Skip to main content
Top
Published in: Acta Neuropathologica 4/2005

01-04-2005 | Regular Paper

Humanin detected in skeletal muscles of MELAS patients: a possible new therapeutic agent

Authors: Shingo Kariya, Makito Hirano, Yoshiko Furiya, Kazuma Sugie, Satoshi Ueno

Published in: Acta Neuropathologica | Issue 4/2005

Login to get access

Abstract

Humanin (HN) was originally identified as an endogenous peptide that protects neuronal cells from apoptosis induced by various types of Alzheimer’s disease-related insults. We have previously indicated that HN increases cellular ATP levels and speculated that this peptide may rescue energy-deficient cells in mitochondrial disorders. Here, we report, for the first time, increased HN expression in skeletal muscles from patients with mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS). HN was strongly positive in all ragged-red fibers (RRFs) and some non-RRFs, and most of them were type 1 fibers generally requiring higher energy than type 2 fibers. HN in these fibers was localized in mitochondria. HN expression was also increased in small arteries that strongly reacted for succinate dehydrogenase. Our experiments on muscular TE671 cells indicated the possibility that synthesized HN increases cellular ATP levels by directly acting on mitochondria. From these in vivo and in vitro findings, we propose that HN expression might be induced in response to the energy crisis within affected fibers and vessels in MELAS muscles and further be a possible therapeutic candidate for MELAS.
Literature
1.
go back to reference Brown MD, Wallace DC (1994) Molecular basis of mitochondrial DNA disease. J Bioenerg Biomembr 26:273–289CrossRef Brown MD, Wallace DC (1994) Molecular basis of mitochondrial DNA disease. J Bioenerg Biomembr 26:273–289CrossRef
2.
go back to reference Ciafaloni E, Ricci E, Shanske S, Moraes CT, Silvestri G, Hirano M, Simonetti S, Angelini C, Donati MA, Garcia C (1992) MELAS: clinical features, biochemistry, and molecular genetics. Ann Neurol 31:391–398 Ciafaloni E, Ricci E, Shanske S, Moraes CT, Silvestri G, Hirano M, Simonetti S, Angelini C, Donati MA, Garcia C (1992) MELAS: clinical features, biochemistry, and molecular genetics. Ann Neurol 31:391–398
3.
go back to reference Gilchrist JM, Sikirica M, Stopa E, Shanske S (1996) Adult-onset MELAS. Evidence for involvement of neurons as well as cerebral vasculature in strokelike episodes. Stroke 27:1420–1423 Gilchrist JM, Sikirica M, Stopa E, Shanske S (1996) Adult-onset MELAS. Evidence for involvement of neurons as well as cerebral vasculature in strokelike episodes. Stroke 27:1420–1423
4.
go back to reference Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC (2003) Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423:456–461CrossRef Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC (2003) Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423:456–461CrossRef
5.
go back to reference Hasegawa H, Matsuoka T, Goto Y, Nonaka I (1991) Strongly succinate dehydrogenase-reactive blood vessels in muscles from patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Ann Neurol 29:601–605 Hasegawa H, Matsuoka T, Goto Y, Nonaka I (1991) Strongly succinate dehydrogenase-reactive blood vessels in muscles from patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. Ann Neurol 29:601–605
6.
go back to reference Hashimoto Y, Ito Y, Niikura T, Shao Z, Hata M, Oyama F, Nishimoto I (2001) Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein. Biochem Biophys Res Commun 283:460–468 Hashimoto Y, Ito Y, Niikura T, Shao Z, Hata M, Oyama F, Nishimoto I (2001) Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein. Biochem Biophys Res Commun 283:460–468
7.
go back to reference Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, Nishimoto I (2001) A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci USA 98:6336–6341CrossRef Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, Nishimoto I (2001) A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc Natl Acad Sci USA 98:6336–6341CrossRef
8.
go back to reference Hess JF, Parisi MA, Bennett JL, Clayton DA (1991) Impairment of mitochondrial transcription termination by a point mutation associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 351:236–239CrossRef Hess JF, Parisi MA, Bennett JL, Clayton DA (1991) Impairment of mitochondrial transcription termination by a point mutation associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 351:236–239CrossRef
9.
go back to reference Ichiki T, Tanaka M, Nishikimi M, Suzuki H, Ozawa T, Kobayashi M, Wada Y (1988) Deficiency of subunits of Complex I and mitochondrial encephalomyopathy. Ann Neurol 23:287–294 Ichiki T, Tanaka M, Nishikimi M, Suzuki H, Ozawa T, Kobayashi M, Wada Y (1988) Deficiency of subunits of Complex I and mitochondrial encephalomyopathy. Ann Neurol 23:287–294
10.
go back to reference Ikezoe K, Nakagawa M, Yan C, Kira J, Goto Y, Nonaka I (2002) Apoptosis is suspended in muscle of mitochondrial encephalomyopathies. Acta Neuropathol 103:531–540CrossRefPubMed Ikezoe K, Nakagawa M, Yan C, Kira J, Goto Y, Nonaka I (2002) Apoptosis is suspended in muscle of mitochondrial encephalomyopathies. Acta Neuropathol 103:531–540CrossRefPubMed
11.
go back to reference Jong YS, Davis EJ (1983) Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states. Arch Biochem Biophys 222:179–191 Jong YS, Davis EJ (1983) Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states. Arch Biochem Biophys 222:179–191
12.
go back to reference Kariya S, Takahashi N, Ooba N, Kawahara M, Nakayama H, Ueno S (2002) Humanin inhibits cell death of serum-deprived PC12h cells. Neuroreport 13:903–907CrossRef Kariya S, Takahashi N, Ooba N, Kawahara M, Nakayama H, Ueno S (2002) Humanin inhibits cell death of serum-deprived PC12h cells. Neuroreport 13:903–907CrossRef
13.
go back to reference Kariya S, Takahashi N, Hirano M, Ueno S (2003) Humanin improves impaired metabolic activity and prolongs survival of serum-deprived human lymphocytes. Mol Cell Biochem 254:83–89CrossRef Kariya S, Takahashi N, Hirano M, Ueno S (2003) Humanin improves impaired metabolic activity and prolongs survival of serum-deprived human lymphocytes. Mol Cell Biochem 254:83–89CrossRef
14.
go back to reference King MP, Koga M, Davidson M, Schon EA (1992) Defects in mitochondrial protein synthesis and respiratory chain activity segregate with the tRNA(Leu(UUR)) mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Mol Cell Biol 12:480–490PubMed King MP, Koga M, Davidson M, Schon EA (1992) Defects in mitochondrial protein synthesis and respiratory chain activity segregate with the tRNA(Leu(UUR)) mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Mol Cell Biol 12:480–490PubMed
15.
go back to reference Kirchhoff SR, Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 105:2899–2904 Kirchhoff SR, Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 105:2899–2904
16.
go back to reference Majamaa K, Moilanen JS, Uimonen S, Remes AM, Salmela PI, Karppa M, Majamaa-Voltti KA, Rusanen H, Sorri M, Peuhkurinen K, Hassinen IE (1998) Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: prevalence of the mutation in an adult population. Am J Hum Genet 63:447–454 Majamaa K, Moilanen JS, Uimonen S, Remes AM, Salmela PI, Karppa M, Majamaa-Voltti KA, Rusanen H, Sorri M, Peuhkurinen K, Hassinen IE (1998) Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: prevalence of the mutation in an adult population. Am J Hum Genet 63:447–454
17.
go back to reference Mallouk N, Jacquemond V, Allard B (2000) Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibers detected with Ca2+-activated K+ channels. Proc Natl Acad Sci USA 97:4950–4955 Mallouk N, Jacquemond V, Allard B (2000) Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibers detected with Ca2+-activated K+ channels. Proc Natl Acad Sci USA 97:4950–4955
18.
go back to reference Mirabella M, Di Giovanni S, Silvestri G, Tonali P, Servidei S (2000) Apoptosis in mitochondrial encephalomyopathies with mitochondrial DNA mutations: a potential pathogenic mechanism. Brain 123:93–104 Mirabella M, Di Giovanni S, Silvestri G, Tonali P, Servidei S (2000) Apoptosis in mitochondrial encephalomyopathies with mitochondrial DNA mutations: a potential pathogenic mechanism. Brain 123:93–104
19.
go back to reference Moraes CT, Ricci E, Bonilla E, DiMauro S, Schon EA (1992) The mitochondrial tRNA(Leu(UUR)) mutation in mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS): genetic, biochemical, and morphological correlations in skeletal muscle. Am J Hum Genet 50:934–949 Moraes CT, Ricci E, Bonilla E, DiMauro S, Schon EA (1992) The mitochondrial tRNA(Leu(UUR)) mutation in mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS): genetic, biochemical, and morphological correlations in skeletal muscle. Am J Hum Genet 50:934–949
20.
go back to reference Niikura T, Hashimoto Y, Tajima H, Nishimoto I (2002) Death and survival of neuronal cells exposed to Alzheimer’s insults. J Neurosci Res 70:380–391 Niikura T, Hashimoto Y, Tajima H, Nishimoto I (2002) Death and survival of neuronal cells exposed to Alzheimer’s insults. J Neurosci Res 70:380–391
21.
go back to reference Ohama E, Ohara S, Ikuta F, Tanaka K, Nishizawa M, Miyatake T (1987) Mitochondrial angiopathy in cerebral blood vessels of mitochondrial encephalomyopathy. Acta Neuropathol (Berl) 74:226–233 Ohama E, Ohara S, Ikuta F, Tanaka K, Nishizawa M, Miyatake T (1987) Mitochondrial angiopathy in cerebral blood vessels of mitochondrial encephalomyopathy. Acta Neuropathol (Berl) 74:226–233
22.
go back to reference Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC, Rowland LP (1984) Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann Neurol 16:481–488 Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC, Rowland LP (1984) Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann Neurol 16:481–488
23.
go back to reference Prayson RA, Yu AC (2001) Bcl-2, Bcl-x, and Bax expression by immunohistochemistry in inclusion body myositis. Arch Pathol Lab Med 125:1326–1330 Prayson RA, Yu AC (2001) Bcl-2, Bcl-x, and Bax expression by immunohistochemistry in inclusion body myositis. Arch Pathol Lab Med 125:1326–1330
24.
go back to reference Sakuta R, Nonaka I (1989) Vascular involvement in mitochondrial myopathy. Ann Neurol 25:594–601 Sakuta R, Nonaka I (1989) Vascular involvement in mitochondrial myopathy. Ann Neurol 25:594–601
25.
go back to reference Sussman I, Erecinska M, Wilson DF (1980) Regulation of cellular energy metabolism: the Crabtree effect. Biochim Biophys Acta 591:209–223 Sussman I, Erecinska M, Wilson DF (1980) Regulation of cellular energy metabolism: the Crabtree effect. Biochim Biophys Acta 591:209–223
26.
go back to reference Tajima H, Niikura T, Hashimoto Y, Ito Y, Kita Y, Terashita K, Yamazaki K, Koto A, Aiso S, Nishimoto I (2002) Evidence for in vivo production of Humanin peptide, a neuroprotective factor against Alzheimer’s disease-related insults. Neurosci Lett 324:227–231 Tajima H, Niikura T, Hashimoto Y, Ito Y, Kita Y, Terashita K, Yamazaki K, Koto A, Aiso S, Nishimoto I (2002) Evidence for in vivo production of Humanin peptide, a neuroprotective factor against Alzheimer’s disease-related insults. Neurosci Lett 324:227–231
27.
go back to reference Tokunaga M, Mita S, Sakuta R, Nonaka I, Araki S (1993) Increased mitochondrial DNA in blood vessels and ragged-red fibers in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Ann Neurol 33:275–280 Tokunaga M, Mita S, Sakuta R, Nonaka I, Araki S (1993) Increased mitochondrial DNA in blood vessels and ragged-red fibers in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Ann Neurol 33:275–280
28.
go back to reference Umaki Y, Mitsui T, Endo I, Akaike M, Matsumoto T (2002) Apoptosis-related changes in skeletal muscles of patients with mitochondrial diseases. Acta Neuropathol 103:163–170 Umaki Y, Mitsui T, Endo I, Akaike M, Matsumoto T (2002) Apoptosis-related changes in skeletal muscles of patients with mitochondrial diseases. Acta Neuropathol 103:163–170
29.
go back to reference Wallace DC (1999) Mitochondrial diseases in man and mouse. Scinece 283:1482–1488 Wallace DC (1999) Mitochondrial diseases in man and mouse. Scinece 283:1482–1488
30.
go back to reference Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139:1281–1292 Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139:1281–1292
Metadata
Title
Humanin detected in skeletal muscles of MELAS patients: a possible new therapeutic agent
Authors
Shingo Kariya
Makito Hirano
Yoshiko Furiya
Kazuma Sugie
Satoshi Ueno
Publication date
01-04-2005
Publisher
Springer-Verlag
Published in
Acta Neuropathologica / Issue 4/2005
Print ISSN: 0001-6322
Electronic ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-004-0965-5

Other articles of this Issue 4/2005

Acta Neuropathologica 4/2005 Go to the issue