Skip to main content
Top
Published in: International Journal of Legal Medicine 1/2019

01-01-2019 | Original Article

Human and non-human bone identification using FTIR spectroscopy

Authors: Qi Wang, Wei Li, Ruina Liu, Kai Zhang, Haohui Zhang, Shuanliang Fan, Zhenyuan Wang

Published in: International Journal of Legal Medicine | Issue 1/2019

Login to get access

Abstract

Human and non-human identification of unknown skeletal remains is of great importance in forensic and anthropologic contexts. However, the traditional morphological methods for bone species identification are subjective or time-consuming. Here, we utilized Fourier transform infrared (FTIR) spectroscopy and chemometric methods to determinate the spectral variances between human and non-human (i.e., pig, goat, and cow) bones. To simulate real forensic situations as much as possible, fresh, boiled, and decomposed bones were included in this study. Principal component analysis (PCA) results illustrated pig bones were more sensitive to the environmental and external factors than other species studied in this work. Thus, pig bone might not be a suitable proxy for human bone in the study of postmortem changes. More importantly, score plots of PCA results showed clear separation with a slight overlap between the human and non-human fresh bones, but it failed to distinguish the boiled and decomposed bones. Then, partial least squares discriminant analysis (PLS-DA) was employed, and both internal and external validations were conducted to assess its classification ability, which resulted in 99.72 and 99.53% accuracy, respectively. According to the loading plots of PCA and PLS-DA, the spectral diversity was mainly due to the inorganic portion (i.e., carbonates and phosphates), which can remain relatively stable under various conditions. As such, our results illustrate that FTIR spectroscopy could serve as a reliable tool to assist in bone species determination and also has great potential in real forensic cases with natural conditions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Christensen AM, Passalacqua NV, Bartelink EJ (2013) Forensic anthropology: current methods and practice. Elsevier, Amsterdam Christensen AM, Passalacqua NV, Bartelink EJ (2013) Forensic anthropology: current methods and practice. Elsevier, Amsterdam
2.
go back to reference Rennick SL, Fenton TW, Foran DR (2005) The effects of skeletal preparation techniques on DNA from human and non-human bone. J Forensic Sci 50:JFS2004405–JFS2004404CrossRef Rennick SL, Fenton TW, Foran DR (2005) The effects of skeletal preparation techniques on DNA from human and non-human bone. J Forensic Sci 50:JFS2004405–JFS2004404CrossRef
3.
go back to reference Foran DR, Crooks KR, Minta SC (1997) Species identification from scat: an unambiguous genetic method. Wildl Soc Bull (1973–2006) 25:835–839 Foran DR, Crooks KR, Minta SC (1997) Species identification from scat: an unambiguous genetic method. Wildl Soc Bull (1973–2006) 25:835–839
4.
go back to reference Ubelaker DH, Lowenstein JM, Hood DG (2004) Use of solid-phase double-antibody radioimmunoassay to identify species from small skeletal fragments. J Forensic Sci 49:JFS2003399–JFS2003396 Ubelaker DH, Lowenstein JM, Hood DG (2004) Use of solid-phase double-antibody radioimmunoassay to identify species from small skeletal fragments. J Forensic Sci 49:JFS2003399–JFS2003396
5.
go back to reference Lowenstein JM, Reuther JD, Hood DG, Scheuenstuhl G, Gerlach SC, Ubelaker DH (2006) Identification of animal species by protein radioimmunoassay of bone fragments and bloodstained stone tools. Forensic Sci Int 159:182–188CrossRefPubMed Lowenstein JM, Reuther JD, Hood DG, Scheuenstuhl G, Gerlach SC, Ubelaker DH (2006) Identification of animal species by protein radioimmunoassay of bone fragments and bloodstained stone tools. Forensic Sci Int 159:182–188CrossRefPubMed
6.
go back to reference Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, Fielden PR, Fogarty SW, Fullwood NJ, Heys KA, Hughes C, Lasch P, Martin-Hirsch PL, Obinaju B, Sockalingum GD, Sulé-Suso J, Strong RJ, Walsh MJ, Wood BR, Gardner P, Martin FL (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9:1771–1791CrossRefPubMedPubMedCentral Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, Fielden PR, Fogarty SW, Fullwood NJ, Heys KA, Hughes C, Lasch P, Martin-Hirsch PL, Obinaju B, Sockalingum GD, Sulé-Suso J, Strong RJ, Walsh MJ, Wood BR, Gardner P, Martin FL (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9:1771–1791CrossRefPubMedPubMedCentral
7.
go back to reference Movasaghi Z, Rehman S, ur Rehman DI (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43:134–179CrossRef Movasaghi Z, Rehman S, ur Rehman DI (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43:134–179CrossRef
8.
go back to reference Kumar S, Verma T, Mukherjee R, Ariese F, Somasundaram K, Umapathy S (2016) Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis. Chem Soc Rev 45:1879–1900CrossRefPubMed Kumar S, Verma T, Mukherjee R, Ariese F, Somasundaram K, Umapathy S (2016) Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis. Chem Soc Rev 45:1879–1900CrossRefPubMed
9.
go back to reference Patonai Z, Maasz G, Avar P, Schmidt J, Lorand T, Bajnoczky I, Mark L (2013) Novel dating method to distinguish between forensic and archeological human skeletal remains by bone mineralization indexes. Int J Legal Med 127:529–533CrossRefPubMed Patonai Z, Maasz G, Avar P, Schmidt J, Lorand T, Bajnoczky I, Mark L (2013) Novel dating method to distinguish between forensic and archeological human skeletal remains by bone mineralization indexes. Int J Legal Med 127:529–533CrossRefPubMed
10.
go back to reference Longato S, Wöss C, Hatzer-Grubwieser P, Bauer C, Parson W, Unterberger SH, Kuhn V, Pemberger N, Pallua AK, Recheis W, Lackner R, Stalder R, Pallua JD (2015) Post-mortem interval estimation of human skeletal remains by micro-computed tomography, mid-infrared microscopic imaging and energy dispersive X-ray mapping. Anal Methods 7:2917–2927CrossRefPubMedPubMedCentral Longato S, Wöss C, Hatzer-Grubwieser P, Bauer C, Parson W, Unterberger SH, Kuhn V, Pemberger N, Pallua AK, Recheis W, Lackner R, Stalder R, Pallua JD (2015) Post-mortem interval estimation of human skeletal remains by micro-computed tomography, mid-infrared microscopic imaging and energy dispersive X-ray mapping. Anal Methods 7:2917–2927CrossRefPubMedPubMedCentral
11.
go back to reference Howes JM, Stuart BH, Thomas PS, Raja S, O’brien C (2012) An investigation of model forensic bone in soil environments studied using infrared spectroscopy. J Forensic Sci 57:1161–1167CrossRefPubMed Howes JM, Stuart BH, Thomas PS, Raja S, O’brien C (2012) An investigation of model forensic bone in soil environments studied using infrared spectroscopy. J Forensic Sci 57:1161–1167CrossRefPubMed
12.
go back to reference McLaughlin G, Lednev IK (2011) Potential application of Raman spectroscopy for determining burial duration of skeletal remains. Anal Bioanal Chem 401(8):2511–2518CrossRefPubMed McLaughlin G, Lednev IK (2011) Potential application of Raman spectroscopy for determining burial duration of skeletal remains. Anal Bioanal Chem 401(8):2511–2518CrossRefPubMed
13.
go back to reference Delannoy Y, Colard T, Le Garff E et al (2016) Effects of the environment on bone mass: a human taphonomic study. Legal Med 20:61–67CrossRefPubMed Delannoy Y, Colard T, Le Garff E et al (2016) Effects of the environment on bone mass: a human taphonomic study. Legal Med 20:61–67CrossRefPubMed
14.
go back to reference Wang Q, Zhang Y, Lin H, Zha S, Fang R, Wei X, Fan S, Wang Z (2017) Estimation of the late postmortem interval using FTIR spectroscopy and chemometrics in human skeletal remains. Forensic Sci Int 281:113–120CrossRefPubMed Wang Q, Zhang Y, Lin H, Zha S, Fang R, Wei X, Fan S, Wang Z (2017) Estimation of the late postmortem interval using FTIR spectroscopy and chemometrics in human skeletal remains. Forensic Sci Int 281:113–120CrossRefPubMed
15.
go back to reference Fredericks JD, Bennett P, Williams A, Rogers KD (2012) FTIR spectroscopy: a new diagnostic tool to aid DNA analysis from heated bone. Forensic Sci Int Genet 6:375–380CrossRefPubMed Fredericks JD, Bennett P, Williams A, Rogers KD (2012) FTIR spectroscopy: a new diagnostic tool to aid DNA analysis from heated bone. Forensic Sci Int Genet 6:375–380CrossRefPubMed
16.
go back to reference McLaughlin G, Lednev IK (2012) Spectroscopic discrimination of bone samples from various species. Am J Anal Chem 3:161–167CrossRef McLaughlin G, Lednev IK (2012) Spectroscopic discrimination of bone samples from various species. Am J Anal Chem 3:161–167CrossRef
17.
go back to reference Rey C, Collins B, Goehl T, Dickson I, Glimcher M (1989) The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164CrossRefPubMed Rey C, Collins B, Goehl T, Dickson I, Glimcher M (1989) The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164CrossRefPubMed
18.
go back to reference Hedges RE (2002) Bone diagenesis: an overview of processes. Archaeometry 44:319–328CrossRef Hedges RE (2002) Bone diagenesis: an overview of processes. Archaeometry 44:319–328CrossRef
19.
go back to reference Peretzschner H-U (2006) Collagen gelatinization: the key to understand early bone-diagenesis. Palaeontogr Abt A 278:135–148 Peretzschner H-U (2006) Collagen gelatinization: the key to understand early bone-diagenesis. Palaeontogr Abt A 278:135–148
20.
go back to reference Lin H, Zhang Y, Wang Q, Li B, Fan S, Wang Z (2017) Species identification of bloodstains by ATR-FTIR spectroscopy: the effects of bloodstain age and the deposition environment. Int J Legal Med 1–8 Lin H, Zhang Y, Wang Q, Li B, Fan S, Wang Z (2017) Species identification of bloodstains by ATR-FTIR spectroscopy: the effects of bloodstain age and the deposition environment. Int J Legal Med 1–8
21.
go back to reference Turner-Walker G (2008) The chemical and microbial degradation of bones and teeth. Adv Hum Palaeopathol 592 Turner-Walker G (2008) The chemical and microbial degradation of bones and teeth. Adv Hum Palaeopathol 592
22.
go back to reference Duda RO, Hart PE, Stork DG (2001) Pattern classification. 2nd edn. New York, pp 55 Duda RO, Hart PE, Stork DG (2001) Pattern classification. 2nd edn. New York, pp 55
23.
go back to reference Brereton RG (2009) Chemometrics for pattern recognition. John Wiley & Sons, HobokenCrossRef Brereton RG (2009) Chemometrics for pattern recognition. John Wiley & Sons, HobokenCrossRef
24.
go back to reference Ziegel ER (2004) A user-friendly guide to multivariate calibration and classification. Taylor & Francis, DidcotCrossRef Ziegel ER (2004) A user-friendly guide to multivariate calibration and classification. Taylor & Francis, DidcotCrossRef
25.
go back to reference Ballabio D, Consonni V (2013) Classification tools in chemistry. Part 1: linear models. PLS-DA. Anal Methods 5:3790–3798CrossRef Ballabio D, Consonni V (2013) Classification tools in chemistry. Part 1: linear models. PLS-DA. Anal Methods 5:3790–3798CrossRef
26.
go back to reference Boskey A, Camacho NP (2007) FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28:2465–2478CrossRefPubMed Boskey A, Camacho NP (2007) FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28:2465–2478CrossRefPubMed
27.
go back to reference Benetti C, Kazarian SG, Alves MA, Blay A, Correa L, Zezell DM. (2014) Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic analysis of regenerated bone. Proc of SPIE Vol, pp 892641–1 Benetti C, Kazarian SG, Alves MA, Blay A, Correa L, Zezell DM. (2014) Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic analysis of regenerated bone. Proc of SPIE Vol, pp 892641–1
28.
go back to reference Aerssens J, Boonen S, Lowet G, Dequeker J (1998) Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 139:663–670CrossRefPubMed Aerssens J, Boonen S, Lowet G, Dequeker J (1998) Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 139:663–670CrossRefPubMed
29.
go back to reference Dent BB, Forbes SL, Stuart BH (2004) Review of human decomposition processes in soil. Environ Geol 45:576–585CrossRef Dent BB, Forbes SL, Stuart BH (2004) Review of human decomposition processes in soil. Environ Geol 45:576–585CrossRef
30.
go back to reference Wilson AS, Janaway RC, Holland AD, Dodson HI, Baran E, Pollard AM, Tobin DJ (2007) Modelling the buried human body environment in upland climes using three contrasting field sites. Forensic Sci Int 169:6–18CrossRefPubMed Wilson AS, Janaway RC, Holland AD, Dodson HI, Baran E, Pollard AM, Tobin DJ (2007) Modelling the buried human body environment in upland climes using three contrasting field sites. Forensic Sci Int 169:6–18CrossRefPubMed
31.
go back to reference Schwarcz HP, Agur K, Jantz LM (2010) A new method for determination of postmortem interval: citrate content of bone. J Forensic Sci 55:1516–1522CrossRefPubMed Schwarcz HP, Agur K, Jantz LM (2010) A new method for determination of postmortem interval: citrate content of bone. J Forensic Sci 55:1516–1522CrossRefPubMed
32.
go back to reference Boaks A, Siwek D, Mortazavi F (2014) The temporal degradation of bone collagen: a histochemical approach. Forensic Sci Int 240:104–110CrossRefPubMed Boaks A, Siwek D, Mortazavi F (2014) The temporal degradation of bone collagen: a histochemical approach. Forensic Sci Int 240:104–110CrossRefPubMed
33.
go back to reference Nagy G, Lorand T, Patonai Z, Montsko G, Bajnoczky I, Marcsik A, Mark L (2008) Analysis of pathological and non-pathological human skeletal remains by FT-IR spectroscopy. Forensic Sci Int 175:55–60CrossRefPubMed Nagy G, Lorand T, Patonai Z, Montsko G, Bajnoczky I, Marcsik A, Mark L (2008) Analysis of pathological and non-pathological human skeletal remains by FT-IR spectroscopy. Forensic Sci Int 175:55–60CrossRefPubMed
Metadata
Title
Human and non-human bone identification using FTIR spectroscopy
Authors
Qi Wang
Wei Li
Ruina Liu
Kai Zhang
Haohui Zhang
Shuanliang Fan
Zhenyuan Wang
Publication date
01-01-2019
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Legal Medicine / Issue 1/2019
Print ISSN: 0937-9827
Electronic ISSN: 1437-1596
DOI
https://doi.org/10.1007/s00414-018-1822-8

Other articles of this Issue 1/2019

International Journal of Legal Medicine 1/2019 Go to the issue