Skip to main content
Top
Published in: Molecular Cancer 1/2017

Open Access 01-12-2017 | Research

Hsp90β promoted endothelial cell-dependent tumor angiogenesis in hepatocellular carcinoma

Authors: Jing Meng, Yanrong Liu, Jingxia Han, Qiang Tan, Shuang Chen, Kailiang Qiao, Honggang Zhou, Tao Sun, Cheng Yang

Published in: Molecular Cancer | Issue 1/2017

Login to get access

Abstract

Background

Vascular endothelial growth factor receptors (VEGFRs) are the major receptors involved in endothelial cell-dependent tumor angiogenesis. There are studies account for the effects of Hsp90 on angiogenesis, but the role and mechanism of Hsp90β isoforms and NVP-BEP800, a specific inhibitor of Hsp90β, in tumor angiogenesis is rarely mentioned.

Methods

Immunohistochemistry and statistical analysis was used to evaluate the correlation between Hsp90β expression, CD31 endothelial cell-dependent vessel density, and VEGFRs expression in tissue samples of 96 HCCs. Kaplan-Meier survival analysis and COX proportional hazards analysis the relation of Hsp90β and prognosis. HUVEC cells were transfected with Hsp90β or treated with NVP-BEP800, and then cell proliferation, migration, invasion and tube formation were investigated. The VEGFR1 and VEGFR2 expression was determined by Western blot and immunofluorescence. The VEGFR1 and VEGFR2 promoter activities were detected by dual luciferase report system. In vivo, the angiogenesis promotion of Hsp90β and anti-angiogenesis efficacy of NVP-BEP800 was tested in HCC xenograft models. Histological analysis was performed on tumor samples to evaluate Hsp90β, VEGFRs expression and MVD.

Results

This study investigated the correlation between Hsp90β expression and CD31+ endothelial cell-dependent vessel density. Hsp90β promoted VEGFRs expression by increasing their promoter activities. The proliferation, migration, invasion, and tube formation activities of human endothelial cells significantly increased when Hsp90β was overexpressed. NVP-BEP800 down-regulated VEGFRs expression to significantly reduce tubular differentiation, as well as endothelial cell proliferation, migration, and invasion. Furthermore, NVP-BEP800 decreased VEGFR1 and VEGFR2 promoter activities. In vivo, Hsp90β promoted VEGFRs and CD31 expression in human hepatocellular carcinoma tumor xenografts and was associated with increased tumor microvessel density. After 18 days of treatment with 30 mg/kg/day NVP-BEP800, VEGFRs and CD31 expression significantly decreased.

Conclusion

Hsp90β induced endothelial cell-dependent tumor angiogenesis by activating VEGFRs transcription. NVP-BEP800 has potential as a therapeutic strategy for inhibiting tumor angiogenesis by decreasing endothelial cell progression and metastasis. It can help develop a therapeutic strategy for tumor treatment through the inhibition of endothelial cell progression and metastasis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Park JH, Kim SH, Choi MC, Lee J, Oh DY, Im SA, Bang YJ, et al. Class II histone deacetylases play pivotal roles in heat shock protein 90-mediated proteasomal degradation of vascular endothelial growth factor receptors. Biochem Biophys Res Commun. 2008;368:318–22.CrossRefPubMed Park JH, Kim SH, Choi MC, Lee J, Oh DY, Im SA, Bang YJ, et al. Class II histone deacetylases play pivotal roles in heat shock protein 90-mediated proteasomal degradation of vascular endothelial growth factor receptors. Biochem Biophys Res Commun. 2008;368:318–22.CrossRefPubMed
3.
go back to reference Sun J, Liao JK. Induction of angiogenesis by heat shock protein 90 mediated by protein kinase Akt and endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol. 2004;24:2238–44.CrossRefPubMedPubMedCentral Sun J, Liao JK. Induction of angiogenesis by heat shock protein 90 mediated by protein kinase Akt and endothelial nitric oxide synthase. Arterioscler Thromb Vasc Biol. 2004;24:2238–44.CrossRefPubMedPubMedCentral
4.
5.
go back to reference Staufer K, Stoeltzing O. Implication of heat shock protein 90 (HSP90) in tumor angiogenesis: a molecular target for anti-angiogenic therapy? Curr Cancer Drug Targets. 2010;10:890–7.CrossRefPubMed Staufer K, Stoeltzing O. Implication of heat shock protein 90 (HSP90) in tumor angiogenesis: a molecular target for anti-angiogenic therapy? Curr Cancer Drug Targets. 2010;10:890–7.CrossRefPubMed
6.
go back to reference Shibuya M. Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis. 2006;9:225–30. discussion 231.CrossRefPubMed Shibuya M. Vascular endothelial growth factor receptor-1 (VEGFR-1/Flt-1): a dual regulator for angiogenesis. Angiogenesis. 2006;9:225–30. discussion 231.CrossRefPubMed
7.
go back to reference Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25.CrossRefPubMed Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25.CrossRefPubMed
8.
go back to reference Rapisarda A, Melillo G. Role of the VEGF/VEGFR axis in cancer biology and therapy. Adv Cancer Res. 2012;114:237–67.CrossRefPubMed Rapisarda A, Melillo G. Role of the VEGF/VEGFR axis in cancer biology and therapy. Adv Cancer Res. 2012;114:237–67.CrossRefPubMed
9.
go back to reference Karkkainen MJ, Petrova TV. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene. 2000;19:5598–605.CrossRefPubMed Karkkainen MJ, Petrova TV. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene. 2000;19:5598–605.CrossRefPubMed
10.
11.
go back to reference Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L. VEGF-receptor signal transduction. Trends Biochem Sci. 2003;28:488–94.CrossRefPubMed Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L. VEGF-receptor signal transduction. Trends Biochem Sci. 2003;28:488–94.CrossRefPubMed
12.
go back to reference Zachary I. VEGF signalling: integration and multi-tasking in endothelial cell biology. Biochem Soc Trans. 2003;31:1171–7.CrossRefPubMed Zachary I. VEGF signalling: integration and multi-tasking in endothelial cell biology. Biochem Soc Trans. 2003;31:1171–7.CrossRefPubMed
13.
14.
go back to reference Deryugina EI, Quigley JP. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol. 2015;46:94–112.CrossRef Deryugina EI, Quigley JP. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol. 2015;46:94–112.CrossRef
16.
go back to reference Xue Q, Nagy JA, Manseau EJ, Phung TL, Dvorak HF, Benjamin LE. Rapamycin inhibition of the Akt/mTOR pathway blocks select stages of VEGF-A164-driven angiogenesis, in part by blocking S6Kinase. Arterioscler Thromb Vasc Biol. 2009;29:1172–8.CrossRefPubMedPubMedCentral Xue Q, Nagy JA, Manseau EJ, Phung TL, Dvorak HF, Benjamin LE. Rapamycin inhibition of the Akt/mTOR pathway blocks select stages of VEGF-A164-driven angiogenesis, in part by blocking S6Kinase. Arterioscler Thromb Vasc Biol. 2009;29:1172–8.CrossRefPubMedPubMedCentral
17.
go back to reference Saryeddine L, Zibara K, Kassem N, Badran B, El-Zein N. EGF-Induced VEGF Exerts a PI3K-Dependent Positive Feedback on ERK and AKT through VEGFR2 in Hematological In Vitro Models. PLoS ONE. 2016;11:e0165876.CrossRefPubMedPubMedCentral Saryeddine L, Zibara K, Kassem N, Badran B, El-Zein N. EGF-Induced VEGF Exerts a PI3K-Dependent Positive Feedback on ERK and AKT through VEGFR2 in Hematological In Vitro Models. PLoS ONE. 2016;11:e0165876.CrossRefPubMedPubMedCentral
18.
go back to reference Sanderson S, Valenti M, Gowan S, Patterson L, Ahmad Z, Workman P, Eccles SA. Benzoquinone ansamycin heat shock protein 90 inhibitors modulate multiple functions required for tumor angiogenesis. Mol Cancer Ther. 2006;5:522–32.CrossRefPubMed Sanderson S, Valenti M, Gowan S, Patterson L, Ahmad Z, Workman P, Eccles SA. Benzoquinone ansamycin heat shock protein 90 inhibitors modulate multiple functions required for tumor angiogenesis. Mol Cancer Ther. 2006;5:522–32.CrossRefPubMed
19.
go back to reference Masson-Gadais B, Houle F, Laferriere J, Huot J. Integrin alphavbeta3, requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. Cell Stress Chaperones. 2003;8:37–52.CrossRefPubMedPubMedCentral Masson-Gadais B, Houle F, Laferriere J, Huot J. Integrin alphavbeta3, requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. Cell Stress Chaperones. 2003;8:37–52.CrossRefPubMedPubMedCentral
21.
go back to reference Kim HY, Kim J, Ha Thi HT, Bang OS, Lee WS, Hong S. Evaluation of anti-tumorigenic activity of BP3B against colon cancer with patient-derived tumor xenograft model. BMC Complement Altern Med. 2016;16:473.CrossRefPubMedPubMedCentral Kim HY, Kim J, Ha Thi HT, Bang OS, Lee WS, Hong S. Evaluation of anti-tumorigenic activity of BP3B against colon cancer with patient-derived tumor xenograft model. BMC Complement Altern Med. 2016;16:473.CrossRefPubMedPubMedCentral
22.
go back to reference Massey AJ, Schoepfer J, Brough PA, Brueggen J, Chene P, Drysdale MJ, Pfaar U, et al. Preclinical antitumor activity of the orally available heat shock protein 90 inhibitor NVP-BEP800. Mol Cancer Ther. 2010;9:906–19.CrossRefPubMed Massey AJ, Schoepfer J, Brough PA, Brueggen J, Chene P, Drysdale MJ, Pfaar U, et al. Preclinical antitumor activity of the orally available heat shock protein 90 inhibitor NVP-BEP800. Mol Cancer Ther. 2010;9:906–19.CrossRefPubMed
23.
go back to reference Zhang D, Hedlund EM, Lim S, Chen F, Zhang Y, Sun B, Cao Y. Antiangiogenic agents significantly improve survival in tumor-bearing mice by increasing tolerance to chemotherapy-induced toxicity. Proc Natl Acad Sci U S A. 2011;108:4117–22.CrossRefPubMedPubMedCentral Zhang D, Hedlund EM, Lim S, Chen F, Zhang Y, Sun B, Cao Y. Antiangiogenic agents significantly improve survival in tumor-bearing mice by increasing tolerance to chemotherapy-induced toxicity. Proc Natl Acad Sci U S A. 2011;108:4117–22.CrossRefPubMedPubMedCentral
24.
go back to reference Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer. 2011;2:1097–105.CrossRefPubMedPubMedCentral Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer. 2011;2:1097–105.CrossRefPubMedPubMedCentral
25.
go back to reference Le Boeuf F, Houle F, Huot J. Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J Biol Chem. 2004;279:39175–85.CrossRefPubMed Le Boeuf F, Houle F, Huot J. Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J Biol Chem. 2004;279:39175–85.CrossRefPubMed
26.
go back to reference Kaur G, Belotti D, Burger AM, Fisher-Nielson K, Borsotti P, Riccardi E, Thillainathan J, et al. Antiangiogenic properties of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin: an orally bioavailable heat shock protein 90 modulator. Clin Cancer Res. 2004;10:4813–21.CrossRefPubMed Kaur G, Belotti D, Burger AM, Fisher-Nielson K, Borsotti P, Riccardi E, Thillainathan J, et al. Antiangiogenic properties of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin: an orally bioavailable heat shock protein 90 modulator. Clin Cancer Res. 2004;10:4813–21.CrossRefPubMed
27.
go back to reference Tabernero J. The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res. 2007;5:203–20.CrossRefPubMed Tabernero J. The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res. 2007;5:203–20.CrossRefPubMed
28.
go back to reference Eccles SA, Massey A, Raynaud FI, Sharp SY, Box G, Valenti M, Patterson L, et al. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res. 2008;68:2850–60.CrossRefPubMed Eccles SA, Massey A, Raynaud FI, Sharp SY, Box G, Valenti M, Patterson L, et al. NVP-AUY922: a novel heat shock protein 90 inhibitor active against xenograft tumor growth, angiogenesis, and metastasis. Cancer Res. 2008;68:2850–60.CrossRefPubMed
29.
go back to reference Sharp SY, Prodromou C, Boxall K, Powers MV, Holmes JL, Box G, Matthews TP, et al. Inhibition of the heat shock protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues. Mol Cancer Ther. 2007;6:1198–211.CrossRefPubMed Sharp SY, Prodromou C, Boxall K, Powers MV, Holmes JL, Box G, Matthews TP, et al. Inhibition of the heat shock protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues. Mol Cancer Ther. 2007;6:1198–211.CrossRefPubMed
30.
go back to reference Burger AM, Fiebig HH, Stinson SF, Sausville EA. 17-(Allylamino)-17-demethoxygeldanamycin activity in human melanoma models. Anticancer Drugs. 2004;15:377–87.CrossRefPubMed Burger AM, Fiebig HH, Stinson SF, Sausville EA. 17-(Allylamino)-17-demethoxygeldanamycin activity in human melanoma models. Anticancer Drugs. 2004;15:377–87.CrossRefPubMed
31.
go back to reference Kim WY, Oh SH, Woo JK, Hong WK, Lee HY. Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1alpha. Cancer Res. 2009;69:1624–32.CrossRefPubMedPubMedCentral Kim WY, Oh SH, Woo JK, Hong WK, Lee HY. Targeting heat shock protein 90 overrides the resistance of lung cancer cells by blocking radiation-induced stabilization of hypoxia-inducible factor-1alpha. Cancer Res. 2009;69:1624–32.CrossRefPubMedPubMedCentral
32.
go back to reference Lang SA, Klein D, Moser C, Gaumann A, Glockzin G, Dahlke MH, Dietmaier W, et al. Inhibition of heat shock protein 90 impairs epidermal growth factor-mediated signaling in gastric cancer cells and reduces tumor growth and vascularization in vivo. Mol Cancer Ther. 2007;6:1123–32.CrossRefPubMed Lang SA, Klein D, Moser C, Gaumann A, Glockzin G, Dahlke MH, Dietmaier W, et al. Inhibition of heat shock protein 90 impairs epidermal growth factor-mediated signaling in gastric cancer cells and reduces tumor growth and vascularization in vivo. Mol Cancer Ther. 2007;6:1123–32.CrossRefPubMed
Metadata
Title
Hsp90β promoted endothelial cell-dependent tumor angiogenesis in hepatocellular carcinoma
Authors
Jing Meng
Yanrong Liu
Jingxia Han
Qiang Tan
Shuang Chen
Kailiang Qiao
Honggang Zhou
Tao Sun
Cheng Yang
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2017
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-017-0640-9

Other articles of this Issue 1/2017

Molecular Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine