Brain. 2019;142:1077–92.PubMedPubMedCentralCrossRef Yamazaki Y, Shinohara M, Shinohara M, Yamazaki A, Murray ME, Liesinger AM, et al. Selective loss of cortical endothelial tight junction proteins during Alzheimer’s disease progression. Brain. 2019;142:1077–92.PubMedPubMedCentralCrossRef
23.
go back to reference Ding R, Hase Y, Ameen-Ali KE, Ndung’u M, Stevenson W, Barsby J, et al. Loss of capillary pericytes and the blood-brain barrier in white matter in poststroke and vascular dementias and Alzheimer’s disease. Brain Pathol. 2020;30:1087–101.PubMedPubMedCentralCrossRef Ding R, Hase Y, Ameen-Ali KE, Ndung’u M, Stevenson W, Barsby J, et al. Loss of capillary pericytes and the blood-brain barrier in white matter in poststroke and vascular dementias and Alzheimer’s disease. Brain Pathol. 2020;30:1087–101.PubMedPubMedCentralCrossRef
24.
go back to reference Halliday MR, Rege SV, Ma Q, Zhao Z, Miller CA, Winkler EA, et al. Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. J Cereb Blood Flow Metab. 2016;36:216–27.PubMedPubMedCentralCrossRef Halliday MR, Rege SV, Ma Q, Zhao Z, Miller CA, Winkler EA, et al. Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. J Cereb Blood Flow Metab. 2016;36:216–27.PubMedPubMedCentralCrossRef
25.
go back to reference Hsiao HY, Chen YC, Huang CH, Chen CC, Hsu YH, Chen HM, et al. Aberrant astrocytes impair vascular reactivity in Huntington disease. Ann Neurol. 2015;78:178–92.PubMedCrossRef Hsiao HY, Chen YC, Huang CH, Chen CC, Hsu YH, Chen HM, et al. Aberrant astrocytes impair vascular reactivity in Huntington disease. Ann Neurol. 2015;78:178–92.PubMedCrossRef
27.
go back to reference Garbuzova-Davis S, Haller E, Saporta S, Kolomey I, Nicosia SV, Sanberg PR. Ultrastructure of blood–brain barrier and blood–spinal cord barrier in SOD1 mice modeling ALS. Brain Res. 2007;1157:126–37.PubMedCrossRef Garbuzova-Davis S, Haller E, Saporta S, Kolomey I, Nicosia SV, Sanberg PR. Ultrastructure of blood–brain barrier and blood–spinal cord barrier in SOD1 mice modeling ALS. Brain Res. 2007;1157:126–37.PubMedCrossRef
28.
go back to reference Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD, Perlmutter D, et al. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci. 2015;18:521–30.PubMedPubMedCentralCrossRef Winkler EA, Nishida Y, Sagare AP, Rege SV, Bell RD, Perlmutter D, et al. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat Neurosci. 2015;18:521–30.PubMedPubMedCentralCrossRef
29.
go back to reference Vogelsang P, Giil LM, Lund A, Vedeler CA, Parkar AP, Nordrehaug JE, et al. Reduced glucose transporter-1 in brain derived circulating endothelial cells in mild Alzheimer’s disease patients. Brain Res. 2018;1678:304–9.PubMedCrossRef Vogelsang P, Giil LM, Lund A, Vedeler CA, Parkar AP, Nordrehaug JE, et al. Reduced glucose transporter-1 in brain derived circulating endothelial cells in mild Alzheimer’s disease patients. Brain Res. 2018;1678:304–9.PubMedCrossRef
30.
go back to reference Donahue JE, Flaherty SL, Johanson CE, Duncan JA, Silverberg GD, Miller MC, et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol. 2006;112:405–15.PubMedCrossRef Donahue JE, Flaherty SL, Johanson CE, Duncan JA, Silverberg GD, Miller MC, et al. RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol. 2006;112:405–15.PubMedCrossRef
31.
go back to reference du Yan S, Chen X, Fu J, Chen M, Zhu H, Roher A, et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature. 1996;382:685–91.PubMedCrossRef du Yan S, Chen X, Fu J, Chen M, Zhu H, Roher A, et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature. 1996;382:685–91.PubMedCrossRef
32.
go back to reference Chiu C, Miller MC, Monahan R, Osgood DP, Stopa EG, Silverberg GD. P-glycoprotein expression and amyloid accumulation in human aging and Alzheimer’s disease: preliminary observations. Neurobiol Aging. 2015;36:2475–82.PubMedCrossRef Chiu C, Miller MC, Monahan R, Osgood DP, Stopa EG, Silverberg GD. P-glycoprotein expression and amyloid accumulation in human aging and Alzheimer’s disease: preliminary observations. Neurobiol Aging. 2015;36:2475–82.PubMedCrossRef
33.
go back to reference Nakagawa S, Aruga J. Sphingosine 1-phosphate signaling is involved in impaired blood–brain barrier function in ischemia-reperfusion injury. Mol Neurobiol. 2019;57:1594–606.PubMedCrossRef Nakagawa S, Aruga J. Sphingosine 1-phosphate signaling is involved in impaired blood–brain barrier function in ischemia-reperfusion injury. Mol Neurobiol. 2019;57:1594–606.PubMedCrossRef
34.
go back to reference Takase B, Nagata M, Hattori H, Tanaka Y, Ishihara M. Combined therapeutic effect of probucol and cilostazol on endothelial function in patients with silent cerebral lacunar infarcts and hypercholesterolemia: a preliminary study. Med Principles Pract. 2014;23:59–65.CrossRef Takase B, Nagata M, Hattori H, Tanaka Y, Ishihara M. Combined therapeutic effect of probucol and cilostazol on endothelial function in patients with silent cerebral lacunar infarcts and hypercholesterolemia: a preliminary study. Med Principles Pract. 2014;23:59–65.CrossRef
35.
go back to reference Ma J, Zhao S, Gao G, Chang H, Ma P, Jin B. Probucol protects against asymmetric dimethylarginine-induced apoptosis in the cultured human brain microvascular endothelial cells. J Mol Neurosci. 2015;57:546–53.PubMedCrossRef Ma J, Zhao S, Gao G, Chang H, Ma P, Jin B. Probucol protects against asymmetric dimethylarginine-induced apoptosis in the cultured human brain microvascular endothelial cells. J Mol Neurosci. 2015;57:546–53.PubMedCrossRef
36.
go back to reference Fischer S, Wiesnet M, Renz D, Schaper W. H2O2 induces paracellular permeability of porcine brain-derived microvascular endothelial cells by activation of the p44/42 MAP kinase pathway. Eur J Cell Biol. 2005;84:687–97.PubMedCrossRef Fischer S, Wiesnet M, Renz D, Schaper W. H2O2 induces paracellular permeability of porcine brain-derived microvascular endothelial cells by activation of the p44/42 MAP kinase pathway. Eur J Cell Biol. 2005;84:687–97.PubMedCrossRef
37.
go back to reference Lochhead JJ, McCaffrey G, Quigley CE, Finch J, Demarco KM, Nametz N, et al. Oxidative stress increases blood–brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J Cereb Blood Flow Metab. 2010;30:1625–36.PubMedPubMedCentralCrossRef Lochhead JJ, McCaffrey G, Quigley CE, Finch J, Demarco KM, Nametz N, et al. Oxidative stress increases blood–brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J Cereb Blood Flow Metab. 2010;30:1625–36.PubMedPubMedCentralCrossRef
38.
go back to reference Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science. 1979;2002(297):1186–90. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science. 1979;2002(297):1186–90.
39.
go back to reference Song K, Li Y, Zhang H, An N, Wei Y, Wang L, et al. Oxidative stress-mediated blood–brain barrier (BBB) disruption in neurological diseases. Oxid Med Cell Longev. 2020;2020. Song K, Li Y, Zhang H, An N, Wei Y, Wang L, et al. Oxidative stress-mediated blood–brain barrier (BBB) disruption in neurological diseases. Oxid Med Cell Longev. 2020;2020.
40.
go back to reference Chen W, Ju XZ, Lu Y, Ding XW, Miao CH, Chen JW. Propofol improved hypoxia-impaired integrity of blood-brain barrier via modulating the expression and phosphorylation of zonula occludens-1. CNS Neurosci Ther. 2019;25:704–13.PubMedPubMedCentralCrossRef Chen W, Ju XZ, Lu Y, Ding XW, Miao CH, Chen JW. Propofol improved hypoxia-impaired integrity of blood-brain barrier via modulating the expression and phosphorylation of zonula occludens-1. CNS Neurosci Ther. 2019;25:704–13.PubMedPubMedCentralCrossRef
41.
go back to reference Tan S, Shan Y, Lin Y, Liao S, Zhang B, Zeng Q, et al. Neutralization of interleukin-9 ameliorates experimental stroke by repairing the blood-brain barrier via down-regulation of astrocyte-derived vascular endothelial growth factor-A. FASEB J. 2019;33:4376–87.PubMedCrossRef Tan S, Shan Y, Lin Y, Liao S, Zhang B, Zeng Q, et al. Neutralization of interleukin-9 ameliorates experimental stroke by repairing the blood-brain barrier via down-regulation of astrocyte-derived vascular endothelial growth factor-A. FASEB J. 2019;33:4376–87.PubMedCrossRef
42.
go back to reference Labus J, Häckel S, Lucka L, Danker K. Interleukin-1β induces an inflammatory response and the breakdown of the endothelial cell layer in an improved human THBMEC-based in vitro blood-brain barrier model. J Neurosci Methods. 2014;228:35–45.PubMedCrossRef Labus J, Häckel S, Lucka L, Danker K. Interleukin-1β induces an inflammatory response and the breakdown of the endothelial cell layer in an improved human THBMEC-based in vitro blood-brain barrier model. J Neurosci Methods. 2014;228:35–45.PubMedCrossRef
43.
go back to reference Larochelle C, Alvarez JI, Prat A. How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett. 2011;585:3770–80.PubMedCrossRef Larochelle C, Alvarez JI, Prat A. How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett. 2011;585:3770–80.PubMedCrossRef
44.
go back to reference Labus J, Wöltje K, Stolte KN, Häckel S, Kim KS, Hildmann A, et al. IL-1β promotes transendothelial migration of PBMCs by upregulation of the FN/α 5 β 1 signalling pathway in immortalised human brain microvascular endothelial cells. Exp Cell Res. 2018;373:99–111.PubMedCrossRef Labus J, Wöltje K, Stolte KN, Häckel S, Kim KS, Hildmann A, et al. IL-1β promotes transendothelial migration of PBMCs by upregulation of the FN/α 5 β 1 signalling pathway in immortalised human brain microvascular endothelial cells. Exp Cell Res. 2018;373:99–111.PubMedCrossRef
45.
go back to reference Menard C, Pfau ML, Hodes GE, Kana V, Wang VX, Bouchard S, et al. Social stress induces neurovascular pathology promoting depression. Nat Neurosci. 2017;20:1752–60.PubMedPubMedCentralCrossRef Menard C, Pfau ML, Hodes GE, Kana V, Wang VX, Bouchard S, et al. Social stress induces neurovascular pathology promoting depression. Nat Neurosci. 2017;20:1752–60.PubMedPubMedCentralCrossRef
46.
go back to reference Takechi R, Galloway S, Pallebage-Gamarallage MM, Lam V, Dhaliwal SS, Mamo JC. Probucol prevents blood–brain barrier dysfunction in wild-type mice induced by saturated fat or cholesterol feeding. Clin Exp Pharmacol Physiol. 2013;40:45–52.PubMedCrossRef Takechi R, Galloway S, Pallebage-Gamarallage MM, Lam V, Dhaliwal SS, Mamo JC. Probucol prevents blood–brain barrier dysfunction in wild-type mice induced by saturated fat or cholesterol feeding. Clin Exp Pharmacol Physiol. 2013;40:45–52.PubMedCrossRef
47.
go back to reference Takechi R, Pallebage-Gamarallage MM, Lam V, Giles C, Mamo JC. Long-term probucol therapy continues to suppress markers of neurovascular inflammation in a dietary induced model of cerebral capillary dysfunction. Lipids Health Dis. 2014;13:1–10.CrossRef Takechi R, Pallebage-Gamarallage MM, Lam V, Giles C, Mamo JC. Long-term probucol therapy continues to suppress markers of neurovascular inflammation in a dietary induced model of cerebral capillary dysfunction. Lipids Health Dis. 2014;13:1–10.CrossRef
48.
go back to reference Pimplikar SW. Neuroinflammation in Alzheimer’s disease: from pathogenesis to a therapeutic target. J Clin Immunol. 2014;34(Suppl):1. Pimplikar SW. Neuroinflammation in Alzheimer’s disease: from pathogenesis to a therapeutic target. J Clin Immunol. 2014;34(Suppl):1.
49.
go back to reference Hirsch EC, Vyas S, Hunot S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18:S210–2.PubMedCrossRef Hirsch EC, Vyas S, Hunot S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18:S210–2.PubMedCrossRef
50.
51.
go back to reference Mamo JCL, Lam V, Brook E, Mooranian A, Al-Salami H, Fimognari N, et al. Probucol prevents blood–brain barrier dysfunction and cognitive decline in mice maintained on pro-diabetic diet. Diab Vasc Dis Res. 2019;16:87–97.PubMedCrossRef Mamo JCL, Lam V, Brook E, Mooranian A, Al-Salami H, Fimognari N, et al. Probucol prevents blood–brain barrier dysfunction and cognitive decline in mice maintained on pro-diabetic diet. Diab Vasc Dis Res. 2019;16:87–97.PubMedCrossRef
52.
go back to reference Champagne D, Pearson D, Dea D, Rochford J, Poirier J. The cholesterol-lowering drug Probucol increases apolipoprotein e production in the hippocampus of aged rats: implications for Alzheimer’s disease. Neuroscience. 2003;121:99–110.PubMedCrossRef Champagne D, Pearson D, Dea D, Rochford J, Poirier J. The cholesterol-lowering drug Probucol increases apolipoprotein e production in the hippocampus of aged rats: implications for Alzheimer’s disease. Neuroscience. 2003;121:99–110.PubMedCrossRef
53.
go back to reference Talwar P, Sinha J, Grover S, Agarwal R, Kushwaha S, Srivastava MVP, et al. Meta-analysis of apolipoprotein E levels in the cerebrospinal fluid of patients with Alzheimer’s disease. J Neurol Sci. 2016;360:179–87.PubMedCrossRef Talwar P, Sinha J, Grover S, Agarwal R, Kushwaha S, Srivastava MVP, et al. Meta-analysis of apolipoprotein E levels in the cerebrospinal fluid of patients with Alzheimer’s disease. J Neurol Sci. 2016;360:179–87.PubMedCrossRef
54.
go back to reference Wu BJ, di Girolamo N, Beck K, Hanratty CG, Choy K, Hou JY, et al. Probucol [4,4′-[(1-methylethylidene)bis(thio)]bis-[2,6-bis(1,1-dimethylethyl)phenol]] inhibits compensatory remodeling and promotes lumen loss associated with atherosclerosis in apolipoprotein E-deficient mice. J Pharmacol Exp Ther. 2007;321:477–84.PubMedCrossRef Wu BJ, di Girolamo N, Beck K, Hanratty CG, Choy K, Hou JY, et al. Probucol [4,4′-[(1-methylethylidene)bis(thio)]bis-[2,6-bis(1,1-dimethylethyl)phenol]] inhibits compensatory remodeling and promotes lumen loss associated with atherosclerosis in apolipoprotein E-deficient mice. J Pharmacol Exp Ther. 2007;321:477–84.PubMedCrossRef
55.
go back to reference Jung YS, Park JH, Kim H, Kim SY, Hwang JY, Hong KW, et al. Probucol inhibits LPS-induced microglia activation and ameliorates brain ischemic injury in normal and hyperlipidemic mice. Acta Pharmacol Sin. 2016;37:1031–44.PubMedPubMedCentralCrossRef Jung YS, Park JH, Kim H, Kim SY, Hwang JY, Hong KW, et al. Probucol inhibits LPS-induced microglia activation and ameliorates brain ischemic injury in normal and hyperlipidemic mice. Acta Pharmacol Sin. 2016;37:1031–44.PubMedPubMedCentralCrossRef
57.
go back to reference Bisby RH, Johnson SA, Parker AW. Quenching of reactive oxidative species by probucol and comparison with other antioxidants. Free Radic Biol Med. 1996;20:411–20.PubMedCrossRef Bisby RH, Johnson SA, Parker AW. Quenching of reactive oxidative species by probucol and comparison with other antioxidants. Free Radic Biol Med. 1996;20:411–20.PubMedCrossRef
58.
go back to reference Huang J-L, Yu C, Su M, Yang S-M, Zhang F, Chen Y-Y, et al. Probucol, a “non-statin” cholesterol-lowering drug, ameliorates D-galactose induced cognitive deficits by alleviating oxidative stress via Keap1/Nrf2 signaling pathway in mice. Aging (Albany NY). 2019;11:8542.PubMedCrossRef Huang J-L, Yu C, Su M, Yang S-M, Zhang F, Chen Y-Y, et al. Probucol, a “non-statin” cholesterol-lowering drug, ameliorates D-galactose induced cognitive deficits by alleviating oxidative stress via Keap1/Nrf2 signaling pathway in mice. Aging (Albany NY). 2019;11:8542.PubMedCrossRef
59.
go back to reference Zhou Z, Liu C, Chen S, Zhao H, Zhou K, Wang W, et al. Activation of the Nrf2/ARE signaling pathway by probucol contributes to inhibiting inflammation and neuronal apoptosis after spinal cord injury. Oncotarget. 2017;8:52078.PubMedPubMedCentralCrossRef Zhou Z, Liu C, Chen S, Zhao H, Zhou K, Wang W, et al. Activation of the Nrf2/ARE signaling pathway by probucol contributes to inhibiting inflammation and neuronal apoptosis after spinal cord injury. Oncotarget. 2017;8:52078.PubMedPubMedCentralCrossRef
60.
go back to reference Zhou Z, Chen S, Zhao H, Wang C, Gao K, Guo Y, et al. Probucol inhibits neural cell apoptosis via inhibition of mTOR signaling pathway after spinal cord injury. Neuroscience. 2016;329:193–200.PubMedCrossRef Zhou Z, Chen S, Zhao H, Wang C, Gao K, Guo Y, et al. Probucol inhibits neural cell apoptosis via inhibition of mTOR signaling pathway after spinal cord injury. Neuroscience. 2016;329:193–200.PubMedCrossRef
61.
go back to reference Santos DB, Colle D, Moreira ELG, Santos AA, Hort MA, Santos K, et al. Probucol protects neuronal cells against peroxide-induced damage and directly activates glutathione peroxidase-1. Mol Neurobiol. 2020;57:3245–57.PubMedCrossRef Santos DB, Colle D, Moreira ELG, Santos AA, Hort MA, Santos K, et al. Probucol protects neuronal cells against peroxide-induced damage and directly activates glutathione peroxidase-1. Mol Neurobiol. 2020;57:3245–57.PubMedCrossRef
62.
go back to reference Xie Y, Song A, Zhu Y, Jiang A, Peng W, Zhang C, et al. Effects and mechanisms of probucol on aging-related hippocampus-dependent cognitive impairment. Biomed Pharmacother. 2021;144:112266.PubMedCrossRef Xie Y, Song A, Zhu Y, Jiang A, Peng W, Zhang C, et al. Effects and mechanisms of probucol on aging-related hippocampus-dependent cognitive impairment. Biomed Pharmacother. 2021;144:112266.PubMedCrossRef
63.
go back to reference James AP, Pal S, Gennat HC, Vine DF, Mamo JCL. The incorporation and metabolism of amyloid-beta into chylomicron-like lipid emulsions. J Alzheimers Dis. 2003;5:179–88.PubMedCrossRef James AP, Pal S, Gennat HC, Vine DF, Mamo JCL. The incorporation and metabolism of amyloid-beta into chylomicron-like lipid emulsions. J Alzheimers Dis. 2003;5:179–88.PubMedCrossRef
64.
go back to reference Takechi R, Pallebage-Gamarallage MM, Lam V, Giles C, Mamo JC. Aging-related changes in blood-brain barrier integrity and the effect of dietary fat. Neurodegener Dis. 2013;12:125–35.PubMedCrossRef Takechi R, Pallebage-Gamarallage MM, Lam V, Giles C, Mamo JC. Aging-related changes in blood-brain barrier integrity and the effect of dietary fat. Neurodegener Dis. 2013;12:125–35.PubMedCrossRef
65.
go back to reference Galloway S, Takechi R, Nesbit M, Pallebage-Gamarallage MM, Lam V, Mamo JCL. The differential effects of fatty acids on enterocytic abundance of amyloid-beta. Lipids Health Dis. 2019;18:1–6.CrossRef Galloway S, Takechi R, Nesbit M, Pallebage-Gamarallage MM, Lam V, Mamo JCL. The differential effects of fatty acids on enterocytic abundance of amyloid-beta. Lipids Health Dis. 2019;18:1–6.CrossRef
66.
go back to reference Mamo JCL, Jian L, James AP, Flicker L, Esselmann H, Wiltfang J. Plasma lipoprotein β-amyloid in subjects with Alzheimer’s disease or mild cognitive impairment. Ann Clin Biochem. 2008;45:395–403.PubMedCrossRef Mamo JCL, Jian L, James AP, Flicker L, Esselmann H, Wiltfang J. Plasma lipoprotein β-amyloid in subjects with Alzheimer’s disease or mild cognitive impairment. Ann Clin Biochem. 2008;45:395–403.PubMedCrossRef
67.
go back to reference Takechi R, Galloway S, Pallebage-Gamarallage M, Wellington C, Johnsen R, Mamo JC. Three-dimensional colocalization analysis of plasma-derived apolipoprotein B with amyloid plaques in APP/PS1 transgenic mice. Histochem Cell Biol. 2009;131:661–6.PubMedCrossRef Takechi R, Galloway S, Pallebage-Gamarallage M, Wellington C, Johnsen R, Mamo JC. Three-dimensional colocalization analysis of plasma-derived apolipoprotein B with amyloid plaques in APP/PS1 transgenic mice. Histochem Cell Biol. 2009;131:661–6.PubMedCrossRef
68.
go back to reference Namba Y, Tsuchiya H, Ikeda K. Apolipoprotein B immunoreactivity in senile plaque and vascular amyloids and neurofibrillary tangles in the brains of patients with Alzheimer’s disease. Neurosci Lett. 1992;134:264–6.PubMedCrossRef Namba Y, Tsuchiya H, Ikeda K. Apolipoprotein B immunoreactivity in senile plaque and vascular amyloids and neurofibrillary tangles in the brains of patients with Alzheimer’s disease. Neurosci Lett. 1992;134:264–6.PubMedCrossRef
69.
go back to reference Sparks DL, Scheff SW, Hunsaker JC, Liu H, Landers T, Gross DR. Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol. 1994;126:88–94.PubMedCrossRef Sparks DL, Scheff SW, Hunsaker JC, Liu H, Landers T, Gross DR. Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol. 1994;126:88–94.PubMedCrossRef
70.
go back to reference Takechi R, Galloway S, Pallebage-Gamarallage MMS, Lam V, Mamo JCL. Dietary fats, cerebrovasculature integrity and Alzheimer’s disease risk. Prog Lipid Res. 2010;49:159–70.PubMedCrossRef Takechi R, Galloway S, Pallebage-Gamarallage MMS, Lam V, Mamo JCL. Dietary fats, cerebrovasculature integrity and Alzheimer’s disease risk. Prog Lipid Res. 2010;49:159–70.PubMedCrossRef
71.
go back to reference Takechi R, Galloway S, Pallebage-Gamarallage MM, Lam V, Dhaliwal SS, Mamo JC. Probucol prevents blood–brain barrier dysfunction in wild-type mice induced by saturated fat or cholesterol feeding. Clin Exp Pharmacol Physiol. 2013;40:45–52.PubMedCrossRef Takechi R, Galloway S, Pallebage-Gamarallage MM, Lam V, Dhaliwal SS, Mamo JC. Probucol prevents blood–brain barrier dysfunction in wild-type mice induced by saturated fat or cholesterol feeding. Clin Exp Pharmacol Physiol. 2013;40:45–52.PubMedCrossRef
72.
go back to reference Pallebage-Gamarallage MM, Galloway S, Takechi R, Dhaliwal S, Mamo JCL. Probucol suppresses enterocytic accumulation of amyloid-β induced by saturated fat and cholesterol feeding. Lipids. 2012;47:27–34.PubMedCrossRef Pallebage-Gamarallage MM, Galloway S, Takechi R, Dhaliwal S, Mamo JCL. Probucol suppresses enterocytic accumulation of amyloid-β induced by saturated fat and cholesterol feeding. Lipids. 2012;47:27–34.PubMedCrossRef
73.
go back to reference Mamo JCL, Elsegood CL, Umeda Y, Hirano T, Redgrave TG. Effect of probucol on plasma clearance and organ uptake of chylomicrons and VLDLs in normal and diabetic rats. Arterioscler Thromb. 1993;13:231–9.PubMedCrossRef Mamo JCL, Elsegood CL, Umeda Y, Hirano T, Redgrave TG. Effect of probucol on plasma clearance and organ uptake of chylomicrons and VLDLs in normal and diabetic rats. Arterioscler Thromb. 1993;13:231–9.PubMedCrossRef
74.
go back to reference Santos DB, Peres KC, Ribeiro RP, Colle D, dos Santos AA, Moreira ELG, et al. Probucol, a lipid-lowering drug, prevents cognitive and hippocampal synaptic impairments induced by amyloid β peptide in mice. Exp Neurol. 2012;233:767–75.PubMedCrossRef Santos DB, Peres KC, Ribeiro RP, Colle D, dos Santos AA, Moreira ELG, et al. Probucol, a lipid-lowering drug, prevents cognitive and hippocampal synaptic impairments induced by amyloid β peptide in mice. Exp Neurol. 2012;233:767–75.PubMedCrossRef
75.
go back to reference Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, et al. apoE isoform–specific disruption of amyloid β peptide clearance from mouse brain. J Clin Invest. 2008;118:4002–13.PubMedPubMedCentralCrossRef Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, et al. apoE isoform–specific disruption of amyloid β peptide clearance from mouse brain. J Clin Invest. 2008;118:4002–13.PubMedPubMedCentralCrossRef
76.
go back to reference Kanekiyo T, Bu G. The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimer’s disease. Front Aging Neurosci. 2014;6:93.PubMedPubMedCentralCrossRef Kanekiyo T, Bu G. The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimer’s disease. Front Aging Neurosci. 2014;6:93.PubMedPubMedCentralCrossRef
78.
go back to reference Drouet B, Fifre A, Pinçon-Raymond M, Vandekerckhove J, Rosseneu M, Guéant JL, et al. ApoE protects cortical neurones against neurotoxicity induced by the non-fibrillar C-terminal domain of the amyloid-β peptide. J Neurochem. 2001;76:117–27.PubMedCrossRef Drouet B, Fifre A, Pinçon-Raymond M, Vandekerckhove J, Rosseneu M, Guéant JL, et al. ApoE protects cortical neurones against neurotoxicity induced by the non-fibrillar C-terminal domain of the amyloid-β peptide. J Neurochem. 2001;76:117–27.PubMedCrossRef
79.
go back to reference Naiki H, Hasegawa K, Yamaguchi I, Nakamura H, Gejyo F, Nakakuki K. Apolipoprotein E and antioxidants have different mechanisms of inhibiting Alzheimer’s beta-amyloid fibril formation in vitro. Biochemistry. 1998;37:17882–9.PubMedCrossRef Naiki H, Hasegawa K, Yamaguchi I, Nakamura H, Gejyo F, Nakakuki K. Apolipoprotein E and antioxidants have different mechanisms of inhibiting Alzheimer’s beta-amyloid fibril formation in vitro. Biochemistry. 1998;37:17882–9.PubMedCrossRef
80.
go back to reference Santos DB, Colle D, Moreira ELG, Peres KC, Ribeiro RP, dos Santos AA, et al. Probucol mitigates streptozotocin-induced cognitive and biochemical changes in mice. Neuroscience. 2015;284:590–600.PubMedCrossRef Santos DB, Colle D, Moreira ELG, Peres KC, Ribeiro RP, dos Santos AA, et al. Probucol mitigates streptozotocin-induced cognitive and biochemical changes in mice. Neuroscience. 2015;284:590–600.PubMedCrossRef
81.
go back to reference Poirier J, Miron J, Picard C, Gormley P, Théroux L, Breitner J, et al. Apolipoprotein E and lipid homeostasis in the etiology and treatment of sporadic Alzheimer’s disease. Neurobiol Aging. 2014;35:S3-10.PubMedPubMedCentralCrossRef Poirier J, Miron J, Picard C, Gormley P, Théroux L, Breitner J, et al. Apolipoprotein E and lipid homeostasis in the etiology and treatment of sporadic Alzheimer’s disease. Neurobiol Aging. 2014;35:S3-10.PubMedPubMedCentralCrossRef
82.
go back to reference Lam V, Clarnette R, Francis R, Bynevelt M, Watts G, Flicker L, et al. Efficacy of probucol on cognitive function in Alzheimer’s disease: study protocol for a double-blind, placebo-controlled, randomised phase II trial (PIA study). BMJ Open. 2022;12:e058826.PubMedPubMedCentralCrossRef Lam V, Clarnette R, Francis R, Bynevelt M, Watts G, Flicker L, et al. Efficacy of probucol on cognitive function in Alzheimer’s disease: study protocol for a double-blind, placebo-controlled, randomised phase II trial (PIA study). BMJ Open. 2022;12:e058826.PubMedPubMedCentralCrossRef
83.
go back to reference Ribeiro RP, Moreira ELG, Santos DB, Colle D, dos Santos AA, Peres KC, et al. Probucol affords neuroprotection in a 6-OHDA mouse model of Parkinson’s disease. Neurochem Res. 2013;38:660–8.PubMedCrossRef Ribeiro RP, Moreira ELG, Santos DB, Colle D, dos Santos AA, Peres KC, et al. Probucol affords neuroprotection in a 6-OHDA mouse model of Parkinson’s disease. Neurochem Res. 2013;38:660–8.PubMedCrossRef
86.
go back to reference Ray A, Martinez BA, Berkowitz LA, Caldwell GA, Caldwell KA. Mitochondrial dysfunction, oxidative stress, and neurodegeneration elicited by a bacterial metabolite in a C. elegans Parkinson’s model. Cell Death Dis. 2014;5:e984–e984.PubMedPubMedCentralCrossRef Ray A, Martinez BA, Berkowitz LA, Caldwell GA, Caldwell KA. Mitochondrial dysfunction, oxidative stress, and neurodegeneration elicited by a bacterial metabolite in a C. elegans Parkinson’s model. Cell Death Dis. 2014;5:e984–e984.PubMedPubMedCentralCrossRef
87.
go back to reference Vinther-Jensen T, Larsen IU, Hjermind LE, Budtz-Jørgensen E, Nielsen TT, Nørremølle A, et al. A clinical classification acknowledging neuropsychiatric and cognitive impairment in Huntington’s disease. Orphanet J Rare Dis. 2014;9:1–9.CrossRef Vinther-Jensen T, Larsen IU, Hjermind LE, Budtz-Jørgensen E, Nielsen TT, Nørremølle A, et al. A clinical classification acknowledging neuropsychiatric and cognitive impairment in Huntington’s disease. Orphanet J Rare Dis. 2014;9:1–9.CrossRef
88.
go back to reference Colle D, Hartwig JM, Antunes Soares FA, Farina M. Probucol modulates oxidative stress and excitotoxicity in Huntington’s disease models in vitro. Brain Res Bull. 2012;87:397–405.PubMedCrossRef Colle D, Hartwig JM, Antunes Soares FA, Farina M. Probucol modulates oxidative stress and excitotoxicity in Huntington’s disease models in vitro. Brain Res Bull. 2012;87:397–405.PubMedCrossRef
89.
go back to reference Colle D, Santos DB, Moreira ELG, Hartwig JM, dos Santos AA, Zimmermann LT, et al. Probucol increases striatal glutathione peroxidase activity and protects against 3-nitropropionic acid-induced pro-oxidative damage in rats. PLoS ONE. 2013;8:67658.CrossRef Colle D, Santos DB, Moreira ELG, Hartwig JM, dos Santos AA, Zimmermann LT, et al. Probucol increases striatal glutathione peroxidase activity and protects against 3-nitropropionic acid-induced pro-oxidative damage in rats. PLoS ONE. 2013;8:67658.CrossRef
90.
go back to reference De Paula Nascimento-Castro C, Wink AC, Da Fônseca VS, Bianco CD, Winkelmann-Duarte EC, Farina M, et al. Antidepressant Effects of probucol on early-symptomatic YAC128 transgenic mice for Huntington’s disease. Neural Plast. 2018;2018. De Paula Nascimento-Castro C, Wink AC, Da Fônseca VS, Bianco CD, Winkelmann-Duarte EC, Farina M, et al. Antidepressant Effects of probucol on early-symptomatic YAC128 transgenic mice for Huntington’s disease. Neural Plast. 2018;2018.
91.
go back to reference Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.PubMedCrossRef Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.PubMedCrossRef
92.
go back to reference Cukierman T, Gerstein HC, Williamson JD. Cognitive decline and dementia in diabetes: systematic overview of prospective observational studies. Diabetologia. 2005;48:2460–9.PubMedCrossRef Cukierman T, Gerstein HC, Williamson JD. Cognitive decline and dementia in diabetes: systematic overview of prospective observational studies. Diabetologia. 2005;48:2460–9.PubMedCrossRef
93.
go back to reference Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 2006;5:64–74.PubMedCrossRef Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 2006;5:64–74.PubMedCrossRef
94.
go back to reference Xu W, Caracciolo B, Wang HX, Winblad B, Bäckman L, Qiu C, et al. Accelerated progression from mild cognitive impairment to dementia in people with diabetes. Diabetes. 2010;59:2928–35.PubMedPubMedCentralCrossRef Xu W, Caracciolo B, Wang HX, Winblad B, Bäckman L, Qiu C, et al. Accelerated progression from mild cognitive impairment to dementia in people with diabetes. Diabetes. 2010;59:2928–35.PubMedPubMedCentralCrossRef
95.
go back to reference Moran C, Phan TG, Chen J, Blizzard L, Beare R, Venn A, et al. Brain atrophy in type 2 diabetes regional distribution and influence on cognition. Diabetes Care. 2013;36(12):4036–42.PubMedPubMedCentralCrossRef Moran C, Phan TG, Chen J, Blizzard L, Beare R, Venn A, et al. Brain atrophy in type 2 diabetes regional distribution and influence on cognition. Diabetes Care. 2013;36(12):4036–42.PubMedPubMedCentralCrossRef
96.
go back to reference Biessels GJ, Strachan MWJ, Visseren FLJ, Kappelle LJ, Whitmer RA. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol. 2014;2:246–55.PubMedCrossRef Biessels GJ, Strachan MWJ, Visseren FLJ, Kappelle LJ, Whitmer RA. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: towards targeted interventions. Lancet Diabetes Endocrinol. 2014;2:246–55.PubMedCrossRef
97.
go back to reference Roberts RO, Knopman DS, Geda YE, Cha RH, Pankratz VS, Baertlein L, et al. Association of diabetes with amnestic and nonamnestic mild cognitive impairment. Alzheimers Dement. 2014;10(1):18-26. CrossRefPubMed Roberts RO, Knopman DS, Geda YE, Cha RH, Pankratz VS, Baertlein L, et al. Association of diabetes with amnestic and nonamnestic mild cognitive impairment. Alzheimers Dement. 2014;10(1):18-26. CrossRefPubMed
98.
go back to reference Ceretta LB, Réus GZ, Abelaira HM, Ribeiro KF, Zappellini G, Felisbino FF, et al. Increased oxidative stress and imbalance in antioxidant enzymes in the brains of alloxan-induced diabetic rats. Exp Diabetes Res. 2012;2012. Ceretta LB, Réus GZ, Abelaira HM, Ribeiro KF, Zappellini G, Felisbino FF, et al. Increased oxidative stress and imbalance in antioxidant enzymes in the brains of alloxan-induced diabetic rats. Exp Diabetes Res. 2012;2012.
99.
go back to reference Aliciguzel Y, Ozen I, Aslan M, Karayalcin U. Activities of xanthine oxidoreductase and antioxidant enzymes in different tissues of diabetic rats. J Lab Clin Med. 2003;142:172–7.PubMedCrossRef Aliciguzel Y, Ozen I, Aslan M, Karayalcin U. Activities of xanthine oxidoreductase and antioxidant enzymes in different tissues of diabetic rats. J Lab Clin Med. 2003;142:172–7.PubMedCrossRef
101.
go back to reference Muriach M, Flores-Bellver M, Romero FJ, Barcia JM. Diabetes and the brain: Oxidative stress, inflammation, and autophagy. Oxid Med Cell Longev. 2014;2014. Muriach M, Flores-Bellver M, Romero FJ, Barcia JM. Diabetes and the brain: Oxidative stress, inflammation, and autophagy. Oxid Med Cell Longev. 2014;2014.
102.
go back to reference Gorogawa SI, Kajimoto Y, Umayahara Y, Kaneto H, Watada H, Kuroda A, et al. Probucol preserves pancreatic β-cell function through reduction of oxidative stress in type 2 diabetes. Diabetes Res Clin Pract. 2002;57:1–10.PubMedCrossRef Gorogawa SI, Kajimoto Y, Umayahara Y, Kaneto H, Watada H, Kuroda A, et al. Probucol preserves pancreatic β-cell function through reduction of oxidative stress in type 2 diabetes. Diabetes Res Clin Pract. 2002;57:1–10.PubMedCrossRef
103.
go back to reference Takatori A, Ohta E, Inenaga T, Horiuchi K, Ishii Y, Itagaki SI, et al. Protective effects of probucol treatment on pancreatic β-cell function of SZ-induced diabetic APA hamsters. Exp Anim. 2003;52:317–27.PubMedCrossRef Takatori A, Ohta E, Inenaga T, Horiuchi K, Ishii Y, Itagaki SI, et al. Protective effects of probucol treatment on pancreatic β-cell function of SZ-induced diabetic APA hamsters. Exp Anim. 2003;52:317–27.PubMedCrossRef
104.
go back to reference Duan Bin S, Liu GL, Wang YH, Zhang JJ. Epithelial-to-mesenchymal transdifferentiation of renal tubular epithelial cell mediated by oxidative stress and intervention effect of probucol in diabetic nephropathy rats. Renal Fail. 2012;34:1244–51.CrossRef Duan Bin S, Liu GL, Wang YH, Zhang JJ. Epithelial-to-mesenchymal transdifferentiation of renal tubular epithelial cell mediated by oxidative stress and intervention effect of probucol in diabetic nephropathy rats. Renal Fail. 2012;34:1244–51.CrossRef
105.
go back to reference Derangula K, Javalgekar M, Kumar Arruri V, Gundu C, Kumar Kalvala A, Kumar A. Probucol attenuates NF-κB/NLRP3 signalling and augments Nrf-2 mediated antioxidant defence in nerve injury induced neuropathic pain. Int Immunopharmacol. 2022;102:108397.PubMedCrossRef Derangula K, Javalgekar M, Kumar Arruri V, Gundu C, Kumar Kalvala A, Kumar A. Probucol attenuates NF-κB/NLRP3 signalling and augments Nrf-2 mediated antioxidant defence in nerve injury induced neuropathic pain. Int Immunopharmacol. 2022;102:108397.PubMedCrossRef
106.
go back to reference Liu HW, Luo Y, Zhou YF, Chen ZP. Probucol Prevents Diabetes-Induced Retinal Neuronal Degeneration through Upregulating Nrf2. Biomed Res Int. 2020;2020. Liu HW, Luo Y, Zhou YF, Chen ZP. Probucol Prevents Diabetes-Induced Retinal Neuronal Degeneration through Upregulating Nrf2. Biomed Res Int. 2020;2020.
107.
go back to reference Zhou X, Ai S, Chen Z, Li C. Probucol promotes high glucose-induced proliferation and inhibits apoptosis by reducing reactive oxygen species generation in Müller cells. Int Ophthalmol. 2019;39:2833–42.PubMedCrossRef Zhou X, Ai S, Chen Z, Li C. Probucol promotes high glucose-induced proliferation and inhibits apoptosis by reducing reactive oxygen species generation in Müller cells. Int Ophthalmol. 2019;39:2833–42.PubMedCrossRef
108.
go back to reference Mooranian A, Zamani N, Takechi R, Al-Sallami H, Mikov M, Goločorbin-Kon S, et al. Probucol-poly(meth)acrylate-bile acid nanoparticles increase IL-10, and primary bile acids in prediabetic mice. Ther Deliv. 2019;10:563–71.PubMedCrossRef Mooranian A, Zamani N, Takechi R, Al-Sallami H, Mikov M, Goločorbin-Kon S, et al. Probucol-poly(meth)acrylate-bile acid nanoparticles increase IL-10, and primary bile acids in prediabetic mice. Ther Deliv. 2019;10:563–71.PubMedCrossRef
109.
go back to reference Mamo JC, Lam V, Al-Salami H, Brook E, Mooranian A, Nesbit M, et al. Sodium alginate capsulation increased brain delivery of probucol and suppressed neuroinflammation and neurodegeneration. Ther Del. 2018;9:703–9.CrossRef Mamo JC, Lam V, Al-Salami H, Brook E, Mooranian A, Nesbit M, et al. Sodium alginate capsulation increased brain delivery of probucol and suppressed neuroinflammation and neurodegeneration. Ther Del. 2018;9:703–9.CrossRef
110.
go back to reference Santos DB, Colle D, Moreira ELG, Hort MA, Godoi M, LeDouaron G, et al. Succinobucol, a non-statin hypocholesterolemic drug, prevents premotor symptoms and nigrostriatal neurodegeneration in an experimental model of Parkinson’s disease. Mol Neurobiol. 2017;54:1513–30.PubMedCrossRef Santos DB, Colle D, Moreira ELG, Hort MA, Godoi M, LeDouaron G, et al. Succinobucol, a non-statin hypocholesterolemic drug, prevents premotor symptoms and nigrostriatal neurodegeneration in an experimental model of Parkinson’s disease. Mol Neurobiol. 2017;54:1513–30.PubMedCrossRef
111.
go back to reference Ribeiro RP, Santos DB, Colle D, Naime AA, Gonçalves CL, Ghizoni H, et al. Decreased forelimb ability in mice intracerebroventricularly injected with low dose 6-hydroxidopamine: a model on the dissociation of bradykinesia from hypokinesia. Behav Brain Res. 2016;305:30–6.PubMedCrossRef Ribeiro RP, Santos DB, Colle D, Naime AA, Gonçalves CL, Ghizoni H, et al. Decreased forelimb ability in mice intracerebroventricularly injected with low dose 6-hydroxidopamine: a model on the dissociation of bradykinesia from hypokinesia. Behav Brain Res. 2016;305:30–6.PubMedCrossRef
112.
go back to reference Colle D, Santos DB, Hartwig JM, Godoi M, Braga AL, Farina M. Succinobucol versus probucol: Higher efficiency of succinobucol in mitigating 3-NP-induced brain mitochondrial dysfunction and oxidative stress in vitro. Mitochondrion. 2013;13:125–33.PubMedCrossRef Colle D, Santos DB, Hartwig JM, Godoi M, Braga AL, Farina M. Succinobucol versus probucol: Higher efficiency of succinobucol in mitigating 3-NP-induced brain mitochondrial dysfunction and oxidative stress in vitro. Mitochondrion. 2013;13:125–33.PubMedCrossRef
113.
go back to reference Colle D, Santos DB, Hartwig JM, Godoi M, Engel DF, de Bem AF, Braga AL, et al. Succinobucol, a lipid-lowering drug, protects against 3-nitropropionic acid-induced mitochondrial dysfunction and oxidative stress in SH-SY5Y cells via upregulation of glutathione levels and glutamate cysteine ligase activity. Mol Neurobiol. 2016;53:1280–95.PubMedCrossRef Colle D, Santos DB, Hartwig JM, Godoi M, Engel DF, de Bem AF, Braga AL, et al. Succinobucol, a lipid-lowering drug, protects against 3-nitropropionic acid-induced mitochondrial dysfunction and oxidative stress in SH-SY5Y cells via upregulation of glutathione levels and glutamate cysteine ligase activity. Mol Neurobiol. 2016;53:1280–95.PubMedCrossRef
114.
go back to reference Bueno DC, Canto RFS, de Souza V, Andreguetti RR, Barbosa FAR, Naime AA, et al. New probucol analogues inhibit ferroptosis, improve mitochondrial parameters, and induce glutathione peroxidase in HT22 cells. Mol Neurobiol. 2020;57:3273–90.PubMedCrossRef Bueno DC, Canto RFS, de Souza V, Andreguetti RR, Barbosa FAR, Naime AA, et al. New probucol analogues inhibit ferroptosis, improve mitochondrial parameters, and induce glutathione peroxidase in HT22 cells. Mol Neurobiol. 2020;57:3273–90.PubMedCrossRef
115.
go back to reference Naime AA, Barbosa FAR, Bueno DC, Curi Pedrosa R, Canto RFS, Colle D, et al. Prevention of ferroptosis in acute scenarios: an in vitro study with classic and novel anti-ferroptotic compounds. Free Radic Res. 2021;55:1062–79.PubMedCrossRef Naime AA, Barbosa FAR, Bueno DC, Curi Pedrosa R, Canto RFS, Colle D, et al. Prevention of ferroptosis in acute scenarios: an in vitro study with classic and novel anti-ferroptotic compounds. Free Radic Res. 2021;55:1062–79.PubMedCrossRef
116.
go back to reference Jacques MT, de Souza V, Barbosa FAR, Faria Santos Canto R, Lopes SC, Prediger RD, et al. Novel probucol analogue, 4,4′-Diselanediylbis (2,6-di-tert-butylphenol), prevents oxidative glutamate neurotoxicity in vitro and confers neuroprotection in a rodent model of ischemic stroke. ACS Chem Neurosci. 2023;14:2857–67.PubMedCrossRef Jacques MT, de Souza V, Barbosa FAR, Faria Santos Canto R, Lopes SC, Prediger RD, et al. Novel probucol analogue, 4,4′-Diselanediylbis (2,6-di-tert-butylphenol), prevents oxidative glutamate neurotoxicity in vitro and confers neuroprotection in a rodent model of ischemic stroke. ACS Chem Neurosci. 2023;14:2857–67.PubMedCrossRef
117.
go back to reference Quispe RL, Canto RFS, Jaramillo ML, Barbosa FAR, Braga AL, de Bem AF, et al. Design, synthesis, and in vitro evaluation of a novel probucol derivative: protective activity in neuronal cells through GPx upregulation. Mol Neurobiol. 2018;55:7619–34.PubMedCrossRef Quispe RL, Canto RFS, Jaramillo ML, Barbosa FAR, Braga AL, de Bem AF, et al. Design, synthesis, and in vitro evaluation of a novel probucol derivative: protective activity in neuronal cells through GPx upregulation. Mol Neurobiol. 2018;55:7619–34.PubMedCrossRef
118.
go back to reference Cynshi O, Kawabe Y, Suzuki T, Takashima Y, Kaise H, Nakamura M, et al. Antiatherogenic effects of the antioxidant BO-653 in three different animal models. Proc Natl Acad Sci U S A. 1998;95:10123–8.PubMedPubMedCentralCrossRef Cynshi O, Kawabe Y, Suzuki T, Takashima Y, Kaise H, Nakamura M, et al. Antiatherogenic effects of the antioxidant BO-653 in three different animal models. Proc Natl Acad Sci U S A. 1998;95:10123–8.PubMedPubMedCentralCrossRef
119.
go back to reference Takabe W, Kodama T, Hamakubo T, Tanaka K, Suzuki T, Aburatani H, et al. Anti-atherogenic antioxidants regulate the expression and function of proteasome α-type subunits in human endothelial cells. J Biol Chem. 2001;276:40497–501.PubMedCrossRef Takabe W, Kodama T, Hamakubo T, Tanaka K, Suzuki T, Aburatani H, et al. Anti-atherogenic antioxidants regulate the expression and function of proteasome α-type subunits in human endothelial cells. J Biol Chem. 2001;276:40497–501.PubMedCrossRef
120.
go back to reference Müller K, Carpenter KLH, Freeman MA, Mitchinson MJ. Antioxidant BO-653 and human macrophage-mediated LDL oxidation. Free Radic Res. 1999;30:59–71.PubMedCrossRef Müller K, Carpenter KLH, Freeman MA, Mitchinson MJ. Antioxidant BO-653 and human macrophage-mediated LDL oxidation. Free Radic Res. 1999;30:59–71.PubMedCrossRef
121.
122.
go back to reference Meng CQ, Somers PK, Hoong LK, Zheng XS, Ye Z, Worsencroft KJ, et al. Discovery of novel phenolic antioxidants as inhibitors of vascular cell adhesion molecule-1 expression for use in chronic inflammatory diseases. J Med Chem. 2004;47:6420–32.PubMedCrossRef Meng CQ, Somers PK, Hoong LK, Zheng XS, Ye Z, Worsencroft KJ, et al. Discovery of novel phenolic antioxidants as inhibitors of vascular cell adhesion molecule-1 expression for use in chronic inflammatory diseases. J Med Chem. 2004;47:6420–32.PubMedCrossRef
123.
go back to reference Kunsch C, Luchoomun J, Chen XL, Dodd GL, Karu KS, Meng CQ, et al. AGIX-4207 [2-[4-[[1-[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]thio]-1-methylethyl]thio]-2,6-bis(1,1-dimethylethyl)phenoxy]acetic acid], a novel antioxidant and anti-inflammatory compound: cellular and biochemical characterization of antioxidant activity and inhibition of redox-sensitive inflammatory gene expression. J Pharmacol Exp Ther. 2005;313:492–501.PubMedCrossRef Kunsch C, Luchoomun J, Chen XL, Dodd GL, Karu KS, Meng CQ, et al. AGIX-4207 [2-[4-[[1-[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]thio]-1-methylethyl]thio]-2,6-bis(1,1-dimethylethyl)phenoxy]acetic acid], a novel antioxidant and anti-inflammatory compound: cellular and biochemical characterization of antioxidant activity and inhibition of redox-sensitive inflammatory gene expression. J Pharmacol Exp Ther. 2005;313:492–501.PubMedCrossRef
124.
go back to reference Wu BJ, Kathir K, Witting PK, Beck K, Choy K, Li C, et al. Antioxidants protect from atherosclerosis by a heme oxygenase-1 pathway that is independent of free radical scavenging. J Exp Med. 2006;203:1117–27.PubMedPubMedCentralCrossRef Wu BJ, Kathir K, Witting PK, Beck K, Choy K, Li C, et al. Antioxidants protect from atherosclerosis by a heme oxygenase-1 pathway that is independent of free radical scavenging. J Exp Med. 2006;203:1117–27.PubMedPubMedCentralCrossRef
125.
go back to reference Johnson MB, Heineke EW, Rhinehart BL, Sheetz MJ, Barnhart RL, Robinson KM. MDL 29311 antioxidant with marked lipid-and glucose-lowering activity in diabetic rats and mice. Diabetes. 1993;42:1179–86.PubMedCrossRef Johnson MB, Heineke EW, Rhinehart BL, Sheetz MJ, Barnhart RL, Robinson KM. MDL 29311 antioxidant with marked lipid-and glucose-lowering activity in diabetic rats and mice. Diabetes. 1993;42:1179–86.PubMedCrossRef
126.
go back to reference Sheetz MJ, Barnhart RL, Jackson RL, Robinson KM. MDL 29311, an analog of probucol, decreases triglycerides in rats by increasing hepatic clearance of very-low-density lipoprotein. Metabolism. 1994;43:233–40.PubMedCrossRef Sheetz MJ, Barnhart RL, Jackson RL, Robinson KM. MDL 29311, an analog of probucol, decreases triglycerides in rats by increasing hepatic clearance of very-low-density lipoprotein. Metabolism. 1994;43:233–40.PubMedCrossRef
127.
go back to reference Wagle SR, Kovacevic B, Ionescu CM, Walker D, Jones M, Carey L, et al. Pharmacological and biological study of microencapsulated probucol-secondary bile acid in a diseased mouse model. Pharmaceutics. 2021;13:1223.PubMedPubMedCentralCrossRef Wagle SR, Kovacevic B, Ionescu CM, Walker D, Jones M, Carey L, et al. Pharmacological and biological study of microencapsulated probucol-secondary bile acid in a diseased mouse model. Pharmaceutics. 2021;13:1223.PubMedPubMedCentralCrossRef
Metadata
Title
The therapeutic potential of probucol and probucol analogues in neurodegenerative diseases
Authors
Arazu Sharif
John Mamo
Virginie Lam
Hani Al-Salami
Armin Mooranian
Gerald F. Watts
Roger Clarnette
Giuseppe Luna
Ryu Takechi
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Translational Neurodegeneration / Issue 1/2024
Electronic ISSN: 2047-9158
DOI
https://doi.org/10.1186/s40035-024-00398-w

Other articles of this Issue 1/2024

Translational Neurodegeneration 1/2024 Go to the issue