Skip to main content
Top
Published in: BMC Cancer 1/2012

Open Access 01-12-2012 | Research article

Hsp90 inhibition differentially destabilises MAP kinase and TGF-beta signalling components in cancer cells revealed by kinase-targeted chemoproteomics

Authors: Armin Haupt, Gerard Joberty, Marcus Bantscheff, Holger Fröhlich, Henning Stehr, Michal R Schweiger, Axel Fischer, Martin Kerick, Stefan T Boerno, Andreas Dahl, Michael Lappe, Hans Lehrach, Cayetano Gonzalez, Gerard Drewes, Bodo MH Lange

Published in: BMC Cancer | Issue 1/2012

Login to get access

Abstract

Background

The heat shock protein 90 (Hsp90) is required for the stability of many signalling kinases. As a target for cancer therapy it allows the simultaneous inhibition of several signalling pathways. However, its inhibition in healthy cells could also lead to severe side effects. This is the first comprehensive analysis of the response to Hsp90 inhibition at the kinome level.

Methods

We quantitatively profiled the effects of Hsp90 inhibition by geldanamycin on the kinome of one primary (Hs68) and three tumour cell lines (SW480, U2OS, A549) by affinity proteomics based on immobilized broad spectrum kinase inhibitors ("kinobeads"). To identify affected pathways we used the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway classification. We combined Hsp90 and proteasome inhibition to identify Hsp90 substrates in Hs68 and SW480 cells. The mutational status of kinases from the used cell lines was determined using next-generation sequencing. A mutation of Hsp90 candidate client RIPK2 was mapped onto its structure.

Results

We measured relative abundances of > 140 protein kinases from the four cell lines in response to geldanamycin treatment and identified many new potential Hsp90 substrates. These kinases represent diverse families and cellular functions, with a strong representation of pathways involved in tumour progression like the BMP, MAPK and TGF-beta signalling cascades. Co-treatment with the proteasome inhibitor MG132 enabled us to classify 64 kinases as true Hsp90 clients. Finally, mutations in 7 kinases correlate with an altered response to Hsp90 inhibition. Structural modelling of the candidate client RIPK2 suggests an impact of the mutation on a proposed Hsp90 binding domain.

Conclusions

We propose a high confidence list of Hsp90 kinase clients, which provides new opportunities for targeted and combinatorial cancer treatment and diagnostic applications.
Appendix
Available only for authorised users
Literature
1.
go back to reference Whitesell L, Lindquist SL: HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005, 5: 761-772. 10.1038/nrc1716.CrossRefPubMed Whitesell L, Lindquist SL: HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005, 5: 761-772. 10.1038/nrc1716.CrossRefPubMed
2.
go back to reference Richter K, Buchner J: Hsp90: chaperoning signal transduction. J Cell Physiol. 2001, 188: 281-290. 10.1002/jcp.1131.CrossRefPubMed Richter K, Buchner J: Hsp90: chaperoning signal transduction. J Cell Physiol. 2001, 188: 281-290. 10.1002/jcp.1131.CrossRefPubMed
3.
go back to reference Pick E, Kluger Y, Giltnane JM, Moeder C, Camp RL, Rimm DL, Kluger HM: High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res. 2007, 67: 2932-2937. 10.1158/0008-5472.CAN-06-4511.CrossRefPubMed Pick E, Kluger Y, Giltnane JM, Moeder C, Camp RL, Rimm DL, Kluger HM: High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res. 2007, 67: 2932-2937. 10.1158/0008-5472.CAN-06-4511.CrossRefPubMed
4.
go back to reference Yano M, Naito Z, Tanaka S, Asano G: Expression and roles of heat shock proteins in human breast cancer. Jpn J Cancer Res. 1996, 87: 908-915. 10.1111/j.1349-7006.1996.tb02119.x.CrossRefPubMed Yano M, Naito Z, Tanaka S, Asano G: Expression and roles of heat shock proteins in human breast cancer. Jpn J Cancer Res. 1996, 87: 908-915. 10.1111/j.1349-7006.1996.tb02119.x.CrossRefPubMed
5.
go back to reference Porter JR, Fritz CC, Depew KM: Discovery and development of Hsp90 inhibitors: a promising pathway for cancer therapy. Curr Opin Chem Biol. 2010, 14: 412-420. 10.1016/j.cbpa.2010.03.019.CrossRefPubMed Porter JR, Fritz CC, Depew KM: Discovery and development of Hsp90 inhibitors: a promising pathway for cancer therapy. Curr Opin Chem Biol. 2010, 14: 412-420. 10.1016/j.cbpa.2010.03.019.CrossRefPubMed
6.
go back to reference Trepel J, Mollapour M, Giaccone G, Neckers L: Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer. 2010, 10: 537-549. 10.1038/nrc2887.CrossRefPubMed Trepel J, Mollapour M, Giaccone G, Neckers L: Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer. 2010, 10: 537-549. 10.1038/nrc2887.CrossRefPubMed
7.
go back to reference Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ: A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature. 2003, 425: 407-410. 10.1038/nature01913.CrossRefPubMed Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ: A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature. 2003, 425: 407-410. 10.1038/nature01913.CrossRefPubMed
8.
go back to reference Caldas-Lopes E, Cerchietti L, Ahn JH, Clement CC, Robles AI, Rodina A, Moulick K, Taldone T, Gozman A, Guo Y, et al: Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci USA. 2009, 106: 8368-8373. 10.1073/pnas.0903392106.CrossRefPubMedPubMedCentral Caldas-Lopes E, Cerchietti L, Ahn JH, Clement CC, Robles AI, Rodina A, Moulick K, Taldone T, Gozman A, Guo Y, et al: Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc Natl Acad Sci USA. 2009, 106: 8368-8373. 10.1073/pnas.0903392106.CrossRefPubMedPubMedCentral
9.
go back to reference Falsone SF, Gesslbauer B, Tirk F, Piccinini AM, Kungl AJ: A proteomic snapshot of the human heat shock protein 90 interactome. FEBS Lett. 2005, 579: 6350-6354. 10.1016/j.febslet.2005.10.020.CrossRefPubMed Falsone SF, Gesslbauer B, Tirk F, Piccinini AM, Kungl AJ: A proteomic snapshot of the human heat shock protein 90 interactome. FEBS Lett. 2005, 579: 6350-6354. 10.1016/j.febslet.2005.10.020.CrossRefPubMed
10.
go back to reference Gano JJ, Simon JA: A proteomic investigation of ligand-dependent HSP90 complexes reveals CHORDC1 as a novel ADP-dependent HSP90-interacting protein. Mol Cell Proteomics. 2009, 9: 255-270.CrossRefPubMedPubMedCentral Gano JJ, Simon JA: A proteomic investigation of ligand-dependent HSP90 complexes reveals CHORDC1 as a novel ADP-dependent HSP90-interacting protein. Mol Cell Proteomics. 2009, 9: 255-270.CrossRefPubMedPubMedCentral
11.
go back to reference Millson SH, Truman AW, King V, Prodromou C, Pearl LH, Piper PW: A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryot Cell. 2005, 4: 849-860. 10.1128/EC.4.5.849-860.2005.CrossRefPubMedPubMedCentral Millson SH, Truman AW, King V, Prodromou C, Pearl LH, Piper PW: A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). Eukaryot Cell. 2005, 4: 849-860. 10.1128/EC.4.5.849-860.2005.CrossRefPubMedPubMedCentral
12.
go back to reference Te J, Jia L, Rogers J, Miller A, Hartson SD: Novel subunits of the mammalian Hsp90 signal transduction chaperone. J Proteome Res. 2007, 6: 1963-1973. 10.1021/pr060595i.CrossRefPubMed Te J, Jia L, Rogers J, Miller A, Hartson SD: Novel subunits of the mammalian Hsp90 signal transduction chaperone. J Proteome Res. 2007, 6: 1963-1973. 10.1021/pr060595i.CrossRefPubMed
13.
go back to reference Tsaytler PA, Krijgsveld J, Goerdayal SS, Rudiger S, Egmond MR: Novel Hsp90 partners discovered using complementary proteomic approaches. Cell Stress Chaperones. 2009, 14: 629-638. 10.1007/s12192-009-0115-z.CrossRefPubMedPubMedCentral Tsaytler PA, Krijgsveld J, Goerdayal SS, Rudiger S, Egmond MR: Novel Hsp90 partners discovered using complementary proteomic approaches. Cell Stress Chaperones. 2009, 14: 629-638. 10.1007/s12192-009-0115-z.CrossRefPubMedPubMedCentral
14.
go back to reference Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, et al: Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell. 2005, 120: 715-727. 10.1016/j.cell.2004.12.024.CrossRefPubMed Zhao R, Davey M, Hsu YC, Kaplanek P, Tong A, Parsons AB, Krogan N, Cagney G, Mai D, Greenblatt J, et al: Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell. 2005, 120: 715-727. 10.1016/j.cell.2004.12.024.CrossRefPubMed
15.
go back to reference McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J: Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell. 2007, 131: 121-135. 10.1016/j.cell.2007.07.036.CrossRefPubMed McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J: Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell. 2007, 131: 121-135. 10.1016/j.cell.2007.07.036.CrossRefPubMed
16.
go back to reference Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, Mathieson T, Perrin J, Raida M, Rau C, et al: Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol. 2007, 25: 1035-1044. 10.1038/nbt1328.CrossRefPubMed Bantscheff M, Eberhard D, Abraham Y, Bastuck S, Boesche M, Hobson S, Mathieson T, Perrin J, Raida M, Rau C, et al: Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol. 2007, 25: 1035-1044. 10.1038/nbt1328.CrossRefPubMed
17.
go back to reference Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T: The SWISS-MODEL Repository and associated resources. Nucleic Acids Res. 2009, 37: D387-392. 10.1093/nar/gkn750.CrossRefPubMed Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T: The SWISS-MODEL Repository and associated resources. Nucleic Acids Res. 2009, 37: D387-392. 10.1093/nar/gkn750.CrossRefPubMed
18.
go back to reference Kruse U, Pallasch CP, Bantscheff M, Eberhard D, Frenzel L, Ghidelli S, Maier SK, Werner T, Wendtner CM, Drewes G: Chemoproteomics-based kinome profiling and target deconvolution of clinical multi-kinase inhibitors in primary chronic lymphocytic leukemia cells. Leukemia. 2010, 25: 89-100.CrossRefPubMed Kruse U, Pallasch CP, Bantscheff M, Eberhard D, Frenzel L, Ghidelli S, Maier SK, Werner T, Wendtner CM, Drewes G: Chemoproteomics-based kinome profiling and target deconvolution of clinical multi-kinase inhibitors in primary chronic lymphocytic leukemia cells. Leukemia. 2010, 25: 89-100.CrossRefPubMed
19.
go back to reference Savitski MM, Fischer F, Mathieson T, Sweetman G, Lang M, Bantscheff M: Targeted data acquisition for improved reproducibility and robustness of proteomic mass spectrometry assays. J Am Soc Mass Spectrom. 2010, 21: 1668-1679. 10.1016/j.jasms.2010.01.012.CrossRefPubMed Savitski MM, Fischer F, Mathieson T, Sweetman G, Lang M, Bantscheff M: Targeted data acquisition for improved reproducibility and robustness of proteomic mass spectrometry assays. J Am Soc Mass Spectrom. 2010, 21: 1668-1679. 10.1016/j.jasms.2010.01.012.CrossRefPubMed
20.
go back to reference Sharp S, Workman P: Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res. 2006, 95: 323-348.CrossRefPubMed Sharp S, Workman P: Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res. 2006, 95: 323-348.CrossRefPubMed
21.
go back to reference Helms MW, Packeisen J, August C, Schittek B, Boecker W, Brandt BH, Buerger H: First evidence supporting a potential role for the BMP/SMAD pathway in the progression of oestrogen receptor-positive breast cancer. J Pathol. 2005, 206: 366-376. 10.1002/path.1785.CrossRefPubMed Helms MW, Packeisen J, August C, Schittek B, Boecker W, Brandt BH, Buerger H: First evidence supporting a potential role for the BMP/SMAD pathway in the progression of oestrogen receptor-positive breast cancer. J Pathol. 2005, 206: 366-376. 10.1002/path.1785.CrossRefPubMed
22.
go back to reference Kodach LL, Bleuming SA, Musler AR, Peppelenbosch MP, Hommes DW, van den Brink GR, van Noesel CJ, Offerhaus GJ, Hardwick JC: The bone morphogenetic protein pathway is active in human colon adenomas and inactivated in colorectal cancer. Cancer. 2008, 112: 300-306. 10.1002/cncr.23160.CrossRefPubMed Kodach LL, Bleuming SA, Musler AR, Peppelenbosch MP, Hommes DW, van den Brink GR, van Noesel CJ, Offerhaus GJ, Hardwick JC: The bone morphogenetic protein pathway is active in human colon adenomas and inactivated in colorectal cancer. Cancer. 2008, 112: 300-306. 10.1002/cncr.23160.CrossRefPubMed
23.
go back to reference Yano A, Tsutsumi S, Soga S, Lee MJ, Trepel J, Osada H, Neckers L: Inhibition of Hsp90 activates osteoclast c-Src signaling and promotes growth of prostate carcinoma cells in bone. Proc Natl Acad Sci USA. 2008, 105: 15541-15546. 10.1073/pnas.0805354105.CrossRefPubMedPubMedCentral Yano A, Tsutsumi S, Soga S, Lee MJ, Trepel J, Osada H, Neckers L: Inhibition of Hsp90 activates osteoclast c-Src signaling and promotes growth of prostate carcinoma cells in bone. Proc Natl Acad Sci USA. 2008, 105: 15541-15546. 10.1073/pnas.0805354105.CrossRefPubMedPubMedCentral
24.
go back to reference Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004, 32: D277-280. 10.1093/nar/gkh063.CrossRefPubMedPubMedCentral Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004, 32: D277-280. 10.1093/nar/gkh063.CrossRefPubMedPubMedCentral
25.
go back to reference Schumacher JA, Crockett DK, Elenitoba-Johnson KS, Lim MS: Proteome-wide changes induced by the Hsp90 inhibitor, geldanamycin in anaplastic large cell lymphoma cells. Proteomics. 2007, 7: 2603-2616. 10.1002/pmic.200700108.CrossRefPubMed Schumacher JA, Crockett DK, Elenitoba-Johnson KS, Lim MS: Proteome-wide changes induced by the Hsp90 inhibitor, geldanamycin in anaplastic large cell lymphoma cells. Proteomics. 2007, 7: 2603-2616. 10.1002/pmic.200700108.CrossRefPubMed
26.
go back to reference Simizu S, Osada H: Mutations in the Plk gene lead to instability of Plk protein in human tumour cell lines. Nat Cell Biol. 2000, 2: 852-854. 10.1038/35041102.CrossRefPubMed Simizu S, Osada H: Mutations in the Plk gene lead to instability of Plk protein in human tumour cell lines. Nat Cell Biol. 2000, 2: 852-854. 10.1038/35041102.CrossRefPubMed
27.
go back to reference Citri A, Harari D, Shohat G, Ramakrishnan P, Gan J, Lavi S, Eisenstein M, Kimchi A, Wallach D, Pietrokovski S, Yarden Y: Hsp90 recognizes a common surface on client kinases. J Biol Chem. 2006, 281: 14361-14369. 10.1074/jbc.M512613200.CrossRefPubMed Citri A, Harari D, Shohat G, Ramakrishnan P, Gan J, Lavi S, Eisenstein M, Kimchi A, Wallach D, Pietrokovski S, Yarden Y: Hsp90 recognizes a common surface on client kinases. J Biol Chem. 2006, 281: 14361-14369. 10.1074/jbc.M512613200.CrossRefPubMed
28.
go back to reference Clarke PA, Hostein I, Banerji U, Stefano FD, Maloney A, Walton M, Judson I, Workman P: Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperone. Oncogene. 2000, 19: 4125-4133. 10.1038/sj.onc.1203753.CrossRefPubMed Clarke PA, Hostein I, Banerji U, Stefano FD, Maloney A, Walton M, Judson I, Workman P: Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperone. Oncogene. 2000, 19: 4125-4133. 10.1038/sj.onc.1203753.CrossRefPubMed
29.
go back to reference Maloney A, Clarke PA, Naaby-Hansen S, Stein R, Koopman JO, Akpan A, Yang A, Zvelebil M, Cramer R, Stimson L, et al: Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 2007, 67: 3239-3253. 10.1158/0008-5472.CAN-06-2968.CrossRefPubMed Maloney A, Clarke PA, Naaby-Hansen S, Stein R, Koopman JO, Akpan A, Yang A, Zvelebil M, Cramer R, Stimson L, et al: Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 2007, 67: 3239-3253. 10.1158/0008-5472.CAN-06-2968.CrossRefPubMed
30.
go back to reference Kelland LR, Sharp SY, Rogers PM, Myers TG, Workman P: DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J Natl Cancer Inst. 1999, 91: 1940-1949. 10.1093/jnci/91.22.1940.CrossRefPubMed Kelland LR, Sharp SY, Rogers PM, Myers TG, Workman P: DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J Natl Cancer Inst. 1999, 91: 1940-1949. 10.1093/jnci/91.22.1940.CrossRefPubMed
32.
go back to reference O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, et al: mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006, 66: 1500-1508. 10.1158/0008-5472.CAN-05-2925.CrossRefPubMedPubMedCentral O'Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, Lane H, Hofmann F, Hicklin DJ, Ludwig DL, et al: mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 2006, 66: 1500-1508. 10.1158/0008-5472.CAN-05-2925.CrossRefPubMedPubMedCentral
33.
go back to reference Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, et al: Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008, 118: 3065-3074.PubMedPubMedCentral Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, et al: Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 2008, 118: 3065-3074.PubMedPubMedCentral
34.
go back to reference Blanco Calvo M, Bolos Fernandez V, Medina Villaamil V, Aparicio Gallego G, Diaz Prado S, Grande Pulido E: Biology of BMP signalling and cancer. Clin Transl Oncol. 2009, 11: 126-137. 10.1007/S12094-009-0328-8.CrossRefPubMed Blanco Calvo M, Bolos Fernandez V, Medina Villaamil V, Aparicio Gallego G, Diaz Prado S, Grande Pulido E: Biology of BMP signalling and cancer. Clin Transl Oncol. 2009, 11: 126-137. 10.1007/S12094-009-0328-8.CrossRefPubMed
35.
go back to reference Ye L, Mason MD, Jiang WG: Bone morphogenetic protein and bone metastasis, implication and therapeutic potential. Front Biosci. 2011, 16: 865-897. 10.2741/3725.CrossRef Ye L, Mason MD, Jiang WG: Bone morphogenetic protein and bone metastasis, implication and therapeutic potential. Front Biosci. 2011, 16: 865-897. 10.2741/3725.CrossRef
36.
go back to reference Kim IY, Lee DH, Ahn HJ, Tokunaga H, Song W, Devereaux LM, Jin D, Sampath TK, Morton RA: Expression of bone morphogenetic protein receptors type-IA, -IB and -II correlates with tumor grade in human prostate cancer tissues. Cancer Res. 2000, 60: 2840-2844.PubMed Kim IY, Lee DH, Ahn HJ, Tokunaga H, Song W, Devereaux LM, Jin D, Sampath TK, Morton RA: Expression of bone morphogenetic protein receptors type-IA, -IB and -II correlates with tumor grade in human prostate cancer tissues. Cancer Res. 2000, 60: 2840-2844.PubMed
37.
go back to reference Kim IY, Lee DH, Lee DK, Ahn HJ, Kim MM, Kim SJ, Morton RA: Loss of expression of bone morphogenetic protein receptor type II in human prostate cancer cells. Oncogene. 2004, 23: 7651-7659. 10.1038/sj.onc.1207924.CrossRefPubMed Kim IY, Lee DH, Lee DK, Ahn HJ, Kim MM, Kim SJ, Morton RA: Loss of expression of bone morphogenetic protein receptor type II in human prostate cancer cells. Oncogene. 2004, 23: 7651-7659. 10.1038/sj.onc.1207924.CrossRefPubMed
38.
go back to reference Heath EI, Hillman DW, Vaishampayan U, Sheng S, Sarkar F, Harper F, Gaskins M, Pitot HC, Tan W, Ivy SP, et al: A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin Cancer Res. 2008, 14: 7940-7946. 10.1158/1078-0432.CCR-08-0221.CrossRefPubMedPubMedCentral Heath EI, Hillman DW, Vaishampayan U, Sheng S, Sarkar F, Harper F, Gaskins M, Pitot HC, Tan W, Ivy SP, et al: A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin Cancer Res. 2008, 14: 7940-7946. 10.1158/1078-0432.CCR-08-0221.CrossRefPubMedPubMedCentral
39.
go back to reference Katsuno Y, Hanyu A, Kanda H, Ishikawa Y, Akiyama F, Iwase T, Ogata E, Ehata S, Miyazono K, Imamura T: Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene. 2008, 27: 6322-6333. 10.1038/onc.2008.232.CrossRefPubMed Katsuno Y, Hanyu A, Kanda H, Ishikawa Y, Akiyama F, Iwase T, Ogata E, Ehata S, Miyazono K, Imamura T: Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene. 2008, 27: 6322-6333. 10.1038/onc.2008.232.CrossRefPubMed
40.
go back to reference Owens P, Pickup MW, Novitskiy SV, Chytil A, Gorska AE, Aakre ME, West J, Moses HL: Breast Cancer Special Feature: Disruption of bone morphogenetic protein receptor 2 (BMPR2) in mammary tumors promotes metastases through cell autonomous and paracrine mediators. Proc Natl Acad Sci USA. 2011, Owens P, Pickup MW, Novitskiy SV, Chytil A, Gorska AE, Aakre ME, West J, Moses HL: Breast Cancer Special Feature: Disruption of bone morphogenetic protein receptor 2 (BMPR2) in mammary tumors promotes metastases through cell autonomous and paracrine mediators. Proc Natl Acad Sci USA. 2011,
41.
go back to reference Pouliot F, Blais A, Labrie C: Overexpression of a dominant negative type II bone morphogenetic protein receptor inhibits the growth of human breast cancer cells. Cancer Res. 2003, 63: 277-281.PubMed Pouliot F, Blais A, Labrie C: Overexpression of a dominant negative type II bone morphogenetic protein receptor inhibits the growth of human breast cancer cells. Cancer Res. 2003, 63: 277-281.PubMed
42.
go back to reference Wagner EF, Nebreda AR: Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009, 9: 537-549. 10.1038/nrc2694.CrossRefPubMed Wagner EF, Nebreda AR: Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009, 9: 537-549. 10.1038/nrc2694.CrossRefPubMed
43.
go back to reference Sos ML, Michel K, Zander T, Weiss J, Frommolt P, Peifer M, Li D, Ullrich R, Koker M, Fischer F, et al: Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. J Clin Invest. 2009, 119: 1727-1740. 10.1172/JCI37127.CrossRefPubMedPubMedCentral Sos ML, Michel K, Zander T, Weiss J, Frommolt P, Peifer M, Li D, Ullrich R, Koker M, Fischer F, et al: Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. J Clin Invest. 2009, 119: 1727-1740. 10.1172/JCI37127.CrossRefPubMedPubMedCentral
Metadata
Title
Hsp90 inhibition differentially destabilises MAP kinase and TGF-beta signalling components in cancer cells revealed by kinase-targeted chemoproteomics
Authors
Armin Haupt
Gerard Joberty
Marcus Bantscheff
Holger Fröhlich
Henning Stehr
Michal R Schweiger
Axel Fischer
Martin Kerick
Stefan T Boerno
Andreas Dahl
Michael Lappe
Hans Lehrach
Cayetano Gonzalez
Gerard Drewes
Bodo MH Lange
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2012
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-12-38

Other articles of this Issue 1/2012

BMC Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine