Skip to main content
Top
Published in: Virology Journal 1/2021

Open Access 01-12-2021 | Human Papillomavirus | Research

Genetic variability of human papillomavirus type 39 based on E6, E7 and L1 genes in Southwest China

Authors: Jiaoyu He, Tianjun Li, Youliang Wang, Zhilin Song, Qiufu Li, Yiran Liu, Yanru Cui, Siyu Ma, Junhang Deng, Xia Wei, Xianping Ding

Published in: Virology Journal | Issue 1/2021

Login to get access

Abstract

Background

Human papillomavirus type 39 associated with genital intraepithelial neoplasia and invasive cancers, has a high prevalence in Southwest China. HPV E6, E7 are two main papillomavirus oncoproteins, closely relate to the function of HPV immortalization, cell transformation, and carcinogenesis. L1 is the major capsid protein, can reflect the replication status of the virus in cells and the progression of cervical lesions. The purpose of this study is to reveal the prevalence of HPV 39 and the genetic polymorphisms of HPV39 based on E6, E7 and L1 gene in southwest China.

Methods

Cell samples were collected by cervical scraped for HPV detecting and typing, and HPV39 positive samples were selected out. Important E6, E7 and L1 genes of HPV39 were sequenced and analyzed for the study of HPV39 genetic polymorphisms. Phylogenetic trees were constructed by Maximum-likelihood and Kimura 2-parameters methods in Molecular Evolutionary Genetics Analysis version 6.0. The selection pressures of E6, E7 and L1 genes were estimated by Datamonkey web server. The secondary and three-dimensional structure of HPV39 E6, E7 proteins were created by sopma server and SWISS-MODEL software.

Results

344 HPV39 positive samples were selected from 5718 HPV positive cell samples. Among HPV39 E6-E7 sequences, 20 single nucleotide mutations were detected, including 10 non-synonymous and 10 synonymous mutations; 26 single nucleotide mutations were detected in HPV39 L1 sequences, including 7 non-synonymous and 19 synonymous mutations respectively. 11 novel variants of HPV39 E6-E7 (5 in E6 and 6 in E7) and 14 novel variants of HPV39 L1 were identified in this study. A-branch was the most frequent HPV39 lineage in southwest China during our investigation. Selective pressure analysis showed that codon sites 26, 87, 151 in E6 and 75, 180, 222, 272, 284, 346, 356 in L1 were positively selected sites, as well as codon sites 45, 138, 309, 381 were negative selection sites in L1 gene, E7 has neither positive selection sites nor negative selection sites. A certain degree of secondary and three-dimensional structure dislocation was existed due to the non-synonymous mutations.

Conclusions

Amino acid substitution affected the secondary and three-dimensional structure of HPV39, and resulting in the differences of carcinogenic potential and biological functions as well as the immune response due to the antigen epitopes difference, the antigen epitopes with stronger adaptability in Southwest will be screened out based on the above research results for the later vaccine development. And gene polymorphism of HPV39 in Southwest China may improve the effectiveness of clinical test and vaccine design, specifically for women in Southwest China.
Literature
1.
go back to reference Harari A, Chen Z, Burk RD, Health P. HHS Public Access. 2015;1–18. Harari A, Chen Z, Burk RD, Health P. HHS Public Access. 2015;1–18.
2.
go back to reference Hu SY, Zheng RS, Zhao FH, Zhang SW, Chen WQ, Qiao YL. Trend analysis of cervical cancer incidence and mortality rates in Chinese women during 1989–2008. Acta Acad Med Sin. 2014;36:119–25. Hu SY, Zheng RS, Zhao FH, Zhang SW, Chen WQ, Qiao YL. Trend analysis of cervical cancer incidence and mortality rates in Chinese women during 1989–2008. Acta Acad Med Sin. 2014;36:119–25.
3.
go back to reference Bosch FX, Lorincz A, Muñoz N, Meijer CJLM, Shah KV. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol. 2002;55:244–65.CrossRef Bosch FX, Lorincz A, Muñoz N, Meijer CJLM, Shah KV. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol. 2002;55:244–65.CrossRef
6.
go back to reference Kozomara RJ, Brankovic-Magic MV, Jovic NR, Stosic SM, Magic ZM. Prognostic significance of TP53 mutations in oral squamous cell carcinoma with human papilloma virus infection. Int J Biol Markers. 2007;22:252–7.CrossRef Kozomara RJ, Brankovic-Magic MV, Jovic NR, Stosic SM, Magic ZM. Prognostic significance of TP53 mutations in oral squamous cell carcinoma with human papilloma virus infection. Int J Biol Markers. 2007;22:252–7.CrossRef
7.
go back to reference Lizano M, Berumen J, Garcı A. HPV-related carcinogenesis: basic concepts. Viral Types and Variants. 2009;40:428–34. Lizano M, Berumen J, Garcı A. HPV-related carcinogenesis: basic concepts. Viral Types and Variants. 2009;40:428–34.
11.
go back to reference De Villiers EM, Fauquet C, Broker TR, Bernard HU, Zur HH. Classification of papillomaviruses. Virology. 2004;324:17–27.CrossRef De Villiers EM, Fauquet C, Broker TR, Bernard HU, Zur HH. Classification of papillomaviruses. Virology. 2004;324:17–27.CrossRef
12.
go back to reference Félix A, Alemany L, Tous S, de Sanjosé S, Bosch FX. HPV distribution in cervical cancer in Portugal: a retrospective study from 1928 to 2005. Papillomavirus Res. 2016;2:41–5.CrossRef Félix A, Alemany L, Tous S, de Sanjosé S, Bosch FX. HPV distribution in cervical cancer in Portugal: a retrospective study from 1928 to 2005. Papillomavirus Res. 2016;2:41–5.CrossRef
14.
go back to reference Zeng Z, Yang H, Li Z, He X, Griffith CC, Chen X. Prevalence and genotype distribution of HPV infection in China : analysis of 51, 345 HPV genotyping results from China’ s Largest CAP certified laboratory. J Cancer. 2016;7:1037.CrossRef Zeng Z, Yang H, Li Z, He X, Griffith CC, Chen X. Prevalence and genotype distribution of HPV infection in China : analysis of 51, 345 HPV genotyping results from China’ s Largest CAP certified laboratory. J Cancer. 2016;7:1037.CrossRef
16.
go back to reference Kosakovsky Pond SL, Frost SD. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evolut. 2005;22(5):1208–22.CrossRef Kosakovsky Pond SL, Frost SD. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evolut. 2005;22(5):1208–22.CrossRef
17.
go back to reference Pond SLK, Frost SD. Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics. 2005;21(10):2531–3.CrossRef Pond SLK, Frost SD. Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics. 2005;21(10):2531–3.CrossRef
18.
go back to reference Geourjon C, Deléage G. Sopma: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics. 1995;11:681–4.CrossRef Geourjon C, Deléage G. Sopma: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics. 1995;11:681–4.CrossRef
19.
go back to reference Yang J, Yan R, Roy A, Xu D, Poisson J, Arbor A, et al. HHS Public Access. 2015;12:7–8. Yang J, Yan R, Roy A, Xu D, Poisson J, Arbor A, et al. HHS Public Access. 2015;12:7–8.
20.
go back to reference Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer : an environment for comparative protein modeling. 2016. Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer : an environment for comparative protein modeling. 2016.
21.
go back to reference Lilkova E, Petkov P, Ilieva N, Litov L. Towards Molecular Modeling of the Impact of Heparin-Derived Oligosaccharides on hIFN- γ Binding. 2015;030008. Lilkova E, Petkov P, Ilieva N, Litov L. Towards Molecular Modeling of the Impact of Heparin-Derived Oligosaccharides on hIFN- γ Binding. 2015;030008.
22.
go back to reference Zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342–50.CrossRef Zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342–50.CrossRef
23.
go back to reference Narisawa-Saito M, Kiyono T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: Roles of E6 and E7 proteins. Cancer Sci. 2007;98:1505–11.CrossRef Narisawa-Saito M, Kiyono T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: Roles of E6 and E7 proteins. Cancer Sci. 2007;98:1505–11.CrossRef
24.
go back to reference Strati K, Lambert PF. Role of Rb-dependent and Rb-independent functions of papillomavirus E7 oncogene in head and neck cancer. Cancer Res. 2007;67:11585–93.CrossRef Strati K, Lambert PF. Role of Rb-dependent and Rb-independent functions of papillomavirus E7 oncogene in head and neck cancer. Cancer Res. 2007;67:11585–93.CrossRef
26.
go back to reference Longuet M, Beaudenon S, Orth G. Two novel genital human papillomavirus (HPV) types, HPV68 and HPV70, related to the potentially oncogenic HPV39. J Clin Microbiol. 1996;34:738–44.CrossRef Longuet M, Beaudenon S, Orth G. Two novel genital human papillomavirus (HPV) types, HPV68 and HPV70, related to the potentially oncogenic HPV39. J Clin Microbiol. 1996;34:738–44.CrossRef
28.
go back to reference Ainsworth J, Thomas M, Banks L, Coutlee F, Matlashewski G. Comparison of p53 and the PDZ domain containing protein MAGI-3 regulation by the E6 protein from high-risk human papillomaviruses. Virol J. 2008;5:1–9.CrossRef Ainsworth J, Thomas M, Banks L, Coutlee F, Matlashewski G. Comparison of p53 and the PDZ domain containing protein MAGI-3 regulation by the E6 protein from high-risk human papillomaviruses. Virol J. 2008;5:1–9.CrossRef
29.
go back to reference Zhang Y, Dasgupta J, Ma RZ, Banks L, Thomas M, Chen XS. Structures of a Human Papillomavirus (HPV) E6 Polypeptide Bound to MAGUK Proteins: Mechanisms of Targeting Tumor Suppressors by a High-Risk HPV Oncoprotein. J Virol. 2007;81:3618–26.CrossRef Zhang Y, Dasgupta J, Ma RZ, Banks L, Thomas M, Chen XS. Structures of a Human Papillomavirus (HPV) E6 Polypeptide Bound to MAGUK Proteins: Mechanisms of Targeting Tumor Suppressors by a High-Risk HPV Oncoprotein. J Virol. 2007;81:3618–26.CrossRef
30.
go back to reference Thomas M, Glaunsinger B, Pim D, Javier R, Banks L. HPV E6 and MAGUK protein interactions: determination of the molecular basis for specific protein recognition and degradation. Oncogene. 2001;20:5431–9.CrossRef Thomas M, Glaunsinger B, Pim D, Javier R, Banks L. HPV E6 and MAGUK protein interactions: determination of the molecular basis for specific protein recognition and degradation. Oncogene. 2001;20:5431–9.CrossRef
31.
go back to reference Barbosa MS, Lowy DR, Schiller JT. Papillomavirus polypeptides E6 and E7 are zinc-binding proteins. J Virol. 1989;63:1404–7.CrossRef Barbosa MS, Lowy DR, Schiller JT. Papillomavirus polypeptides E6 and E7 are zinc-binding proteins. J Virol. 1989;63:1404–7.CrossRef
32.
go back to reference Liu JH, Zhang YL, Zhu LQ, Xu YY, Zhao M, Wu XX. Human papillomavirus type 16 mutant E7 protein induces oncogenic transformation via up-regulation of cyclin A and cdc25A. Virol Sin. 2008;23:352–62.CrossRef Liu JH, Zhang YL, Zhu LQ, Xu YY, Zhao M, Wu XX. Human papillomavirus type 16 mutant E7 protein induces oncogenic transformation via up-regulation of cyclin A and cdc25A. Virol Sin. 2008;23:352–62.CrossRef
34.
go back to reference Liu M, He Z, Xi L, Li J, Liu F, Liu Y, et al. The distribution and common amino acid polymorphisms of human papillomavirus (HPV)-31 Variants in 2700 Women from Northern China. PLoS ONE. 2014;9:5–10. Liu M, He Z, Xi L, Li J, Liu F, Liu Y, et al. The distribution and common amino acid polymorphisms of human papillomavirus (HPV)-31 Variants in 2700 Women from Northern China. PLoS ONE. 2014;9:5–10.
35.
go back to reference Li YL, Ma ZL, Zhao Y, Zang J. Immunization with mutant HPV16 E7 protein inhibits the growth of TC-1 cells in Tumor-Bearing mice. Oncol Lett. 2015;9:1851–6.CrossRef Li YL, Ma ZL, Zhao Y, Zang J. Immunization with mutant HPV16 E7 protein inhibits the growth of TC-1 cells in Tumor-Bearing mice. Oncol Lett. 2015;9:1851–6.CrossRef
36.
go back to reference Robles-Rodríguez OA, Pérez-Trujillo JJ, Barrón-Cantú JA, Torres-Cerda A, Gutiérrez-Puente Y, García-García A, et al. Antitumor effect of adenoviruses expressing mutant non-oncogenic E7 versions from HPV-16 fused to calreticulin. J BUON. 2020;25:543–8. Robles-Rodríguez OA, Pérez-Trujillo JJ, Barrón-Cantú JA, Torres-Cerda A, Gutiérrez-Puente Y, García-García A, et al. Antitumor effect of adenoviruses expressing mutant non-oncogenic E7 versions from HPV-16 fused to calreticulin. J BUON. 2020;25:543–8.
Metadata
Title
Genetic variability of human papillomavirus type 39 based on E6, E7 and L1 genes in Southwest China
Authors
Jiaoyu He
Tianjun Li
Youliang Wang
Zhilin Song
Qiufu Li
Yiran Liu
Yanru Cui
Siyu Ma
Junhang Deng
Xia Wei
Xianping Ding
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2021
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-021-01528-w

Other articles of this Issue 1/2021

Virology Journal 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine