Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Human Papillomavirus | Research article

LncRNA WT1-AS up-regulates p53 to inhibit the proliferation of cervical squamous carcinoma cells

Authors: Yunxia Zhang, Renhua Na, Xinling Wang

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

It has been reported that the development of cervical squamous cell carcinoma (CSCC) requires the involvement of a large number of lncRNAs. In a recent study lncRNA, WT1-AS was been characterized as a tumor-suppressive lncRNA in gastric cancer. In our study we aim to explore the involvement of WT1-AS in CSCC.

Methods

Seventy-six CSCC patients (20 to 63 years, 40.1 ± 6.1 year) from the 233 CSCC patients who were admitted by the Affiliated Tumour Hospital of Xinjiang Medical University between august 2010 and January 2014. RT-qPCR, cell proliferation rate measurement, cell transfection, and western blot were carried out to analyze the samples.

Results

We found that HPV infection failed to affect WT1-AS expression in CSCC tissues, while WT1-AS was down-regulated in CSCC tissues compared with non-cancer tissues. P53 was also down-regulated in CSCC tissues and positively correlated with WT1-AS. Analysis of the survival of CSCC patients revealed that low levels of WT1-AS were accompanied by poor survival. Significantly up-regulated p53 was observed after WT1-AS over-expression in CSCC cells, while p53 over-expression failed to affect WT1-AS. P53 and WT1-AS over-expression resulted in the inhibited proliferation of CSCC cells.

Conclusion

Therefore, WT1-AS is down-regulated in CSCC and it may inhibit CSCC cell proliferation at least partially by up-regulating p53.
Literature
1.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.PubMed Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.PubMed
2.
go back to reference Hildesheim A, Gonzalez P, Kreimer AR, Wacholder S, Schussler J, Rodriguez AC, et al. Impact of human papillomavirus (HPV) 16 and 18 vaccination on prevalent infections and rates of cervical lesions after excisional treatment. Am J Obstet Gynecol. 2016;215(2):212 e1–e15.CrossRef Hildesheim A, Gonzalez P, Kreimer AR, Wacholder S, Schussler J, Rodriguez AC, et al. Impact of human papillomavirus (HPV) 16 and 18 vaccination on prevalent infections and rates of cervical lesions after excisional treatment. Am J Obstet Gynecol. 2016;215(2):212 e1–e15.CrossRef
3.
4.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRefPubMed Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRefPubMed
5.
6.
go back to reference Berman NR, Koeniger-Donohue R. Cervical cancer. In: Advanced Health Assessment of Women: Clinical Skills and Procedures. New York: Springer Publishing Co Inc; 2018. p. 431. Berman NR, Koeniger-Donohue R. Cervical cancer. In: Advanced Health Assessment of Women: Clinical Skills and Procedures. New York: Springer Publishing Co Inc; 2018. p. 431.
7.
go back to reference Cancer Genome Atlas Research N, Albert Einstein College of M, Analytical Biological S, Barretos Cancer H, Baylor College of M, Beckman Research Institute of City of H, et al. Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543(7645):378–84.CrossRef Cancer Genome Atlas Research N, Albert Einstein College of M, Analytical Biological S, Barretos Cancer H, Baylor College of M, Beckman Research Institute of City of H, et al. Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543(7645):378–84.CrossRef
8.
go back to reference Umayahara K, Numa F, Suehiro Y, Sakata A, Nawata S, Ogata H, et al. Comparative genomic hybridization detects genetic alterations during early stages of cervical cancer progression. Genes Chromosomes Cancer. 2002;33(1):98–102.CrossRefPubMed Umayahara K, Numa F, Suehiro Y, Sakata A, Nawata S, Ogata H, et al. Comparative genomic hybridization detects genetic alterations during early stages of cervical cancer progression. Genes Chromosomes Cancer. 2002;33(1):98–102.CrossRefPubMed
9.
go back to reference Narayan G, Bourdon V, Chaganti S, Arias-Pulido H, Nandula SV, Rao PH, et al. Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes. Genes Chromosomes Cancer. 2007;46(4):373–84.CrossRefPubMed Narayan G, Bourdon V, Chaganti S, Arias-Pulido H, Nandula SV, Rao PH, et al. Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes. Genes Chromosomes Cancer. 2007;46(4):373–84.CrossRefPubMed
10.
go back to reference Yang G, Lu X, Yuan L. LncRNA: a link between RNA and cancer. Biochim Biophys Acta. 2014;1839(11):1097–109.CrossRefPubMed Yang G, Lu X, Yuan L. LncRNA: a link between RNA and cancer. Biochim Biophys Acta. 2014;1839(11):1097–109.CrossRefPubMed
12.
go back to reference Du T, Zhang B, Zhang S, Jiang X, Zheng P, Li J, et al. Decreased expression of long non-coding RNA WT1-AS promotes cell proliferation and invasion in gastric cancer. Biochim Biophys Acta. 2016;1862(1):12–9.CrossRefPubMed Du T, Zhang B, Zhang S, Jiang X, Zheng P, Li J, et al. Decreased expression of long non-coding RNA WT1-AS promotes cell proliferation and invasion in gastric cancer. Biochim Biophys Acta. 2016;1862(1):12–9.CrossRefPubMed
14.
go back to reference Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8–17.CrossRefPubMed Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8–17.CrossRefPubMed
15.
go back to reference Hyun KA, Kim J, Gwak H, Jung HI. Isolation and enrichment of circulating biomarkers for cancer screening, detection, and diagnostics. Analyst. 2016;141(2):382–92.CrossRefPubMed Hyun KA, Kim J, Gwak H, Jung HI. Isolation and enrichment of circulating biomarkers for cancer screening, detection, and diagnostics. Analyst. 2016;141(2):382–92.CrossRefPubMed
16.
go back to reference de Martel C, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer. 2017;141(4):664–70.CrossRefPubMedPubMedCentral de Martel C, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer. 2017;141(4):664–70.CrossRefPubMedPubMedCentral
17.
go back to reference Li Q, Li X, Wang C. Uc.206 regulates cell proliferation and apoptosis by targeting P53 in cervical cancer cells. Neoplasma. 2016;63(3):411–8.CrossRefPubMed Li Q, Li X, Wang C. Uc.206 regulates cell proliferation and apoptosis by targeting P53 in cervical cancer cells. Neoplasma. 2016;63(3):411–8.CrossRefPubMed
18.
go back to reference Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y, et al. A G3BP1-interacting lncRNA promotes Ferroptosis and apoptosis in Cancer via nuclear sequestration of p53. Cancer Res. 2018;78(13):3484–96.PubMedPubMedCentral Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y, et al. A G3BP1-interacting lncRNA promotes Ferroptosis and apoptosis in Cancer via nuclear sequestration of p53. Cancer Res. 2018;78(13):3484–96.PubMedPubMedCentral
Metadata
Title
LncRNA WT1-AS up-regulates p53 to inhibit the proliferation of cervical squamous carcinoma cells
Authors
Yunxia Zhang
Renhua Na
Xinling Wang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-6264-2

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine