Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Human Papillomavirus | Research article

Role of polycyclic aromatic hydrocarbons as a co-factor in human papillomavirus-mediated carcinogenesis

Authors: Chuqing Zhang, Yunjing Luo, Rugang Zhong, Priscilla T. Y. Law, Siaw Shi Boon, Zigui Chen, Chi-Hang Wong, Paul K. S. Chan

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Human papillomavirus (HPV) is an etiological agent of cervical cancer. Yet co-factors are believed to be involved in HPV-mediated carcinogenesis. Polycyclic aromatic hydrocarbons (PAHs) are considered as one of these co-factors. Epidemiologic studies have associated high PAH exposure with increased risk for cancer development. To date, many studies focus on benzo[a]pyrene, however, the role of other PAHs should not be neglected. This study aimed to compare the potential of different PAHs as a co-factor in HPV-mediated carcinogenesis, and to investigate the possible mechanisms involved.

Methods

The effect of 17 PAHs on high-risk HPV (HPV16) were examined in this study. HPV16 E7 oncogene was expressed in primary cells extracted from baby rat kidney and treated with PAHs. The co-transforming ability of PAHs were measured by colony formation index according to the number and size of transformed colonies. Effects of PAHs on proliferation of HPV-null (C33A) and –infected (CaSki) were examined using CCK-8 assay. Wound healing assay and matrigel invasion chambers were used to investigate effects of PAHs on cell motility and invasivion of HPV-null (MCF7, C33A) and –infected (SiHa) cells.

Results

Benzo[a]pyrene (BaP), dibenz[a,h]anthracene (DBA) and indeno[1,2,3-cd]pyrene (IDP) showed the greatest co-transforming potential in the baby rat kidney cell system. Short-term exposure to BaP, DBA, IDP and pyrene (PR) did not affect proliferation of C33A or CaSki cells, however, long-term exposure of these four PAHs led to dramatic increase in growth rate of CaSki cells by 120–140%. Besides, exposure of PAHs has an effect on cell motility and invasiveness of C33A and SiHa cells, but not for MCF7 cells. Exposure of BaP and DBA enhanced migration (1.26 to 1.40-fold) and invasion (1.68 to 1.94-fold) capacity of C33A cells. Intriguingly, exposure of all four types of PAHs boosted the migration (1.12 to 1.28-fold) and invasion (1.26 to 1.40-fold) capacity of SiHa cells.

Conclusions

Our results indicate that exposure to PAHs can be a key co-factor in HPV-related cancer development. They could act on all three stages, namely initiation, promotion and progression. Further study is needed to unveil the mechanisms by which PAHs interact with HPV to cause malignancy.
Literature
1.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRef Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRef
2.
go back to reference Walboomers JMM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9.CrossRef Walboomers JMM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9.CrossRef
3.
go back to reference Burd EM. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003;16(1):1–17.CrossRef Burd EM. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003;16(1):1–17.CrossRef
4.
go back to reference Trimble CL, Piantadosi S, Gravitt P, Ronnett B, Pizer E, Elko A, et al. Spontaneous regression of high-grade cervical dysplasia: effects of human papillomavirus type and HLA phenotype. Clin Cancer Res. 2005;11(13):4717–23.CrossRef Trimble CL, Piantadosi S, Gravitt P, Ronnett B, Pizer E, Elko A, et al. Spontaneous regression of high-grade cervical dysplasia: effects of human papillomavirus type and HLA phenotype. Clin Cancer Res. 2005;11(13):4717–23.CrossRef
5.
go back to reference IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum. 2010;92:1–853.PubMedCentral IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum. 2010;92:1–853.PubMedCentral
6.
go back to reference Hammond EC, Selikoff IJ, Lawther PL, Seidman H. Inhalation of benzpyrene and cancer in man. Ann N Y Acad Sci 1976;271(1):116–124.CrossRef Hammond EC, Selikoff IJ, Lawther PL, Seidman H. Inhalation of benzpyrene and cancer in man. Ann N Y Acad Sci 1976;271(1):116–124.CrossRef
7.
go back to reference Boffetta P, Jourenkova N, Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control. 1997;8(3):444–72.CrossRef Boffetta P, Jourenkova N, Gustavsson P. Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control. 1997;8(3):444–72.CrossRef
8.
go back to reference Bonassi S, Mfrlo F, Pearce N, Puntoni R. Bladder cancer and occupational exposure to polycyclic aromatic hydrocarbons. Int J Cancer. 1989;44(4):648–51.CrossRef Bonassi S, Mfrlo F, Pearce N, Puntoni R. Bladder cancer and occupational exposure to polycyclic aromatic hydrocarbons. Int J Cancer. 1989;44(4):648–51.CrossRef
9.
go back to reference Redmond CK, Strobino BR, Cypess RH. Cancer experience among coke by-product workers. Ann N Y Acad Sci 1976; 271(1):102–115.CrossRef Redmond CK, Strobino BR, Cypess RH. Cancer experience among coke by-product workers. Ann N Y Acad Sci 1976; 271(1):102–115.CrossRef
10.
go back to reference Bizub D, Wood AW, Skalka AM. Mutagenesis of the ha-ras oncogene in mouse skin tumors induced by polycyclic aromatic hydrocarbons. Proc Natl Acad Sci. 1986;83(16):6048–52.CrossRef Bizub D, Wood AW, Skalka AM. Mutagenesis of the ha-ras oncogene in mouse skin tumors induced by polycyclic aromatic hydrocarbons. Proc Natl Acad Sci. 1986;83(16):6048–52.CrossRef
11.
go back to reference Deutsch-Wenzel RP, Brune H, Grimmer G, Dettbarn G, Misfeld J. Experimental studies in rat lungs on the carcinogenicity and dose-response relationships of eight frequently occurring environmental polycyclic aromatic hydrocarbons 2 3. J Natl Cancer Inst. 1983;71(3):539–44.PubMed Deutsch-Wenzel RP, Brune H, Grimmer G, Dettbarn G, Misfeld J. Experimental studies in rat lungs on the carcinogenicity and dose-response relationships of eight frequently occurring environmental polycyclic aromatic hydrocarbons 2 3. J Natl Cancer Inst. 1983;71(3):539–44.PubMed
12.
go back to reference Vineis P, Talaska G, Malaveille C, Bartsch H, Martone T, Sithisarankul P, et al. DNA adducts in urothelial cells: relationship with biomarkers of exposure to arylamines and polycyclic aromatic hydrocarbons from tobacco smoke. Int J Cancer. 1996;65(3):314–6.CrossRef Vineis P, Talaska G, Malaveille C, Bartsch H, Martone T, Sithisarankul P, et al. DNA adducts in urothelial cells: relationship with biomarkers of exposure to arylamines and polycyclic aromatic hydrocarbons from tobacco smoke. Int J Cancer. 1996;65(3):314–6.CrossRef
13.
go back to reference Conney AH. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes memorial lecture. Cancer Res. 1982;42(12):4875–917.PubMed Conney AH. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes memorial lecture. Cancer Res. 1982;42(12):4875–917.PubMed
14.
go back to reference Weinstein IB, Jeffrey AM, Jennette KW, Blobstein SH, Harvey RG, Harris C, et al. Benzo(a)pyrene diol epoxides as intermediates in nucleic acid binding in vitro and in vivo. Science. 1976;193(4253):592–5.CrossRef Weinstein IB, Jeffrey AM, Jennette KW, Blobstein SH, Harvey RG, Harris C, et al. Benzo(a)pyrene diol epoxides as intermediates in nucleic acid binding in vitro and in vivo. Science. 1976;193(4253):592–5.CrossRef
15.
go back to reference Feldman G, Remsen J, Shinohara K, Cerutti P. Excisability and persistence of benzo (a) pyrene DNA adducts in epithelioid human lung cells. Nature. 1978;274(5673):796–8.CrossRef Feldman G, Remsen J, Shinohara K, Cerutti P. Excisability and persistence of benzo (a) pyrene DNA adducts in epithelioid human lung cells. Nature. 1978;274(5673):796–8.CrossRef
16.
go back to reference DiGiovanni J, Romson J, Linville D, Juchau M, Slaga T. Covalent binding of polycyclic aromatic hydrocarbons to adenine correlates with tumorigenesis in mouse skin. Cancer Lett. 1979;7(1):39–43.CrossRef DiGiovanni J, Romson J, Linville D, Juchau M, Slaga T. Covalent binding of polycyclic aromatic hydrocarbons to adenine correlates with tumorigenesis in mouse skin. Cancer Lett. 1979;7(1):39–43.CrossRef
17.
go back to reference Hecht SS. Tobacco smoke carcinogens and lung cancer. JNCI. 1999;91(14):1194–210.CrossRef Hecht SS. Tobacco smoke carcinogens and lung cancer. JNCI. 1999;91(14):1194–210.CrossRef
18.
go back to reference Melikian AA, Sun P, Prokopczyk B, El-Bayoumy K, Hoffmann D, Wang X, et al. Identification of benzo [a] pyrene metabolites in cervical mucus and DNA adducts in cervical tissues in humans by gas chromatography-mass spectrometry. Cancer Lett. 1999;146(2):127–34.CrossRef Melikian AA, Sun P, Prokopczyk B, El-Bayoumy K, Hoffmann D, Wang X, et al. Identification of benzo [a] pyrene metabolites in cervical mucus and DNA adducts in cervical tissues in humans by gas chromatography-mass spectrometry. Cancer Lett. 1999;146(2):127–34.CrossRef
19.
go back to reference Alam S, Conway MJ, Chen H, Meyers C. The cigarette smoke carcinogen benzo[a]pyrene enhances human papillomavirus synthesis. J Virol. 2008;82(2):1053–8.CrossRef Alam S, Conway MJ, Chen H, Meyers C. The cigarette smoke carcinogen benzo[a]pyrene enhances human papillomavirus synthesis. J Virol. 2008;82(2):1053–8.CrossRef
20.
go back to reference Trushin N, Alam S, El-Bayoumy K, Krzeminski J, Amin S, Gullett J, et al. Comparative metabolism of benzo[a]pyrene by human keratinocytes infected with high-risk human papillomavirus types 16 and 18 as episomal or integrated genomes. J Carcinog. 2012;11(1):1–1.CrossRef Trushin N, Alam S, El-Bayoumy K, Krzeminski J, Amin S, Gullett J, et al. Comparative metabolism of benzo[a]pyrene by human keratinocytes infected with high-risk human papillomavirus types 16 and 18 as episomal or integrated genomes. J Carcinog. 2012;11(1):1–1.CrossRef
21.
go back to reference Matlashewski G, Schneider J, Banks L, Jones N, Murray A, Crawford L. Human papillomavirus type 16 DNA cooperates with activated ras in transforming primary cells. EMBO J. 1987;6(6):1741–6.CrossRef Matlashewski G, Schneider J, Banks L, Jones N, Murray A, Crawford L. Human papillomavirus type 16 DNA cooperates with activated ras in transforming primary cells. EMBO J. 1987;6(6):1741–6.CrossRef
22.
go back to reference Wester P, Muller J, Slob W, Mohn G, Dortant P, Kroese E. Carcinogenic activity of benzo [a] pyrene in a 2 year oral study in Wistar rats. Food Chem Toxicol. 2012;50(3):927–35.CrossRef Wester P, Muller J, Slob W, Mohn G, Dortant P, Kroese E. Carcinogenic activity of benzo [a] pyrene in a 2 year oral study in Wistar rats. Food Chem Toxicol. 2012;50(3):927–35.CrossRef
23.
go back to reference Winkelstein W Jr. Smoking and cancer of the uterine cervix: hypothesis. Am J Epidemiol. 1977;106(4):257–9.CrossRef Winkelstein W Jr. Smoking and cancer of the uterine cervix: hypothesis. Am J Epidemiol. 1977;106(4):257–9.CrossRef
24.
go back to reference Nischan P, Ebeling K, Schindler C. Smoking and invasive cervical cancer risk: results from a case-control study. Am J Epidemiol. 1988;128(1):74–7.CrossRef Nischan P, Ebeling K, Schindler C. Smoking and invasive cervical cancer risk: results from a case-control study. Am J Epidemiol. 1988;128(1):74–7.CrossRef
25.
go back to reference Scheurer ME, Danysh HE, Follen M, Lupo PJ. Association of traffic-related hazardous air pollutants and cervical dysplasia in an urban multiethnic population: a cross-sectional study. Environ Health 2014;13:52-069X-13-52. Scheurer ME, Danysh HE, Follen M, Lupo PJ. Association of traffic-related hazardous air pollutants and cervical dysplasia in an urban multiethnic population: a cross-sectional study. Environ Health 2014;13:52-069X-13-52.
26.
go back to reference A novel cell model to detect the carcinogenic potential of polycyclic aromatic hydrocarbons. Information technology: proceedings of the 2014 international symposium on information technology (ISIT 2014), Dalian, China, 14-16 October 2014: CRC Press; 2015. A novel cell model to detect the carcinogenic potential of polycyclic aromatic hydrocarbons. Information technology: proceedings of the 2014 international symposium on information technology (ISIT 2014), Dalian, China, 14-16 October 2014: CRC Press; 2015.
27.
go back to reference Pytynia KB, Dahlstrom KR, Sturgis EM. Epidemiology of HPV-associated oropharyngeal cancer. Oral Oncol. 2014;50(5):380–6.CrossRef Pytynia KB, Dahlstrom KR, Sturgis EM. Epidemiology of HPV-associated oropharyngeal cancer. Oral Oncol. 2014;50(5):380–6.CrossRef
28.
go back to reference Burdick AD, Davis JW 2nd, Liu KJ, Hudson LG, Shi H, Monske ML, et al. Benzo(a)pyrene quinones increase cell proliferation, generate reactive oxygen species, and transactivate the epidermal growth factor receptor in breast epithelial cells. Cancer Res. 2003;63(22):7825–33.PubMed Burdick AD, Davis JW 2nd, Liu KJ, Hudson LG, Shi H, Monske ML, et al. Benzo(a)pyrene quinones increase cell proliferation, generate reactive oxygen species, and transactivate the epidermal growth factor receptor in breast epithelial cells. Cancer Res. 2003;63(22):7825–33.PubMed
29.
go back to reference Soonthornthum T, Arias-Pulido H, Joste N, Lomo L, Muller C, Rutledge T, et al. Epidermal growth factor receptor as a biomarker for cervical cancer. Ann Oncol. 2011;22(10):2166–78.CrossRef Soonthornthum T, Arias-Pulido H, Joste N, Lomo L, Muller C, Rutledge T, et al. Epidermal growth factor receptor as a biomarker for cervical cancer. Ann Oncol. 2011;22(10):2166–78.CrossRef
30.
go back to reference Kjær SK, van den Brule AJC, Bock JE, Poll PA, Engholm G, Sherman ME, et al. Human papillomavirus—the most significant risk determinant of cervical intraepithelial neoplasia. Int J Cancer. 1996;65:601–6.CrossRef Kjær SK, van den Brule AJC, Bock JE, Poll PA, Engholm G, Sherman ME, et al. Human papillomavirus—the most significant risk determinant of cervical intraepithelial neoplasia. Int J Cancer. 1996;65:601–6.CrossRef
31.
go back to reference Krüger-Kjaer S, van den Brule AJ, Svare EI, Engholm G, Sherman ME, Poll PA, et al. Different risk factor patterns for high-grade and low-grade intraepithelial lesions on the cervix among HPV-positive and HPV-negative young women. Int J Cancer. 1998;76:613–9.CrossRef Krüger-Kjaer S, van den Brule AJ, Svare EI, Engholm G, Sherman ME, Poll PA, et al. Different risk factor patterns for high-grade and low-grade intraepithelial lesions on the cervix among HPV-positive and HPV-negative young women. Int J Cancer. 1998;76:613–9.CrossRef
33.
go back to reference So KA, Kim SA, Lee YK, Lee IH, Lee KH, Rhee JE, et al. Risk factors for cytological progression in HPV 16 infected women with ASC-US or LSIL: the Korean HPV cohort. Obstet Gynecol Sci. 2018;61:662.CrossRef So KA, Kim SA, Lee YK, Lee IH, Lee KH, Rhee JE, et al. Risk factors for cytological progression in HPV 16 infected women with ASC-US or LSIL: the Korean HPV cohort. Obstet Gynecol Sci. 2018;61:662.CrossRef
34.
go back to reference Moreno V, Bosch FX, Muñoz N, Meijer CJ, Shah KV, Walboomers JM, et al. Effect of oral contraceptives on risk of cervical cancer in women with human papillomavirus infection: the IARC multicentric case-control study. Lancet. 2002;359:1085–92.CrossRef Moreno V, Bosch FX, Muñoz N, Meijer CJ, Shah KV, Walboomers JM, et al. Effect of oral contraceptives on risk of cervical cancer in women with human papillomavirus infection: the IARC multicentric case-control study. Lancet. 2002;359:1085–92.CrossRef
35.
go back to reference Ylitalo N, Sørensen P, Josefsson A, Frisch M, Sparén P, Pontén J, et al. Smoking and oral contraceptives as risk factors for cervical carcinoma in situ. Int J Cancer. 1999;81:357–65.CrossRef Ylitalo N, Sørensen P, Josefsson A, Frisch M, Sparén P, Pontén J, et al. Smoking and oral contraceptives as risk factors for cervical carcinoma in situ. Int J Cancer. 1999;81:357–65.CrossRef
36.
go back to reference Chagas BS, Gurgel APAD, Paiva Júnior SSL, Lima RCP, Cordeiro MN, Moura RR, et al. Synergic effect of oral contraceptives, GSTP1 polymorphisms, and high-risk HPV infection in development of cervical lesions. Genet Mol Res. 2017;16(3). https://doi.org/4238/gmr16039742.16. Chagas BS, Gurgel APAD, Paiva Júnior SSL, Lima RCP, Cordeiro MN, Moura RR, et al. Synergic effect of oral contraceptives, GSTP1 polymorphisms, and high-risk HPV infection in development of cervical lesions. Genet Mol Res. 2017;16(3). https://​doi.​org/​4238/​gmr16039742.​16.
37.
go back to reference Hildesheim A, Herrero R, Castle PE, Wacholder S, Bratti MC, Sherman ME, et al. HPV co-factors related to the development of cervical cancer: results from a population-based study in Costa Rica. Br J Cancer. 2001;84:1219–26.CrossRef Hildesheim A, Herrero R, Castle PE, Wacholder S, Bratti MC, Sherman ME, et al. HPV co-factors related to the development of cervical cancer: results from a population-based study in Costa Rica. Br J Cancer. 2001;84:1219–26.CrossRef
38.
go back to reference International Collaboration of Epidemiological Studies of Cervical Cancer. Cervical carcinoma and reproductive factors: collaborative reanalysis of individual data on 16,563 women with cervical carcinoma and 33,542 women without cervical carcinoma from 25 epidemiological studies. Int J Cancer. 2006;119:1108–24.CrossRef International Collaboration of Epidemiological Studies of Cervical Cancer. Cervical carcinoma and reproductive factors: collaborative reanalysis of individual data on 16,563 women with cervical carcinoma and 33,542 women without cervical carcinoma from 25 epidemiological studies. Int J Cancer. 2006;119:1108–24.CrossRef
39.
go back to reference Berraho M, Amarti-Riffi A, El-Mzibri M, Bezad R, Benjaafar N, Benideer A, et al. HPV and cofactors for invasive cervical cancer in Morocco: a multicentre case-control study. BMC Cancer. 2017;17:435.CrossRef Berraho M, Amarti-Riffi A, El-Mzibri M, Bezad R, Benjaafar N, Benideer A, et al. HPV and cofactors for invasive cervical cancer in Morocco: a multicentre case-control study. BMC Cancer. 2017;17:435.CrossRef
40.
go back to reference Schabath MB, Thompson ZJ, Egan KM, Torres BN, Nguyen A, Papenfuss MR, et al. Alcohol consumption and prevalence of human papillomavirus (HPV) infection among US men in the HPV in men (HIM) study. Sex Transm Infect. 2015;91:61–7.CrossRef Schabath MB, Thompson ZJ, Egan KM, Torres BN, Nguyen A, Papenfuss MR, et al. Alcohol consumption and prevalence of human papillomavirus (HPV) infection among US men in the HPV in men (HIM) study. Sex Transm Infect. 2015;91:61–7.CrossRef
41.
go back to reference Piyathilake CJ, Macaluso M, Brill I, Heimburger DC, Partridge EE. Lower red blood cell folate enhances the HPV-16–associated risk of cervical intraepithelial neoplasia. Nutrition. 2007;23:203–10.CrossRef Piyathilake CJ, Macaluso M, Brill I, Heimburger DC, Partridge EE. Lower red blood cell folate enhances the HPV-16–associated risk of cervical intraepithelial neoplasia. Nutrition. 2007;23:203–10.CrossRef
42.
go back to reference Rajkumar T, Franceschi S, Vaccarella S, Gajalakshmi V, Sharmila A, Snijders PJF, et al. Role of paan chewing and dietary habits in cervical carcinoma in Chennai, India. Br J Cancer. 2003;88:1388–93.CrossRef Rajkumar T, Franceschi S, Vaccarella S, Gajalakshmi V, Sharmila A, Snijders PJF, et al. Role of paan chewing and dietary habits in cervical carcinoma in Chennai, India. Br J Cancer. 2003;88:1388–93.CrossRef
43.
go back to reference Camargo M, Del Río-Ospina L, Soto-De León SC, Sánchez R, Pineda-Peña AC, Sussmann O, et al. Association of HIV status with infection by multiple HPV types. Trop Med Int Heal. 2018;23:1259–68.CrossRef Camargo M, Del Río-Ospina L, Soto-De León SC, Sánchez R, Pineda-Peña AC, Sussmann O, et al. Association of HIV status with infection by multiple HPV types. Trop Med Int Heal. 2018;23:1259–68.CrossRef
44.
go back to reference Apple RJ, Erlich HA, Klitz W, Manos MM, Becker TM, Wheeler CM. HLA DR–DQ associations with cervical carcinoma show papillomavirus–type specificity. Nat Genet. 1994;6:157–62.CrossRef Apple RJ, Erlich HA, Klitz W, Manos MM, Becker TM, Wheeler CM. HLA DR–DQ associations with cervical carcinoma show papillomavirus–type specificity. Nat Genet. 1994;6:157–62.CrossRef
46.
go back to reference Kiseki H, Tsukahara Y, Tajima N, Tanaka A, Horimoto A, Hashimura N. Influence of co-infection complicated with human papillomavirus on cervical intraepithelial neoplasia development in patients with atypical squamous cells of undetermined significance. J Infect Chemother. 2017;23:814–9.CrossRef Kiseki H, Tsukahara Y, Tajima N, Tanaka A, Horimoto A, Hashimura N. Influence of co-infection complicated with human papillomavirus on cervical intraepithelial neoplasia development in patients with atypical squamous cells of undetermined significance. J Infect Chemother. 2017;23:814–9.CrossRef
47.
go back to reference Smith JS, Herrero R, Bosetti C, Muñoz N, Bosch FX, Eluf-Neto J, et al. Herpes simplex virus-2 as a human papillomavirus cofactor in the etiology of invasive cervical cancer. J Natl Cancer Inst. 2002;94:1604–13.CrossRef Smith JS, Herrero R, Bosetti C, Muñoz N, Bosch FX, Eluf-Neto J, et al. Herpes simplex virus-2 as a human papillomavirus cofactor in the etiology of invasive cervical cancer. J Natl Cancer Inst. 2002;94:1604–13.CrossRef
48.
go back to reference Koutsky LA, Holmes KK, Critchlow CW, Stevens CE, Paavonen J, Beckmann AM, et al. A cohort study of the risk of cervical intraepithelial neoplasia grade 2 or 3 in relation to papillomavirus infection. N Engl J Med. 1992;327:1272–8.CrossRef Koutsky LA, Holmes KK, Critchlow CW, Stevens CE, Paavonen J, Beckmann AM, et al. A cohort study of the risk of cervical intraepithelial neoplasia grade 2 or 3 in relation to papillomavirus infection. N Engl J Med. 1992;327:1272–8.CrossRef
49.
go back to reference Castle PE, Hillier SL, Rabe LK, Hildesheim A, Herrero R, Bratti MC, et al. An association of cervical inflammation with high-grade cervical neoplasia in women infected with oncogenic human papillomavirus (HPV). Cancer Epidemiol Biomark Prev. 2001;10:1021–7. Castle PE, Hillier SL, Rabe LK, Hildesheim A, Herrero R, Bratti MC, et al. An association of cervical inflammation with high-grade cervical neoplasia in women infected with oncogenic human papillomavirus (HPV). Cancer Epidemiol Biomark Prev. 2001;10:1021–7.
Metadata
Title
Role of polycyclic aromatic hydrocarbons as a co-factor in human papillomavirus-mediated carcinogenesis
Authors
Chuqing Zhang
Yunjing Luo
Rugang Zhong
Priscilla T. Y. Law
Siaw Shi Boon
Zigui Chen
Chi-Hang Wong
Paul K. S. Chan
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5347-4

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine