Skip to main content
Top
Published in: Diagnostic Pathology 1/2020

01-12-2020 | Human Papillomavirus | Short report

An economical Nanopore sequencing assay for human papillomavirus (HPV) genotyping

Authors: Wai Sing Chan, Tsun Leung Chan, Chun Hang Au, Chin Pang Leung, Man Yan To, Man Kin Ng, Sau Man Leung, May Kwok Mei Chan, Edmond Shiu Kwan Ma, Bone Siu Fai Tang

Published in: Diagnostic Pathology | Issue 1/2020

Login to get access

Abstract

Background

Human papillomavirus (HPV) testing has been employed by several European countries to augment cytology-based cervical screening programs. A number of research groups have demonstrated potential utility of next-generation sequencing (NGS) for HPV genotyping, with comparable performance and broader detection spectrum than current gold standards. Nevertheless, most of these NGS platforms may not be the best choice for medium sample throughput and laboratories with less resources and space. In light of this, we developed a Nanopore sequencing assay for HPV genotyping and compared its performance with cobas HPV Test and Roche Linear Array HPV Genotyping Test (LA).

Methods

Two hundred and one cervicovaginal swabs were routinely tested for Papanicolaou smear, cobas HPV Test and LA. Residual DNA was used for Nanopore protocol after routine testing. Briefly, HPV L1 region was amplified using PGMY and MGP primers, and PCR-positive specimens were sequenced on MinION flow cells (R9.4.1). Data generated in first 2 h were aligned with reference sequences from Papillomavirus Episteme database for genotyping.

Results

Nanopore detected 96 HPV-positive (47.76%) and 95 HPV-negative (47.26%) specimens, with 10 lacking β-globin band and not further analyzed (4.98%). Substantial agreement was achieved with cobas HPV Test and LA (κ: 0.83–0.93). In particular, Nanopore appeared to be more sensitive than cobas HPV Test for HPV 52 (n = 7). For LA, Nanopore revealed higher concordance for high-risk (κ: 0.93) than non-high risk types (κ: 0.83), and with similar high-risk positivity in each cytology grading. Nanopore also provided better resolution for HPV 52 in 3 specimens co-infected with HPV 33 or 58, and for HPV 87 which was identified as HPV 84 by LA. Interestingly, Nanopore identified 5 additional HPV types, with an unexpected high incidence of HPV 90 (n = 12) which was reported in North America and Belgium but not in Hong Kong.

Conclusions

We developed a Nanopore workflow for HPV genotyping which was economical (about USD 50.77 per patient specimen for 24-plex runs), and with comparable or better performance than 2 reference methods in the market. Future prospective study with larger sample size is warranted to further evaluate test performance and streamline the protocol.
Literature
1.
go back to reference zur Hausen H. Papillomaviruses in the causation of human cancers – a brief historical account. Virology. 2009;384:260–5. zur Hausen H. Papillomaviruses in the causation of human cancers – a brief historical account. Virology. 2009;384:260–5.
2.
go back to reference Meisels A, Fortin R. Condylomatous lesions of the cervix and vagina. I Cytologic patterns Acta Cytol. 1976;20:505–9.PubMed Meisels A, Fortin R. Condylomatous lesions of the cervix and vagina. I Cytologic patterns Acta Cytol. 1976;20:505–9.PubMed
3.
go back to reference Purola E, Savia E. Cytology of gynecologic condyloma acuminatum. Acta Cytol. 1977;21:26–31.PubMed Purola E, Savia E. Cytology of gynecologic condyloma acuminatum. Acta Cytol. 1977;21:26–31.PubMed
4.
go back to reference Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518–27.PubMed Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518–27.PubMed
5.
go back to reference IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Human papillomaviruses. IARC Monogr Eval Carinog Risks Hum. 2007;90:1–636. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Human papillomaviruses. IARC Monogr Eval Carinog Risks Hum. 2007;90:1–636.
6.
go back to reference Schiffman M, Clifford G, Buonaguro FM. Classification of weakly carcinogenic human papillomavirus types: addressing the limits of epidemiology at the borderline. Infect Agent Cancer. 2009;4:8.CrossRefPubMedPubMedCentral Schiffman M, Clifford G, Buonaguro FM. Classification of weakly carcinogenic human papillomavirus types: addressing the limits of epidemiology at the borderline. Infect Agent Cancer. 2009;4:8.CrossRefPubMedPubMedCentral
7.
go back to reference Chrysostomou AC, Stylianou DC, Constantinidou A, Kostrikis LG. Cervical cancer screening programs in Europe: the transition towards HPV vaccination and population-based HPV testing. Viruses. 2018;10:729. Chrysostomou AC, Stylianou DC, Constantinidou A, Kostrikis LG. Cervical cancer screening programs in Europe: the transition towards HPV vaccination and population-based HPV testing. Viruses. 2018;10:729.
8.
go back to reference Petry KU, Barth C, Wasem J, Neumann A. A model to evaluate the costs and clinical effectiveness of human papilloma virus screening compared with annual Papanicolaou cytology in Germany. Eur J Obstet Gynecol Reprod Biol. 2017;212:132–9.CrossRefPubMed Petry KU, Barth C, Wasem J, Neumann A. A model to evaluate the costs and clinical effectiveness of human papilloma virus screening compared with annual Papanicolaou cytology in Germany. Eur J Obstet Gynecol Reprod Biol. 2017;212:132–9.CrossRefPubMed
10.
go back to reference Nilyanimit P, Chansaenroj J, Poomipak W, Praianantathavorn K, Payungporn S, Poovorawan Y. Comparison of four human papillomavirus genotyping methods: next-generation sequencing, INNO-LiPA, electrochemical DNA Chip, and nested-PCR. Ann Lab Med. 2018;38:139–46.CrossRefPubMed Nilyanimit P, Chansaenroj J, Poomipak W, Praianantathavorn K, Payungporn S, Poovorawan Y. Comparison of four human papillomavirus genotyping methods: next-generation sequencing, INNO-LiPA, electrochemical DNA Chip, and nested-PCR. Ann Lab Med. 2018;38:139–46.CrossRefPubMed
11.
go back to reference Nowak RG, Ambulos NP, Schumaker LM, Mathias TJ, White RA, Troyer J, et al. Genotyping of high-risk anal human papillomavirus (HPV): ion torrent-next generation sequencing vs. linear array. Virol J. 2017;14:112.CrossRefPubMedPubMedCentral Nowak RG, Ambulos NP, Schumaker LM, Mathias TJ, White RA, Troyer J, et al. Genotyping of high-risk anal human papillomavirus (HPV): ion torrent-next generation sequencing vs. linear array. Virol J. 2017;14:112.CrossRefPubMedPubMedCentral
12.
go back to reference Wagner S, Roberson D, Boland J, Yeager M, Cullen M, Mirabello L, et al. Development of the TypeSeq assay for detection of 51 human papillomavirus genotypes by next-generation sequencing. J Clin Microbiol. 2019;57:e01794–18. Wagner S, Roberson D, Boland J, Yeager M, Cullen M, Mirabello L, et al. Development of the TypeSeq assay for detection of 51 human papillomavirus genotypes by next-generation sequencing. J Clin Microbiol. 2019;57:e01794–18.
13.
go back to reference Gravitt PE, Peyton CL, Alessi TQ, Wheeler CM, Coutlée F, Hildesheim A, et al. Improved amplification of genital human papillomaviruses. J Clin Microbiol. 2000;38:357–61.PubMedPubMedCentral Gravitt PE, Peyton CL, Alessi TQ, Wheeler CM, Coutlée F, Hildesheim A, et al. Improved amplification of genital human papillomaviruses. J Clin Microbiol. 2000;38:357–61.PubMedPubMedCentral
14.
go back to reference Söderlund-Strand A, Carlson J, Dillner J. Modified general primer PCR system for sensitive detection of multiple types of oncogenic human papillomavirus. J Clin Microbiol. 2009;47:541–6.CrossRefPubMedPubMedCentral Söderlund-Strand A, Carlson J, Dillner J. Modified general primer PCR system for sensitive detection of multiple types of oncogenic human papillomavirus. J Clin Microbiol. 2009;47:541–6.CrossRefPubMedPubMedCentral
15.
go back to reference Marín M, Garcia-Lechuz JM, Alonso P, Villanueva M, Alcalá L, Gimeno M, et al. Role of universal 16S rRNA gene PCR and sequencing in diagnosis of prosthetic joint infection. J Clin Microbiol. 2012;50:583–9.CrossRefPubMedPubMedCentral Marín M, Garcia-Lechuz JM, Alonso P, Villanueva M, Alcalá L, Gimeno M, et al. Role of universal 16S rRNA gene PCR and sequencing in diagnosis of prosthetic joint infection. J Clin Microbiol. 2012;50:583–9.CrossRefPubMedPubMedCentral
19.
go back to reference Mayrand MH, Duarte-Franco E, Rodrigues I, Walter SD, Hanley J, Ferenczy A, et al. Human papillomavirus DNA versus Papanicolaou screening tests for cervical cancer. N Engl J Med. 2007;357:1579–88.CrossRefPubMed Mayrand MH, Duarte-Franco E, Rodrigues I, Walter SD, Hanley J, Ferenczy A, et al. Human papillomavirus DNA versus Papanicolaou screening tests for cervical cancer. N Engl J Med. 2007;357:1579–88.CrossRefPubMed
20.
go back to reference Quiroga-Garza G, Zhou H, Mody DR, Schwartz MR, Ge Y. Unexpected high prevalence of HPV 90 infection in an underserved population: is it really a low-risk genotype? Arch Pathol Lab Med. 2013;137:1569–73.CrossRefPubMed Quiroga-Garza G, Zhou H, Mody DR, Schwartz MR, Ge Y. Unexpected high prevalence of HPV 90 infection in an underserved population: is it really a low-risk genotype? Arch Pathol Lab Med. 2013;137:1569–73.CrossRefPubMed
21.
go back to reference Schmitt M, Depuydt C, Benoy I, Bogers J, Antoine J, Arbyn M, et al. Prevalence and viral load of 51 genital human papillomavirus types and three subtypes. Int J Cancer. 2013;132:2395–403.CrossRefPubMed Schmitt M, Depuydt C, Benoy I, Bogers J, Antoine J, Arbyn M, et al. Prevalence and viral load of 51 genital human papillomavirus types and three subtypes. Int J Cancer. 2013;132:2395–403.CrossRefPubMed
22.
go back to reference Mitra A, Maclntyre DA, Lee YS, Smith A, Marchesi JR, Lehne B, et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci Rep. 2015;5:16865.CrossRefPubMedPubMedCentral Mitra A, Maclntyre DA, Lee YS, Smith A, Marchesi JR, Lehne B, et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci Rep. 2015;5:16865.CrossRefPubMedPubMedCentral
23.
go back to reference Oh HY, Kim BS, Seo SS, Kong JS, Lee JK, Park SY, et al. The association of uterine cervical microbiota with an increased risk for cervical intraepithelial neoplasia in Korea. Clin Microbiol Infect. 2015;21:674 e1–9.CrossRefPubMed Oh HY, Kim BS, Seo SS, Kong JS, Lee JK, Park SY, et al. The association of uterine cervical microbiota with an increased risk for cervical intraepithelial neoplasia in Korea. Clin Microbiol Infect. 2015;21:674 e1–9.CrossRefPubMed
24.
go back to reference Klein C, Gonzalez D, Samwel K, Kahesa C, Mwaiselage J, Aluthge N, et al. Relationship between the cervical microbiome, HIV status, and precancerous lesions. MBio. 2019;10:e02785–18.CrossRefPubMedPubMedCentral Klein C, Gonzalez D, Samwel K, Kahesa C, Mwaiselage J, Aluthge N, et al. Relationship between the cervical microbiome, HIV status, and precancerous lesions. MBio. 2019;10:e02785–18.CrossRefPubMedPubMedCentral
25.
go back to reference Nené NR, Reisel D, Leimbach A, Franchi D, Jones A, Evans I, et al. Association between the cervicovaginal microbiome, BRCA1 mutation status, and risk of ovarian cancer: a case-control study. Lancet Oncol. 2019;20:1171–82.CrossRefPubMed Nené NR, Reisel D, Leimbach A, Franchi D, Jones A, Evans I, et al. Association between the cervicovaginal microbiome, BRCA1 mutation status, and risk of ovarian cancer: a case-control study. Lancet Oncol. 2019;20:1171–82.CrossRefPubMed
26.
go back to reference King AJ, Sonsma JA, Vriend HJ, van der Sande MA, Feltkamp MC, Boot HJ, et al. Genetic diversity in the major capsid L1 protein of HPV-16 and HPV-18 in the Netherlands. PLoS One. 2016;11:e0152782.CrossRefPubMedPubMedCentral King AJ, Sonsma JA, Vriend HJ, van der Sande MA, Feltkamp MC, Boot HJ, et al. Genetic diversity in the major capsid L1 protein of HPV-16 and HPV-18 in the Netherlands. PLoS One. 2016;11:e0152782.CrossRefPubMedPubMedCentral
27.
28.
go back to reference Artaza-Irigaray C, Flores-Miramontes MG, Olszewski D, Vallejo-Ruiz V, Limón-Toledo LP, Sánchez-Roque C, et al. Cross-hybridization between HPV genotypes in the linear Array genotyping test confirmed by next-generation sequencing. Diagn Pathol. 2019;14:31.CrossRefPubMedPubMedCentral Artaza-Irigaray C, Flores-Miramontes MG, Olszewski D, Vallejo-Ruiz V, Limón-Toledo LP, Sánchez-Roque C, et al. Cross-hybridization between HPV genotypes in the linear Array genotyping test confirmed by next-generation sequencing. Diagn Pathol. 2019;14:31.CrossRefPubMedPubMedCentral
Metadata
Title
An economical Nanopore sequencing assay for human papillomavirus (HPV) genotyping
Authors
Wai Sing Chan
Tsun Leung Chan
Chun Hang Au
Chin Pang Leung
Man Yan To
Man Kin Ng
Sau Man Leung
May Kwok Mei Chan
Edmond Shiu Kwan Ma
Bone Siu Fai Tang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2020
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-020-00964-6

Other articles of this Issue 1/2020

Diagnostic Pathology 1/2020 Go to the issue