Skip to main content
Top
Published in: Journal of Artificial Organs 3/2016

01-09-2016 | Original Article

Human endothelial cells hollow fiber membrane bioreactor as a model of the blood vessel for in vitro studies

Authors: Anna Ciechanowska, Piotr Ladyzynski, Grazyna Hoser, Stanislawa Sabalinska, Jerzy Kawiak, Piotr Foltynski, Cezary Wojciechowski, Andrzej Chwojnowski

Published in: Journal of Artificial Organs | Issue 3/2016

Login to get access

Abstract

Human endothelial cells are used in experimental models for studying in vitro pathophysiological mechanisms of different diseases. We developed an original bioreactor, which can simulate human blood vessel, with capillary polysulfone membranes covered with the human umbilical vein endothelial cells (HUVECs) and we characterized its properties. The elaborated cell seeding and culturing procedures ensured formation of a confluent cell monolayer on the inside surface of capillaries within 24 h of culturing under the shear stress of 6.6 dyn/cm2. The optimal density of cells to be seeded was 60,000 cells/cm2. Labeling HUVECs with carboxyfluorescein succinimidyl ester (CFSE) did not influence cells’ metabolism. Flow cytometry-based analysis of HUVECs stained with CFSE demonstrated that in a presence of the shear stress cells’ proliferation was much inhibited (after 72 h proliferation index was equal to 1.9 and 6.2 for cultures with and without shear stress, respectively) and the monolayer was formed mainly due to migration and spreading of cells that were physiologically elongated in a direction of the flow. Monitoring of cells’ metabolism showed that HUVECs cultured in a presence of the shear stress preferred anaerobic metabolism and they consumed 1.5 times more glucose and produced 2.3 times more lactate than the cells cultured under static conditions. Daily von Willebrand factor production by HUVECs was near 2 times higher in a presence of the shear stress. The developed model can be used for at least 3 days in target studies under conditions mimicking the in vivo state more closely than the static HUVEC cultures.
Literature
1.
go back to reference Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol. 2008;93:141–7.CrossRefPubMed Mitchell JA, Ali F, Bailey L, Moreno L, Harrington LS. Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium. Exp Physiol. 2008;93:141–7.CrossRefPubMed
2.
go back to reference Sumpio BE, Riley JT, Dardik A. Cells in focus: endothelial cell. Int J Biochem Cell Biol. 2002;34:1508–12.CrossRefPubMed Sumpio BE, Riley JT, Dardik A. Cells in focus: endothelial cell. Int J Biochem Cell Biol. 2002;34:1508–12.CrossRefPubMed
3.
go back to reference Watkins NV, Caro CG, Wang W. Parallel-plate flow chamber for studies of 3D flow-endothelium interaction. Biorheology. 2002;39:337–42.PubMed Watkins NV, Caro CG, Wang W. Parallel-plate flow chamber for studies of 3D flow-endothelium interaction. Biorheology. 2002;39:337–42.PubMed
4.
go back to reference Brown A, Burke G, Meenan BJ. Modeling of shear stress experienced by endothelial cells cultured on microstructured polymer substrates in a parallel plate flow chamber. Biotechnol Bioeng. 2011;108:1148–58.CrossRefPubMed Brown A, Burke G, Meenan BJ. Modeling of shear stress experienced by endothelial cells cultured on microstructured polymer substrates in a parallel plate flow chamber. Biotechnol Bioeng. 2011;108:1148–58.CrossRefPubMed
5.
go back to reference Janke D, Jankowski J, Rüth M, Buschmann I, Lemke HD, Jacobi D, et al. The “artificial artery” as in vitro perfusion model. PLoS One. 2013;8:e57227.CrossRefPubMedPubMedCentral Janke D, Jankowski J, Rüth M, Buschmann I, Lemke HD, Jacobi D, et al. The “artificial artery” as in vitro perfusion model. PLoS One. 2013;8:e57227.CrossRefPubMedPubMedCentral
6.
go back to reference Inoguchia H, Tanaka T, Maehara Y, Matsud T. The effect of gradually graded shear stress on the morphological integrity of a HUVEC-seeded compliant small-diameter vascular graft. Biomaterials. 2007;28:486–95.CrossRef Inoguchia H, Tanaka T, Maehara Y, Matsud T. The effect of gradually graded shear stress on the morphological integrity of a HUVEC-seeded compliant small-diameter vascular graft. Biomaterials. 2007;28:486–95.CrossRef
7.
go back to reference Topper JN, Gimbrone MA Jr. Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Mol Med Today. 1999;5:40–6.CrossRefPubMed Topper JN, Gimbrone MA Jr. Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Mol Med Today. 1999;5:40–6.CrossRefPubMed
8.
go back to reference Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol. 2007;292:1209–24.CrossRef Chien S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol. 2007;292:1209–24.CrossRef
9.
go back to reference Ciechanowska A, Ladyzynski P, Hoser G, Sabalinska S, Kawiak J, Foltynski P, et al. Transmembrane pressure as an indicator of a density of endothelial cells cultured inside capillaries of a membrane bioreactor under dynamic conditions. IFMBE Proc. 2015;45:545–8.CrossRef Ciechanowska A, Ladyzynski P, Hoser G, Sabalinska S, Kawiak J, Foltynski P, et al. Transmembrane pressure as an indicator of a density of endothelial cells cultured inside capillaries of a membrane bioreactor under dynamic conditions. IFMBE Proc. 2015;45:545–8.CrossRef
10.
go back to reference Ciechanowska A, Schwanzer-Pfeiffer D, Rossmanith E, Sabalinska S, Wojciechowski C, Hartmann J, et al. Artificial vessel as a basis for disease related cell culture model. IFMBE Proc 2004;6. Ciechanowska A, Schwanzer-Pfeiffer D, Rossmanith E, Sabalinska S, Wojciechowski C, Hartmann J, et al. Artificial vessel as a basis for disease related cell culture model. IFMBE Proc 2004;6.
11.
go back to reference Zolnierowicz J, Ambrozek-Latecka M, Kawiak J, Wasilewska D, Hoser G. Monitoring cell proliferation in vitro with different cellular fluorescent dyes. Folia Histochem Cytobiol. 2013;51:193–200.CrossRefPubMed Zolnierowicz J, Ambrozek-Latecka M, Kawiak J, Wasilewska D, Hoser G. Monitoring cell proliferation in vitro with different cellular fluorescent dyes. Folia Histochem Cytobiol. 2013;51:193–200.CrossRefPubMed
12.
go back to reference Li YS, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 2005;38:1949–71.CrossRefPubMed Li YS, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 2005;38:1949–71.CrossRefPubMed
13.
go back to reference Stoltz JF. Regenerative medicine and cell therapy. Influence of mechanical forces on cells and tissues. Amsterdam: IOS Press; 2012. p. 119–22. Stoltz JF. Regenerative medicine and cell therapy. Influence of mechanical forces on cells and tissues. Amsterdam: IOS Press; 2012. p. 119–22.
14.
go back to reference Galbusera M, Zoja C, Donadelli R, Paris S, Morigi M, Benigni A, Figliuzzi M, Remuzzi G, Remuzzi A. Fluid shear stress modulates von Willebrand factor release from human vascular endothelium. Blood. 1997;90:1558–64.PubMed Galbusera M, Zoja C, Donadelli R, Paris S, Morigi M, Benigni A, Figliuzzi M, Remuzzi G, Remuzzi A. Fluid shear stress modulates von Willebrand factor release from human vascular endothelium. Blood. 1997;90:1558–64.PubMed
15.
go back to reference Morigi M, Zoja C, Figliuzzi M, Foppolo M, Micheletti G, Bontempelli M, Saronni M, Remuzzi G, Remuzzi A. Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells. Blood. 1995;85:1696–703.PubMed Morigi M, Zoja C, Figliuzzi M, Foppolo M, Micheletti G, Bontempelli M, Saronni M, Remuzzi G, Remuzzi A. Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells. Blood. 1995;85:1696–703.PubMed
16.
go back to reference Tsuboi H, Ando J, Korenaga R, Takada Y, Kamiya A. Flow stimulates ICAM-1 expression time and shear stress dependently in cultured human endothelial cells. Biochem Biophys Res Commun. 1995;206:988–96.CrossRefPubMed Tsuboi H, Ando J, Korenaga R, Takada Y, Kamiya A. Flow stimulates ICAM-1 expression time and shear stress dependently in cultured human endothelial cells. Biochem Biophys Res Commun. 1995;206:988–96.CrossRefPubMed
17.
go back to reference Witkowska AM, Borawska MH. Soluble intercellular adhesion molecule-1 (sICAM-1): an overview. Eur Cytokine Netw. 2004;15:91–8.PubMed Witkowska AM, Borawska MH. Soluble intercellular adhesion molecule-1 (sICAM-1): an overview. Eur Cytokine Netw. 2004;15:91–8.PubMed
18.
go back to reference Wijerante SS, Li J, Yeh HC, Nolasco L, Zhou Z, Bergeron A, Frey EW, et al. Single-molecule force measurements of the polymerizing dimeric subunit of von Willebrand factor. Phys Rev E Stat Nonlinear Soft Matter Phys. 2016;93:012410.CrossRef Wijerante SS, Li J, Yeh HC, Nolasco L, Zhou Z, Bergeron A, Frey EW, et al. Single-molecule force measurements of the polymerizing dimeric subunit of von Willebrand factor. Phys Rev E Stat Nonlinear Soft Matter Phys. 2016;93:012410.CrossRef
19.
go back to reference Verdegem D, Moens S, Stapor P, Carmeliet P. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism. Cancer Metab. 2014;15:2–19. Verdegem D, Moens S, Stapor P, Carmeliet P. Endothelial cell metabolism: parallels and divergences with cancer cell metabolism. Cancer Metab. 2014;15:2–19.
21.
go back to reference Parra-Bonilla G, Alvarez DF, Al-Mehdi AB, Alexeyev M, Stevens T. Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation. Am J Physiol Lung Cell Mol Physiol. 2010;299:513–22.CrossRef Parra-Bonilla G, Alvarez DF, Al-Mehdi AB, Alexeyev M, Stevens T. Critical role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary microvascular endothelial cell proliferation. Am J Physiol Lung Cell Mol Physiol. 2010;299:513–22.CrossRef
22.
go back to reference Beckert S, Farrahi F, Aslam RS, Scheuenstuhl H, Königsrainer A, Hussain MZ, et al. Lactate stimulates endothelial cell migration. Wound Repair Regen. 2006;14:321–4.CrossRefPubMed Beckert S, Farrahi F, Aslam RS, Scheuenstuhl H, Königsrainer A, Hussain MZ, et al. Lactate stimulates endothelial cell migration. Wound Repair Regen. 2006;14:321–4.CrossRefPubMed
23.
go back to reference Végran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011;71:2550–60.CrossRefPubMed Végran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011;71:2550–60.CrossRefPubMed
24.
go back to reference Hsu PP, Li S, Li YS, Usami S, Ratcliffe A, Wang X, et al. Effects of flow patterns on endothelial cell migration into a zone of mechanical denudation. Biochem Biophys Res Commun. 2001;285:751–9.CrossRefPubMed Hsu PP, Li S, Li YS, Usami S, Ratcliffe A, Wang X, et al. Effects of flow patterns on endothelial cell migration into a zone of mechanical denudation. Biochem Biophys Res Commun. 2001;285:751–9.CrossRefPubMed
25.
go back to reference Hu YL, Li S, Miao H, Tsou TC, del Pozo MA, Chien S. Roles of microtubule dynamics and small GTPase Rac in endothelial cell migration and lamellipodium formation under flow. J Vasc Res. 2002;39:465–76.CrossRefPubMed Hu YL, Li S, Miao H, Tsou TC, del Pozo MA, Chien S. Roles of microtubule dynamics and small GTPase Rac in endothelial cell migration and lamellipodium formation under flow. J Vasc Res. 2002;39:465–76.CrossRefPubMed
26.
go back to reference Tkachenko E, Gutierrez E, Ginsberg MH, Groisman A. An easy to assemble microfluidic perfusion device with a magnetic clamp. Lab Chip. 2009;9:1085–95.CrossRefPubMedPubMedCentral Tkachenko E, Gutierrez E, Ginsberg MH, Groisman A. An easy to assemble microfluidic perfusion device with a magnetic clamp. Lab Chip. 2009;9:1085–95.CrossRefPubMedPubMedCentral
Metadata
Title
Human endothelial cells hollow fiber membrane bioreactor as a model of the blood vessel for in vitro studies
Authors
Anna Ciechanowska
Piotr Ladyzynski
Grazyna Hoser
Stanislawa Sabalinska
Jerzy Kawiak
Piotr Foltynski
Cezary Wojciechowski
Andrzej Chwojnowski
Publication date
01-09-2016
Publisher
Springer Japan
Published in
Journal of Artificial Organs / Issue 3/2016
Print ISSN: 1434-7229
Electronic ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-016-0902-0

Other articles of this Issue 3/2016

Journal of Artificial Organs 3/2016 Go to the issue